MyArxiv
Robotics 42
☆ Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $\pi_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.
comment: CoRL 2025
☆ V*: An Efficient Motion Planning Algorithm for Autonomous Vehicles
Autonomous vehicle navigation in structured environments requires planners capable of generating time-optimal, collision-free trajectories that satisfy dynamic and kinematic constraints. We introduce V*, a graph-based motion planner that represents speed and direction as explicit state variables within a discretised space-time-velocity lattice. Unlike traditional methods that decouple spatial search from dynamic feasibility or rely on post-hoc smoothing, V* integrates both motion dimensions directly into graph construction through dynamic graph generation during search expansion. To manage the complexity of high-dimensional search, we employ a hexagonal discretisation strategy and provide formal mathematical proofs establishing optimal waypoint spacing and minimal node redundancy under constrained heading transitions for velocity-aware motion planning. We develop a mathematical formulation for transient steering dynamics in the kinematic bicycle model, modelling steering angle convergence with exponential behaviour, and deriving the relationship for convergence rate parameters. This theoretical foundation, combined with geometric pruning strategies that eliminate expansions leading to infeasible steering configurations, enables V* to evaluate dynamically admissible manoeuvres, ensuring each trajectory is physically realisable without further refinement. We further demonstrate V*'s performance in simulation studies with cluttered and dynamic environments involving moving obstacles, showing its ability to avoid conflicts, yield proactively, and generate safe, efficient trajectories with temporal reasoning capabilities for waiting behaviours and dynamic coordination.
☆ L2Calib: $SE(3)$-Manifold Reinforcement Learning for Robust Extrinsic Calibration with Degenerate Motion Resilience IROS2025
Extrinsic calibration is essential for multi-sensor fusion, existing methods rely on structured targets or fully-excited data, limiting real-world applicability. Online calibration further suffers from weak excitation, leading to unreliable estimates. To address these limitations, we propose a reinforcement learning (RL)-based extrinsic calibration framework that formulates extrinsic calibration as a decision-making problem, directly optimizes $SE(3)$ extrinsics to enhance odometry accuracy. Our approach leverages a probabilistic Bingham distribution to model 3D rotations, ensuring stable optimization while inherently retaining quaternion symmetry. A trajectory alignment reward mechanism enables robust calibration without structured targets by quantitatively evaluating estimated tightly-coupled trajectory against a reference trajectory. Additionally, an automated data selection module filters uninformative samples, significantly improving efficiency and scalability for large-scale datasets. Extensive experiments on UAVs, UGVs, and handheld platforms demonstrate that our method outperforms traditional optimization-based approaches, achieving high-precision calibration even under weak excitation conditions. Our framework simplifies deployment on diverse robotic platforms by eliminating the need for high-quality initial extrinsics and enabling calibration from routine operating data. The code is available at https://github.com/APRIL-ZJU/learn-to-calibrate.
comment: IROS2025
☆ Towards Balanced Behavior Cloning from Imbalanced Datasets
Robots should be able to learn complex behaviors from human demonstrations. In practice, these human-provided datasets are inevitably imbalanced: i.e., the human demonstrates some subtasks more frequently than others. State-of-the-art methods default to treating each element of the human's dataset as equally important. So if -- for instance -- the majority of the human's data focuses on reaching a goal, and only a few state-action pairs move to avoid an obstacle, the learning algorithm will place greater emphasis on goal reaching. More generally, misalignment between the relative amounts of data and the importance of that data causes fundamental problems for imitation learning approaches. In this paper we analyze and develop learning methods that automatically account for mixed datasets. We formally prove that imbalanced data leads to imbalanced policies when each state-action pair is weighted equally; these policies emulate the most represented behaviors, and not the human's complex, multi-task demonstrations. We next explore algorithms that rebalance offline datasets (i.e., reweight the importance of different state-action pairs) without human oversight. Reweighting the dataset can enhance the overall policy performance. However, there is no free lunch: each method for autonomously rebalancing brings its own pros and cons. We formulate these advantages and disadvantages, helping other researchers identify when each type of approach is most appropriate. We conclude by introducing a novel meta-gradient rebalancing algorithm that addresses the primary limitations behind existing approaches. Our experiments show that dataset rebalancing leads to better downstream learning, improving the performance of general imitation learning algorithms without requiring additional data collection. See our project website: https://collab.me.vt.edu/data_curation/.
☆ Surrogate-Enhanced Modeling and Adaptive Modular Control of All-Electric Heavy-Duty Robotic Manipulators
This paper presents a unified system-level modeling and control framework for an all-electric heavy-duty robotic manipulator (HDRM) driven by electromechanical linear actuators (EMLAs). A surrogate-enhanced actuator model, combining integrated electromechanical dynamics with a neural network trained on a dedicated testbed, is integrated into an extended virtual decomposition control (VDC) architecture augmented by a natural adaptation law. The derived analytical HDRM model supports a hierarchical control structure that seamlessly maps high-level force and velocity objectives to real-time actuator commands, accompanied by a Lyapunov-based stability proof. In multi-domain simulations of both cubic and a custom planar triangular trajectory, the proposed adaptive modular controller achieves sub-centimeter Cartesian tracking accuracy. Experimental validation of the same 1-DoF platform under realistic load emulation confirms the efficacy of the proposed control strategy. These findings demonstrate that a surrogate-enhanced EMLA model embedded in the VDC approach can enable modular, real-time control of an all-electric HDRM, supporting its deployment in next-generation mobile working machines.
comment: This is submitted to IEEE T-ASE
☆ Evaluating Robot Program Performance with Power Consumption Driven Metrics in Lightweight Industrial Robots
The code performance of industrial robots is typically analyzed through CPU metrics, which overlook the physical impact of code on robot behavior. This study introduces a novel framework for assessing robot program performance from an embodiment perspective by analyzing the robot's electrical power profile. Our approach diverges from conventional CPU based evaluations and instead leverages a suite of normalized metrics, namely, the energy utilization coefficient, the energy conversion metric, and the reliability coefficient, to capture how efficiently and reliably energy is used during task execution. Complementing these metrics, the established robot wear metric provides further insight into long term reliability. Our approach is demonstrated through an experimental case study in machine tending, comparing four programs with diverse strategies using a UR5e robot. The proposed metrics directly compare and categorize different robot programs, regardless of the specific task, by linking code performance to its physical manifestation through power consumption patterns. Our results reveal the strengths and weaknesses of each strategy, offering actionable insights for optimizing robot programming practices. Enhancing energy efficiency and reliability through this embodiment centric approach not only improves individual robot performance but also supports broader industrial objectives such as sustainable manufacturing and cost reduction.
☆ Real-Time 3D Vision-Language Embedding Mapping
A metric-accurate semantic 3D representation is essential for many robotic tasks. This work proposes a simple, yet powerful, way to integrate the 2D embeddings of a Vision-Language Model in a metric-accurate 3D representation at real-time. We combine a local embedding masking strategy, for a more distinct embedding distribution, with a confidence-weighted 3D integration for more reliable 3D embeddings. The resulting metric-accurate embedding representation is task-agnostic and can represent semantic concepts on a global multi-room, as well as on a local object-level. This enables a variety of interactive robotic applications that require the localisation of objects-of-interest via natural language. We evaluate our approach on a variety of real-world sequences and demonstrate that these strategies achieve a more accurate object-of-interest localisation while improving the runtime performance in order to meet our real-time constraints. We further demonstrate the versatility of our approach in a variety of interactive handheld, mobile robotics and manipulation tasks, requiring only raw image data.
☆ Situationally-aware Path Planning Exploiting 3D Scene Graphs
3D Scene Graphs integrate both metric and semantic information, yet their structure remains underutilized for improving path planning efficiency and interpretability. In this work, we present S-Path, a situationally-aware path planner that leverages the metric-semantic structure of indoor 3D Scene Graphs to significantly enhance planning efficiency. S-Path follows a two-stage process: it first performs a search over a semantic graph derived from the scene graph to yield a human-understandable high-level path. This also identifies relevant regions for planning, which later allows the decomposition of the problem into smaller, independent subproblems that can be solved in parallel. We also introduce a replanning mechanism that, in the event of an infeasible path, reuses information from previously solved subproblems to update semantic heuristics and prioritize reuse to further improve the efficiency of future planning attempts. Extensive experiments on both real-world and simulated environments show that S-Path achieves average reductions of 5.7x in planning time while maintaining comparable path optimality to classical sampling-based planners and surpassing them in complex scenarios, making it an efficient and interpretable path planner for environments represented by indoor 3D Scene Graphs.
☆ Mitigating Undesired Conditions in Flexible Production with Product-Process-Resource Asset Knowledge Graphs
Contemporary industrial cyber-physical production systems (CPPS) composed of robotic workcells face significant challenges in the analysis of undesired conditions due to the flexibility of Industry 4.0 that disrupts traditional quality assurance mechanisms. This paper presents a novel industry-oriented semantic model called Product-Process-Resource Asset Knowledge Graph (PPR-AKG), which is designed to analyze and mitigate undesired conditions in flexible CPPS. Built on top of the well-proven Product-Process-Resource (PPR) model originating from ISA-95 and VDI-3682, a comprehensive OWL ontology addresses shortcomings of conventional model-driven engineering for CPPS, particularly inadequate undesired condition and error handling representation. The integration of semantic technologies with large language models (LLMs) provides intuitive interfaces for factory operators, production planners, and engineers to interact with the entire model using natural language. Evaluation with the use case addressing electric vehicle battery remanufacturing demonstrates that the PPR-AKG approach efficiently supports resource allocation based on explicitly represented capabilities as well as identification and mitigation of undesired conditions in production. The key contributions include (1) a holistic PPR-AKG model capturing multi-dimensional production knowledge, and (2) the useful combination of the PPR-AKG with LLM-based chatbots for human interaction.
comment: 3 pages, 1 figure
☆ EcBot: Data-Driven Energy Consumption Open-Source MATLAB Library for Manipulators
Existing literature proposes models for estimating the electrical power of manipulators, yet two primary limitations prevail. First, most models are predominantly tested using traditional industrial robots. Second, these models often lack accuracy. To address these issues, we introduce an open source Matlab-based library designed to automatically generate \ac{ec} models for manipulators. The necessary inputs for the library are Denavit-Hartenberg parameters, link masses, and centers of mass. Additionally, our model is data-driven and requires real operational data, including joint positions, velocities, accelerations, electrical power, and corresponding timestamps. We validated our methodology by testing on four lightweight robots sourced from three distinct manufacturers: Universal Robots, Franka Emika, and Kinova. The model underwent testing, and the results demonstrated an RMSE ranging from 1.42 W to 2.80 W for the training dataset and from 1.45 W to 5.25 W for the testing dataset.
☆ ADPro: a Test-time Adaptive Diffusion Policy for Robot Manipulation via Manifold and Initial Noise Constraints
Diffusion policies have recently emerged as a powerful class of visuomotor controllers for robot manipulation, offering stable training and expressive multi-modal action modeling. However, existing approaches typically treat action generation as an unconstrained denoising process, ignoring valuable a priori knowledge about geometry and control structure. In this work, we propose the Adaptive Diffusion Policy (ADP), a test-time adaptation method that introduces two key inductive biases into the diffusion. First, we embed a geometric manifold constraint that aligns denoising updates with task-relevant subspaces, leveraging the fact that the relative pose between the end-effector and target scene provides a natural gradient direction, and guiding denoising along the geodesic path of the manipulation manifold. Then, to reduce unnecessary exploration and accelerate convergence, we propose an analytically guided initialization: rather than sampling from an uninformative prior, we compute a rough registration between the gripper and target scenes to propose a structured initial noisy action. ADP is compatible with pre-trained diffusion policies and requires no retraining, enabling test-time adaptation that tailors the policy to specific tasks, thereby enhancing generalization across novel tasks and environments. Experiments on RLBench, CALVIN, and real-world dataset show that ADPro, an implementation of ADP, improves success rates, generalization, and sampling efficiency, achieving up to 25% faster execution and 9% points over strong diffusion baselines.
☆ REBot: Reflexive Evasion Robot for Instantaneous Dynamic Obstacle Avoidance
Dynamic obstacle avoidance (DOA) is critical for quadrupedal robots operating in environments with moving obstacles or humans. Existing approaches typically rely on navigation-based trajectory replanning, which assumes sufficient reaction time and leading to fails when obstacles approach rapidly. In such scenarios, quadrupedal robots require reflexive evasion capabilities to perform instantaneous, low-latency maneuvers. This paper introduces Reflexive Evasion Robot (REBot), a control framework that enables quadrupedal robots to achieve real-time reflexive obstacle avoidance. REBot integrates an avoidance policy and a recovery policy within a finite-state machine. With carefully designed learning curricula and by incorporating regularization and adaptive rewards, REBot achieves robust evasion and rapid stabilization in instantaneous DOA tasks. We validate REBot through extensive simulations and real-world experiments, demonstrating notable improvements in avoidance success rates, energy efficiency, and robustness to fast-moving obstacles. Videos and appendix are available on https://rebot-2025.github.io/.
☆ Depth Jitter: Seeing through the Depth
Depth information is essential in computer vision, particularly in underwater imaging, robotics, and autonomous navigation. However, conventional augmentation techniques overlook depth aware transformations, limiting model robustness in real world depth variations. In this paper, we introduce Depth-Jitter, a novel depth-based augmentation technique that simulates natural depth variations to improve generalization. Our approach applies adaptive depth offsetting, guided by depth variance thresholds, to generate synthetic depth perturbations while preserving structural integrity. We evaluate Depth-Jitter on two benchmark datasets, FathomNet and UTDAC2020 demonstrating its impact on model stability under diverse depth conditions. Extensive experiments compare Depth-Jitter against traditional augmentation strategies such as ColorJitter, analyzing performance across varying learning rates, encoders, and loss functions. While Depth-Jitter does not always outperform conventional methods in absolute performance, it consistently enhances model stability and generalization in depth-sensitive environments. These findings highlight the potential of depth-aware augmentation for real-world applications and provide a foundation for further research into depth-based learning strategies. The proposed technique is publicly available to support advancements in depth-aware augmentation. The code is publicly available on \href{https://github.com/mim-team/Depth-Jitter}{github}.
☆ Computer Vision-based Adaptive Control for Back Exoskeleton Performance Optimization
Back exoskeletons can reduce musculoskeletal strain, but their effectiveness depends on support modulation and adaptive control. This study addresses two challenges: defining optimal support strategies and developing adaptive control based on payload estimation. We introduce an optimization space based on muscle activity reduction, perceived discomfort, and user preference, constructing functions to identify optimal strategies. Experiments with 12 subjects revealed optimal operating regions, highlighting the need for dynamic modulation. Based on these insights, we developed a vision-based adaptive control pipeline that estimates payloads in real-time by enhancing exoskeleton contextual understanding, minimising latency and enabling support adaptation within the defined optimisation space. Validation with 12 more subjects showed over 80% accuracy and improvements across all metrics. Compared to static control, adaptive modulation reduced peak back muscle activation by up to 23% while preserving user preference and minimising discomfort. These findings validate the proposed framework and highlight the potential of intelligent, context-aware control in industrial exoskeletons.
☆ Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.
☆ Beyond Constant Parameters: Hyper Prediction Models and HyperMPC
Model Predictive Control (MPC) is among the most widely adopted and reliable methods for robot control, relying critically on an accurate dynamics model. However, existing dynamics models used in the gradient-based MPC are limited by computational complexity and state representation. To address this limitation, we propose the Hyper Prediction Model (HyperPM) - a novel approach in which we project the unmodeled dynamics onto a time-dependent dynamics model. This time-dependency is captured through time-varying model parameters, whose evolution over the MPC prediction horizon is learned using a neural network. Such formulation preserves the computational efficiency and robustness of the base model while equipping it with the capacity to anticipate previously unmodeled phenomena. We evaluated the proposed approach on several challenging systems, including real-world F1TENTH autonomous racing, and demonstrated that it significantly reduces long-horizon prediction errors. Moreover, when integrated within the MPC framework (HyperMPC), our method consistently outperforms existing state-of-the-art techniques.
☆ Graph-based Robot Localization Using a Graph Neural Network with a Floor Camera and a Feature Rich Industrial Floor
Accurate localization represents a fundamental challenge in robotic navigation. Traditional methodologies, such as Lidar or QR-code based systems, suffer from inherent scalability and adaptability con straints, particularly in complex environments. In this work, we propose an innovative localization framework that harnesses flooring characteris tics by employing graph-based representations and Graph Convolutional Networks (GCNs). Our method uses graphs to represent floor features, which helps localize the robot more accurately (0.64cm error) and more efficiently than comparing individual image features. Additionally, this approach successfully addresses the kidnapped robot problem in every frame without requiring complex filtering processes. These advancements open up new possibilities for robotic navigation in diverse environments.
comment: Accepted at 28th RoboCup International Symposium, Salvador, Brasil
☆ GMF-Drive: Gated Mamba Fusion with Spatial-Aware BEV Representation for End-to-End Autonomous Driving
Diffusion-based models are redefining the state-of-the-art in end-to-end autonomous driving, yet their performance is increasingly hampered by a reliance on transformer-based fusion. These architectures face fundamental limitations: quadratic computational complexity restricts the use of high-resolution features, and a lack of spatial priors prevents them from effectively modeling the inherent structure of Bird's Eye View (BEV) representations. This paper introduces GMF-Drive (Gated Mamba Fusion for Driving), an end-to-end framework that overcomes these challenges through two principled innovations. First, we supersede the information-limited histogram-based LiDAR representation with a geometrically-augmented pillar format encoding shape descriptors and statistical features, preserving critical 3D geometric details. Second, we propose a novel hierarchical gated mamba fusion (GM-Fusion) architecture that substitutes an expensive transformer with a highly efficient, spatially-aware state-space model (SSM). Our core BEV-SSM leverages directional sequencing and adaptive fusion mechanisms to capture long-range dependencies with linear complexity, while explicitly respecting the unique spatial properties of the driving scene. Extensive experiments on the challenging NAVSIM benchmark demonstrate that GMF-Drive achieves a new state-of-the-art performance, significantly outperforming DiffusionDrive. Comprehensive ablation studies validate the efficacy of each component, demonstrating that task-specific SSMs can surpass a general-purpose transformer in both performance and efficiency for autonomous driving.
comment: 7 pages, 4 figures
☆ Bounding Distributional Shifts in World Modeling through Novelty Detection
Recent work on visual world models shows significant promise in latent state dynamics obtained from pre-trained image backbones. However, most of the current approaches are sensitive to training quality, requiring near-complete coverage of the action and state space during training to prevent divergence during inference. To make a model-based planning algorithm more robust to the quality of the learned world model, we propose in this work to use a variational autoencoder as a novelty detector to ensure that proposed action trajectories during planning do not cause the learned model to deviate from the training data distribution. To evaluate the effectiveness of this approach, a series of experiments in challenging simulated robot environments was carried out, with the proposed method incorporated into a model-predictive control policy loop extending the DINO-WM architecture. The results clearly show that the proposed method improves over state-of-the-art solutions in terms of data efficiency.
comment: 7 pages, 6 figures
☆ Incremental Language Understanding for Online Motion Planning of Robot Manipulators IROS 2025
Human-robot interaction requires robots to process language incrementally, adapting their actions in real-time based on evolving speech input. Existing approaches to language-guided robot motion planning typically assume fully specified instructions, resulting in inefficient stop-and-replan behavior when corrections or clarifications occur. In this paper, we introduce a novel reasoning-based incremental parser which integrates an online motion planning algorithm within the cognitive architecture. Our approach enables continuous adaptation to dynamic linguistic input, allowing robots to update motion plans without restarting execution. The incremental parser maintains multiple candidate parses, leveraging reasoning mechanisms to resolve ambiguities and revise interpretations when needed. By combining symbolic reasoning with online motion planning, our system achieves greater flexibility in handling speech corrections and dynamically changing constraints. We evaluate our framework in real-world human-robot interaction scenarios, demonstrating online adaptions of goal poses, constraints, or task objectives. Our results highlight the advantages of integrating incremental language understanding with real-time motion planning for natural and fluid human-robot collaboration. The experiments are demonstrated in the accompanying video at www.acin.tuwien.ac.at/42d5.
comment: 8 pages, 9 figures, accepted at IROS 2025
☆ ME$^3$-BEV: Mamba-Enhanced Deep Reinforcement Learning for End-to-End Autonomous Driving with BEV-Perception
Autonomous driving systems face significant challenges in perceiving complex environments and making real-time decisions. Traditional modular approaches, while offering interpretability, suffer from error propagation and coordination issues, whereas end-to-end learning systems can simplify the design but face computational bottlenecks. This paper presents a novel approach to autonomous driving using deep reinforcement learning (DRL) that integrates bird's-eye view (BEV) perception for enhanced real-time decision-making. We introduce the \texttt{Mamba-BEV} model, an efficient spatio-temporal feature extraction network that combines BEV-based perception with the Mamba framework for temporal feature modeling. This integration allows the system to encode vehicle surroundings and road features in a unified coordinate system and accurately model long-range dependencies. Building on this, we propose the \texttt{ME$^3$-BEV} framework, which utilizes the \texttt{Mamba-BEV} model as a feature input for end-to-end DRL, achieving superior performance in dynamic urban driving scenarios. We further enhance the interpretability of the model by visualizing high-dimensional features through semantic segmentation, providing insight into the learned representations. Extensive experiments on the CARLA simulator demonstrate that \texttt{ME$^3$-BEV} outperforms existing models across multiple metrics, including collision rate and trajectory accuracy, offering a promising solution for real-time autonomous driving.
☆ ReNiL: Relative Neural Inertial Locator with Any-Scale Bayesian Inference
Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
☆ PASG: A Closed-Loop Framework for Automated Geometric Primitive Extraction and Semantic Anchoring in Robotic Manipulation ICCV 2025
The fragmentation between high-level task semantics and low-level geometric features remains a persistent challenge in robotic manipulation. While vision-language models (VLMs) have shown promise in generating affordance-aware visual representations, the lack of semantic grounding in canonical spaces and reliance on manual annotations severely limit their ability to capture dynamic semantic-affordance relationships. To address these, we propose Primitive-Aware Semantic Grounding (PASG), a closed-loop framework that introduces: (1) Automatic primitive extraction through geometric feature aggregation, enabling cross-category detection of keypoints and axes; (2) VLM-driven semantic anchoring that dynamically couples geometric primitives with functional affordances and task-relevant description; (3) A spatial-semantic reasoning benchmark and a fine-tuned VLM (Qwen2.5VL-PA). We demonstrate PASG's effectiveness in practical robotic manipulation tasks across diverse scenarios, achieving performance comparable to manual annotations. PASG achieves a finer-grained semantic-affordance understanding of objects, establishing a unified paradigm for bridging geometric primitives with task semantics in robotic manipulation.
comment: Accepted to ICCV 2025. 8 pages main paper, 8 figures, plus supplementary material
☆ Dynamical Trajectory Planning of Disturbance Consciousness for Air-Land Bimodal Unmanned Aerial Vehicles
Air-land bimodal vehicles provide a promising solution for navigating complex environments by combining the flexibility of aerial locomotion with the energy efficiency of ground mobility. To enhance the robustness of trajectory planning under environmental disturbances, this paper presents a disturbance-aware planning framework that incorporates real-time disturbance estimation into both path searching and trajectory optimization. A key component of the framework is a disturbance-adaptive safety boundary adjustment mechanism, which dynamically modifies the vehicle's feasible dynamic boundaries based on estimated disturbances to ensure trajectory feasibility. Leveraging the dynamics model of the bimodal vehicle, the proposed approach achieves adaptive and reliable motion planning across different terrains and operating conditions. A series of real-world experiments and benchmark comparisons on a custom-built platform validate the effectiveness and robustness of the method, demonstrating improvements in tracking accuracy, task efficiency, and energy performance under both ground and aerial disturbances.
☆ Social and Telepresence Robots for Accessibility and Inclusion in Small Museums
There are still many museums that present accessibility barriers, particularly regarding perceptual, cultural, and cognitive aspects. This is especially evident in low-density population areas. The aim of the ROBSO-PM project is to improve the accessibility of small museums through the use of social robots and social telepresence robots, focusing on three museums as case studies: the Museum of the Holy Shroud in Turin, a small but globally known institution, and two lesser known mountain museums: the Museum of the Champlas du Col Carnival and the Pragelato Museum of Alpine Peoples' Costumes and Traditions. The project explores two main applications for robots: as guides supporting inclusive visits for foreign or disabled visitors, and as telepresence tools allowing people with limited mobility to access museums remotely. From a research perspective, key topics include storytelling, robot personality, empathy, personalization, and, in the case of telepresence, collaboration between the robot and the person, with clearly defined roles and autonomy.
☆ Latent Policy Barrier: Learning Robust Visuomotor Policies by Staying In-Distribution
Visuomotor policies trained via behavior cloning are vulnerable to covariate shift, where small deviations from expert trajectories can compound into failure. Common strategies to mitigate this issue involve expanding the training distribution through human-in-the-loop corrections or synthetic data augmentation. However, these approaches are often labor-intensive, rely on strong task assumptions, or compromise the quality of imitation. We introduce Latent Policy Barrier, a framework for robust visuomotor policy learning. Inspired by Control Barrier Functions, LPB treats the latent embeddings of expert demonstrations as an implicit barrier separating safe, in-distribution states from unsafe, out-of-distribution (OOD) ones. Our approach decouples the role of precise expert imitation and OOD recovery into two separate modules: a base diffusion policy solely on expert data, and a dynamics model trained on both expert and suboptimal policy rollout data. At inference time, the dynamics model predicts future latent states and optimizes them to stay within the expert distribution. Both simulated and real-world experiments show that LPB improves both policy robustness and data efficiency, enabling reliable manipulation from limited expert data and without additional human correction or annotation.
☆ Affordance-Guided Dual-Armed Disassembly Teleoperation for Mating Parts
Robotic non-destructive disassembly of mating parts remains challenging due to the need for flexible manipulation and the limited visibility of internal structures. This study presents an affordance-guided teleoperation system that enables intuitive human demonstrations for dual-arm fix-and-disassemble tasks for mating parts. The system visualizes feasible grasp poses and disassembly directions in a virtual environment, both derived from the object's geometry, to address occlusions and structural complexity. To prevent excessive position tracking under load when following the affordance, we integrate a hybrid controller that combines position and impedance control into the teleoperated disassembly arm. Real-world experiments validate the effectiveness of the proposed system, showing improved task success rates and reduced object pose deviation.
comment: 6 pages, 9 figures
☆ Modular Vacuum-Based Fixturing System for Adaptive Disassembly Workspace Integration
The disassembly of small household appliances poses significant challenges due to their complex and curved geometries, which render traditional rigid fixtures inadequate. In this paper, we propose a modular vacuum-based fixturing system that leverages commercially available balloon-type soft grippers to conform to arbitrarily shaped surfaces and provide stable support during screw-removal tasks. To enable a reliable deployment of the system, we develop a stability-aware planning framework that samples the bottom surface of the target object, filters candidate contact points based on geometric continuity, and evaluates support configurations using convex hull-based static stability criteria. We compare the quality of object placement under different numbers and configurations of balloon hands. In addition, real-world experiments were conducted to compare the success rates of traditional rigid fixtures with our proposed system. The results demonstrate that our method consistently achieves higher success rates and superior placement stability during screw removal tasks.
comment: 8 pages, 9 figures
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ An improved two-dimensional time-to-collision for articulated vehicles: predicting sideswipe and rear-end collisions
Time-to-collision (TTC) is a widely used measure for predicting rear-end collisions, assuming constant speed and heading for both vehicles in the prediction horizon. However, this conventional formulation cannot detect sideswipe collisions. A two-dimensional extension, $\text{TTC}_{\text{2D}}$, has been proposed in the literature to address lateral interactions. However, this formulation assumes both vehicles have the same heading and that their headings remain unchanged during the manoeuvre, in addition to the constant speed and heading assumptions in the prediction horizon. Moreover, its use for articulated vehicles like a tractor-semitrailer remains unclear. This paper proposes three enhanced versions of $\text{TTC}_{\text{2D}}$ to overcome these limitations. The first incorporates the vehicle heading to account for directional differences. The standard assumption of constant speed and heading in the prediction horizon holds. The second adapts the formulation for articulated vehicles, and the third allows for constant acceleration, relaxing the constant speed assumption in the prediction horizon. All versions are evaluated in simulated cut-in scenarios, covering both sideswipe and rear-end collisions, using the CARLA simulation environment with a tractor-semitrailer model. Results show that the proposed versions predict sideswipe collisions with better accuracy compared to existing $\text{TTC}_{\text{2D}}$. They also detect rear-end collisions similar to the existing methods.
♻ ☆ Failure-Aware Multi-Robot Coordination for Resilient and Adaptive Target Tracking
Multi-robot coordination is crucial for autonomous systems, yet real-world deployments often encounter various failures. These include both temporary and permanent disruptions in sensing and communication, which can significantly degrade system robustness and performance if not explicitly modeled. Despite its practical importance, failure-aware coordination remains underexplored in the literature. To bridge the gap between idealized conditions and the complexities of real-world environments, we propose a unified failure-aware coordination framework designed to enable resilient and adaptive multi-robot target tracking under both temporary and permanent failure conditions. Our approach systematically distinguishes between two classes of failures: (1) probabilistic and temporary disruptions, where robots recover from intermittent sensing or communication losses by dynamically adapting paths and avoiding inferred danger zones, and (2) permanent failures, where robots lose sensing or communication capabilities irreversibly, requiring sustained, decentralized behavioral adaptation. To handle these scenarios, the robot team is partitioned into subgroups. Robots that remain connected form a communication group and collaboratively plan using partially centralized nonlinear optimization. Robots experiencing permanent disconnection or failure continue to operate independently through decentralized or individual optimization, allowing them to contribute to the task within their local context. We extensively evaluate our method across a range of benchmark variations and conduct a comprehensive assessment under diverse real-world failure scenarios. Results show that our framework consistently achieves robust performance in realistic environments with unknown danger zones, offering a practical and generalizable solution for the multi-robot systems community.
♻ ☆ Would you let a humanoid play storytelling with your child? A usability study on LLM-powered narrative Human-Robot Interaction
A key challenge in human-robot interaction research lies in developing robotic systems that can effectively perceive and interpret social cues, facilitating natural and adaptive interactions. In this work, we present a novel framework for enhancing the attention of the iCub humanoid robot by integrating advanced perceptual abilities to recognise social cues, understand surroundings through generative models, such as ChatGPT, and respond with contextually appropriate social behaviour. Specifically, we propose an interaction task implementing a narrative protocol (storytelling task) in which the human and the robot create a short imaginary story together, exchanging in turn cubes with creative images placed on them. To validate the protocol and the framework, experiments were performed to quantify the degree of usability and the quality of experience perceived by participants interacting with the system. Such a system can be beneficial in promoting effective human robot collaborations, especially in assistance, education and rehabilitation scenarios where the social awareness and the robot responsiveness play a pivotal role.
♻ ☆ Learning to Initialize Trajectory Optimization for Vision-Based Autonomous Flight in Unknown Environments IROS 2025
Autonomous flight in unknown environments requires precise spatial and temporal trajectory planning, often involving computationally expensive nonconvex optimization prone to local optima. To overcome these challenges, we present the Neural-Enhanced Trajectory Planner (NEO-Planner), a novel approach that leverages a Neural Network (NN) Planner to provide informed initial values for trajectory optimization. The NN-Planner is trained on a dataset generated by an expert planner using batch sampling, capturing multimodal trajectory solutions. It learns to predict spatial and temporal parameters for trajectories directly from raw sensor observations. NEO-Planner starts optimization from these predictions, accelerating computation speed while maintaining explainability. Furthermore, we introduce a robust online replanning framework that accommodates planning latency for smooth trajectory tracking. Extensive simulations demonstrate that NEO-Planner reduces optimization iterations by 20%, leading to a 26% decrease in computation time compared with pure optimization-based methods. It maintains trajectory quality comparable to baseline approaches and generalizes well to unseen environments. Real-world experiments validate its effectiveness for autonomous drone navigation in cluttered, unknown environments.
comment: Accepted to IROS 2025. Source code available
♻ ☆ Unified Multi-Rate Model Predictive Control for a Jet-Powered Humanoid Robot
We propose a novel Model Predictive Control (MPC) framework for a jet-powered flying humanoid robot. The controller is based on a linearised centroidal momentum model to represent the flight dynamics, augmented with a second-order nonlinear model to explicitly account for the slow and nonlinear dynamics of jet propulsion. A key contribution is the introduction of a multi-rate MPC formulation that handles the different actuation rates of the robot's joints and jet engines while embedding the jet dynamics directly into the predictive model. We validated the framework using the jet-powered humanoid robot iRonCub, performing simulations in Mujoco; the simulation results demonstrate the robot's ability to recover from external disturbances and perform stable, non-abrupt flight manoeuvres, validating the effectiveness of the proposed approach.
comment: This paper has been accepted for publication at the 2025 IEEE-RAS 24th International Conference on Humanoid Robots (Humanoids), Seoul, 2025
♻ ☆ RoboTron-Nav: A Unified Framework for Embodied Navigation Integrating Perception, Planning, and Prediction ICCV 2025
In language-guided visual navigation, agents locate target objects in unseen environments using natural language instructions. For reliable navigation in unfamiliar scenes, agents should possess strong perception, planning, and prediction capabilities. Additionally, when agents revisit previously explored areas during long-term navigation, they may retain irrelevant and redundant historical perceptions, leading to suboptimal results. In this work, we propose RoboTron-Nav, a unified framework that integrates perception, planning, and prediction capabilities through multitask collaborations on navigation and embodied question answering tasks, thereby enhancing navigation performances. Furthermore, RoboTron-Nav employs an adaptive 3D-aware history sampling strategy to effectively and efficiently utilize historical observations. By leveraging large language model, RoboTron-Nav comprehends diverse commands and complex visual scenes, resulting in appropriate navigation actions. RoboTron-Nav achieves an 81.1% success rate in object goal navigation on the $\mathrm{CHORES}$-$\mathbb{S}$ benchmark, setting a new state-of-the-art performance. Project page: https://yvfengzhong.github.io/RoboTron-Nav
comment: ICCV 2025
♻ ☆ MBA-SLAM: Motion Blur Aware Gaussian Splatting SLAM
Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual deblur SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs and enhance image deblurring. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
comment: Accepted to TPAMI; Deblur Gaussian Splatting SLAM
♻ ☆ CARE: Enhancing Safety of Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation) to improve the robustness of learning-based visual navigation methods. Recently, visual navigation models, particularly foundation models, have demonstrated promising performance by generating viable trajectories using only RGB images. However, these policies can generalize poorly to environments containing out-of-distribution (OOD) scenes characterized by unseen objects or different camera setups (e.g., variations in field of view, camera pose, or focal length). Without fine-tuning, such models could produce trajectories that lead to collisions, necessitating substantial efforts in data collection and additional training. To address this limitation, we introduce CARE, an attachable module that enhances the safety of visual navigation without requiring additional range sensors or fine-tuning of pretrained models. CARE can be integrated seamlessly into any RGB-based navigation model that generates local robot trajectories. It dynamically adjusts trajectories produced by a pretrained model using repulsive force vectors computed from depth images estimated directly from RGB inputs. We evaluate CARE by integrating it with state-of-the-art visual navigation models across diverse robot platforms. Real-world experiments show that CARE significantly reduces collisions (up to 100%) without compromising navigation performance in goal-conditioned navigation, and further improves collision-free travel distance (up to 10.7x) in exploration tasks. Project page: https://airlab-sogang.github.io/CARE/
comment: 16 pages, 6 figures
♻ ☆ GhostShell: Streaming LLM Function Calls for Concurrent Embodied Programming
We present GhostShell, a novel approach that leverages Large Language Models (LLMs) to enable streaming and concurrent behavioral programming for embodied systems. In contrast to conventional methods that rely on pre-scheduled action sequences or behavior trees, GhostShell drives embodied systems to act on-the-fly by issuing function calls incrementally as tokens are streamed from the LLM. GhostShell features a streaming XML function token parser, a dynamic function interface mapper, and a multi-channel scheduler that orchestrates intra-channel synchronous and inter-channel asynchronous function calls, thereby coordinating serial-parallel embodied actions across multiple robotic components under LLM guidance. We evaluate GhostShell on our robotic prototype COCO through comprehensive grounded experiments across 34 real-world interaction tasks and multiple LLM backends. The results demonstrate that our approach achieves a state-of-the-art Behavioral Correctness Metric of 0.85 with Claude-4-Sonnet, and up to 66X faster response times compared to native LLM function calling APIs. GhostShell also proves effective in long-horizon multimodal tasks, exhibiting strong robustness and generalization capabilities.
comment: 17 pages, 5 figures, conference
♻ ☆ CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction ICRA 2025
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
comment: Accepted to ICRA 2025, project page https://worv-ai.github.io/canvas
♻ ☆ Direct Robot Configuration Space Construction using Convolutional Encoder-Decoders ICML 2025
Intelligent robots must be able to perform safe and efficient motion planning in their environments. Central to modern motion planning is the configuration space. Configuration spaces define the set of configurations of a robot that result in collisions with obstacles in the workspace, $\text{C}_{\text{clsn}}$, and the set of configurations that do not, $\text{C}_{\text{free}}$. Modern approaches to motion planning first compute the configuration space and then perform motion planning using the calculated configuration space. Real-time motion planning requires accurate and efficient construction of configuration spaces. We are the first to apply a convolutional encoder-decoder framework for calculating highly accurate approximations to configuration spaces, essentially learning how the robot and physical world interact. Our model achieves an average 97.5% F1-score for predicting $\text{C}_{\text{free}}$ and $\text{C}_{\text{clsn}}$ for 2-D robotic workspaces with a dual-arm robot. Our method limits undetected collisions to less than 2.5% on robotic workspaces that involve translation, rotation, and removal of obstacles. Our model learns highly transferable features between robotic workspaces, requiring little to no fine-tuning to adapt to new transformations of obstacles in the workspace.
comment: 8 pages, 7 figures, 4 tables; Appeared at the ICML 2025 Workshop on Building Physically Plausible World Models
♻ ☆ Human-Machine Shared Control Approach for the Takeover of CACC
Cooperative Adaptive Cruise Control (CACC) often requires human takeover for tasks such as exiting a freeway. Direct human takeover can pose significant risks, especially given the close-following strategy employed by CACC, which might cause drivers to feel unsafe and execute hard braking, potentially leading to collisions. This research aims to develop a CACC takeover controller that ensures a smooth transition from automated to human control. The proposed CACC takeover maneuver employs an indirect human-machine shared control approach, modeled as a Stackelberg competition where the machine acts as the leader and the human as the follower. The machine guides the human to respond in a manner that aligns with the machine's expectations, aiding in maintaining following stability. Additionally, the human reaction function is integrated into the machine's predictive control system, moving beyond a simple "prediction-planning" pipeline to enhance planning optimality. The controller has been verified to i) enable a smooth takeover maneuver of CACC; ii) ensure string stability in the condition that the platoon has less than 6 CAVs and human control authority is less than 40%; iii) enhance both perceived and actual safety through machine interventions; and iv) reduce the impact on upstream traffic by up to 60%.
comment: This article has been published on IEEE Transactions on Intelligent Transportation Systems (2025)
♻ ☆ ImLPR: Image-based LiDAR Place Recognition using Vision Foundation Models
LiDAR Place Recognition (LPR) is a key component in robotic localization, enabling robots to align current scans with prior maps of their environment. While Visual Place Recognition (VPR) has embraced Vision Foundation Models (VFMs) to enhance descriptor robustness, LPR has relied on task-specific models with limited use of pre-trained foundation-level knowledge. This is due to the lack of 3D foundation models and the challenges of using VFM with LiDAR point clouds. To tackle this, we introduce ImLPR, a novel pipeline that employs a pre-trained DINOv2 VFM to generate rich descriptors for LPR. To the best of our knowledge, ImLPR is the first method to utilize a VFM for LPR while retaining the majority of pre-trained knowledge. ImLPR converts raw point clouds into novel three-channel Range Image Views (RIV) to leverage VFM in the LiDAR domain. It employs MultiConv adapters and Patch-InfoNCE loss for effective feature learning. We validate ImLPR on public datasets and outperform state-of-the-art (SOTA) methods across multiple evaluation metrics in both intra- and inter-session LPR. Comprehensive ablations on key design choices such as channel composition, RIV, adapters, and the patch-level loss quantify each component's impact. We release ImLPR as open source for the robotics community: https://github.com/minwoo0611/ImLPR.
comment: CoRL2025 Accepted, 23 Pages, 15 Figures and 14 Tables
Artificial Intelligence 150
☆ WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing (TGRS)
☆ Post-training for Efficient Communication via Convention Formation
Humans communicate with increasing efficiency in multi-turn interactions, by adapting their language and forming ad-hoc conventions. In contrast, prior work shows that LLMs do not naturally show this behavior. We develop a post-training process to develop this ability through targeted fine-tuning on heuristically identified demonstrations of convention formation. We evaluate with two new benchmarks focused on this capability. First, we design a focused, cognitively-motivated interaction benchmark that consistently elicits strong convention formation trends in humans. Second, we create a new document-grounded reference completion task that reflects in-the-wild convention formation behavior. Our studies show significantly improved convention formation abilities in post-trained LLMs across the two evaluation methods.
comment: Accepted to COLM 2025
☆ Intuition emerges in Maximum Caliber models at criticality
Whether large predictive models merely parrot their training data or produce genuine insight lacks a physical explanation. This work reports a primitive form of intuition that emerges as a metastable phase of learning that critically balances next-token prediction against future path-entropy. The intuition mechanism is discovered via mind-tuning, the minimal principle that imposes Maximum Caliber in predictive models with a control temperature-like parameter $\lambda$. Training on random walks in deterministic mazes reveals a rich phase diagram: imitation (low $\lambda$), rule-breaking hallucination (high $\lambda$), and a fragile in-between window exhibiting strong protocol-dependence (hysteresis) and multistability, where models spontaneously discover novel goal-directed strategies. These results are captured by an effective low-dimensional theory and frame intuition as an emergent property at the critical balance between memorizing what is and wondering what could be.
☆ ScamAgents: How AI Agents Can Simulate Human-Level Scam Calls
Large Language Models (LLMs) have demonstrated impressive fluency and reasoning capabilities, but their potential for misuse has raised growing concern. In this paper, we present ScamAgent, an autonomous multi-turn agent built on top of LLMs, capable of generating highly realistic scam call scripts that simulate real-world fraud scenarios. Unlike prior work focused on single-shot prompt misuse, ScamAgent maintains dialogue memory, adapts dynamically to simulated user responses, and employs deceptive persuasion strategies across conversational turns. We show that current LLM safety guardrails, including refusal mechanisms and content filters, are ineffective against such agent-based threats. Even models with strong prompt-level safeguards can be bypassed when prompts are decomposed, disguised, or delivered incrementally within an agent framework. We further demonstrate the transformation of scam scripts into lifelike voice calls using modern text-to-speech systems, completing a fully automated scam pipeline. Our findings highlight an urgent need for multi-turn safety auditing, agent-level control frameworks, and new methods to detect and disrupt conversational deception powered by generative AI.
comment: Accepted at CAMLIS 25: Conference on Applied Machine Learning for Information Security. 10 pages, 3 figures
☆ What Voting Rules Actually Do: A Data-Driven Analysis of Multi-Winner Voting
Committee-selection problems arise in many contexts and applications, and there has been increasing interest within the social choice research community on identifying which properties are satisfied by different multi-winner voting rules. In this work, we propose a data-driven framework to evaluate how frequently voting rules violate axioms across diverse preference distributions in practice, shifting away from the binary perspective of axiom satisfaction given by worst-case analysis. Using this framework, we analyze the relationship between multi-winner voting rules and their axiomatic performance under several preference distributions. We then show that neural networks, acting as voting rules, can outperform traditional rules in minimizing axiom violations. Our results suggest that data-driven approaches to social choice can inform the design of new voting systems and support the continuation of data-driven research in social choice.
comment: 41 pages
☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
☆ Echoes of Automation: The Increasing Use of LLMs in Newsmaking
The rapid rise of Generative AI (GenAI), particularly LLMs, poses concerns for journalistic integrity and authorship. This study examines AI-generated content across over 40,000 news articles from major, local, and college news media, in various media formats. Using three advanced AI-text detectors (e.g., Binoculars, Fast-Detect GPT, and GPTZero), we find substantial increase of GenAI use in recent years, especially in local and college news. Sentence-level analysis reveals LLMs are often used in the introduction of news, while conclusions usually written manually. Linguistic analysis shows GenAI boosts word richness and readability but lowers formality, leading to more uniform writing styles, particularly in local media.
comment: To appear in 18th International Conference on Social Computing, Behavioral-Cultural Modeling, & Prediction and Behavior Representation in Modeling and Simulation, and to be published in the Springer LNCS series
☆ The Fair Game: Auditing & Debiasing AI Algorithms Over Time
An emerging field of AI, namely Fair Machine Learning (ML), aims to quantify different types of bias (also known as unfairness) exhibited in the predictions of ML algorithms, and to design new algorithms to mitigate them. Often, the definitions of bias used in the literature are observational, i.e. they use the input and output of a pre-trained algorithm to quantify a bias under concern. In reality,these definitions are often conflicting in nature and can only be deployed if either the ground truth is known or only in retrospect after deploying the algorithm. Thus,there is a gap between what we want Fair ML to achieve and what it does in a dynamic social environment. Hence, we propose an alternative dynamic mechanism,"Fair Game",to assure fairness in the predictions of an ML algorithm and to adapt its predictions as the society interacts with the algorithm over time. "Fair Game" puts together an Auditor and a Debiasing algorithm in a loop around an ML algorithm. The "Fair Game" puts these two components in a loop by leveraging Reinforcement Learning (RL). RL algorithms interact with an environment to take decisions, which yields new observations (also known as data/feedback) from the environment and in turn, adapts future decisions. RL is already used in algorithms with pre-fixed long-term fairness goals. "Fair Game" provides a unique framework where the fairness goals can be adapted over time by only modifying the auditor and the different biases it quantifies. Thus,"Fair Game" aims to simulate the evolution of ethical and legal frameworks in the society by creating an auditor which sends feedback to a debiasing algorithm deployed around an ML system. This allows us to develop a flexible and adaptive-over-time framework to build Fair ML systems pre- and post-deployment.
☆ Learning the Topic, Not the Language: How LLMs Classify Online Immigration Discourse Across Languages
Large language models (LLMs) are transforming social-science research by enabling scalable, precise analysis. Their adaptability raises the question of whether knowledge acquired through fine-tuning in a few languages can transfer to unseen languages that only appeared during pre-training. To examine this, we fine-tune lightweight LLaMA 3.2-3B models on monolingual, bilingual, or multilingual data sets to classify immigration-related tweets from X/Twitter across 13 languages, a domain characterised by polarised, culturally specific discourse. We evaluate whether minimal language-specific fine-tuning enables cross-lingual topic detection and whether adding targeted languages corrects pre-training biases. Results show that LLMs fine-tuned in one or two languages can reliably classify immigration-related content in unseen languages. However, identifying whether a tweet expresses a pro- or anti-immigration stance benefits from multilingual fine-tuning. Pre-training bias favours dominant languages, but even minimal exposure to under-represented languages during fine-tuning (as little as $9.62\times10^{-11}$ of the original pre-training token volume) yields significant gains. These findings challenge the assumption that cross-lingual mastery requires extensive multilingual training: limited language coverage suffices for topic-level generalisation, and structural biases can be corrected with lightweight interventions. By releasing 4-bit-quantised, LoRA fine-tuned models, we provide an open-source, reproducible alternative to proprietary LLMs that delivers 35 times faster inference at just 0.00000989% of the dollar cost of the OpenAI GPT-4o model, enabling scalable, inclusive research.
☆ CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.
☆ Memp: Exploring Agent Procedural Memory
Large Language Models (LLMs) based agents excel at diverse tasks, yet they suffer from brittle procedural memory that is manually engineered or entangled in static parameters. In this work, we investigate strategies to endow agents with a learnable, updatable, and lifelong procedural memory. We propose Memp that distills past agent trajectories into both fine-grained, step-by-step instructions and higher-level, script-like abstractions, and explore the impact of different strategies for Build, Retrieval, and Update of procedural memory. Coupled with a dynamic regimen that continuously updates, corrects, and deprecates its contents, this repository evolves in lockstep with new experience. Empirical evaluation on TravelPlanner and ALFWorld shows that as the memory repository is refined, agents achieve steadily higher success rates and greater efficiency on analogous tasks. Moreover, procedural memory built from a stronger model retains its value: migrating the procedural memory to a weaker model yields substantial performance gains.
comment: Work in progress
☆ SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.
☆ Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $\pi_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.
comment: CoRL 2025
☆ Dimensional Characterization and Pathway Modeling for Catastrophic AI Risks
Although discourse around the risks of Artificial Intelligence (AI) has grown, it often lacks a comprehensive, multidimensional framework, and concrete causal pathways mapping hazard to harm. This paper aims to bridge this gap by examining six commonly discussed AI catastrophic risks: CBRN, cyber offense, sudden loss of control, gradual loss of control, environmental risk, and geopolitical risk. First, we characterize these risks across seven key dimensions, namely intent, competency, entity, polarity, linearity, reach, and order. Next, we conduct risk pathway modeling by mapping step-by-step progressions from the initial hazard to the resulting harms. The dimensional approach supports systematic risk identification and generalizable mitigation strategies, while risk pathway models help identify scenario-specific interventions. Together, these methods offer a more structured and actionable foundation for managing catastrophic AI risks across the value chain.
comment: 24 pages including references, 6 figures. To be presented in Technical AI Governance Forum 2025
☆ A Classification-Aware Super-Resolution Framework for Ship Targets in SAR Imagery
High-resolution imagery plays a critical role in improving the performance of visual recognition tasks such as classification, detection, and segmentation. In many domains, including remote sensing and surveillance, low-resolution images can limit the accuracy of automated analysis. To address this, super-resolution (SR) techniques have been widely adopted to attempt to reconstruct high-resolution images from low-resolution inputs. Related traditional approaches focus solely on enhancing image quality based on pixel-level metrics, leaving the relationship between super-resolved image fidelity and downstream classification performance largely underexplored. This raises a key question: can integrating classification objectives directly into the super-resolution process further improve classification accuracy? In this paper, we try to respond to this question by investigating the relationship between super-resolution and classification through the deployment of a specialised algorithmic strategy. We propose a novel methodology that increases the resolution of synthetic aperture radar imagery by optimising loss functions that account for both image quality and classification performance. Our approach improves image quality, as measured by scientifically ascertained image quality indicators, while also enhancing classification accuracy.
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
☆ Robust Target Speaker Diarization and Separation via Augmented Speaker Embedding Sampling
Traditional speech separation and speaker diarization approaches rely on prior knowledge of target speakers or a predetermined number of participants in audio signals. To address these limitations, recent advances focus on developing enrollment-free methods capable of identifying targets without explicit speaker labeling. This work introduces a new approach to train simultaneous speech separation and diarization using automatic identification of target speaker embeddings, within mixtures. Our proposed model employs a dual-stage training pipeline designed to learn robust speaker representation features that are resilient to background noise interference. Furthermore, we present an overlapping spectral loss function specifically tailored for enhancing diarization accuracy during overlapped speech frames. Experimental results show significant performance gains compared to the current SOTA baseline, achieving 71% relative improvement in DER and 69% in cpWER.
comment: Accepted to Interspeech 2025
☆ Identity Increases Stability in Neural Cellular Automata
Neural Cellular Automata (NCAs) offer a way to study the growth of two-dimensional artificial organisms from a single seed cell. From the outset, NCA-grown organisms have had issues with stability, their natural boundary often breaking down and exhibiting tumour-like growth or failing to maintain the expected shape. In this paper, we present a method for improving the stability of NCA-grown organisms by introducing an 'identity' layer with simple constraints during training. Results show that NCAs grown in close proximity are more stable compared with the original NCA model. Moreover, only a single identity value is required to achieve this increase in stability. We observe emergent movement from the stable organisms, with increasing prevalence for models with multiple identity values. This work lays the foundation for further study of the interaction between NCA-grown organisms, paving the way for studying social interaction at a cellular level in artificial organisms.
comment: Accepted to ALIFE 2025
☆ End-to-End Text-to-SQL with Dataset Selection: Leveraging LLMs for Adaptive Query Generation IJCNN25
Text-to-SQL bridges the gap between natural language and structured database language, thus allowing non-technical users to easily query databases. Traditional approaches model text-to-SQL as a direct translation task, where a given Natural Language Query (NLQ) is mapped to an SQL command. Recent advances in large language models (LLMs) have significantly improved translation accuracy, however, these methods all require that the target database is pre-specified. This becomes problematic in scenarios with multiple extensive databases, where identifying the correct database becomes a crucial yet overlooked step. In this paper, we propose a three-stage end-to-end text-to-SQL framework to identify the user's intended database before generating SQL queries. Our approach leverages LLMs and prompt engineering to extract implicit information from natural language queries (NLQs) in the form of a ruleset. We then train a large db\_id prediction model, which includes a RoBERTa-based finetuned encoder, to predict the correct Database identifier (db\_id) based on both the NLQ and the LLM-generated rules. Finally, we refine the generated SQL by using critic agents to correct errors. Experimental results demonstrate that our framework outperforms the current state-of-the-art models in both database intent prediction and SQL generation accuracy.
comment: Accepted in IJCNN25
☆ SpeakerLM: End-to-End Versatile Speaker Diarization and Recognition with Multimodal Large Language Models
The Speaker Diarization and Recognition (SDR) task aims to predict "who spoke when and what" within an audio clip, which is a crucial task in various real-world multi-speaker scenarios such as meeting transcription and dialogue systems. Existing SDR systems typically adopt a cascaded framework, combining multiple modules such as speaker diarization (SD) and automatic speech recognition (ASR). The cascaded systems suffer from several limitations, such as error propagation, difficulty in handling overlapping speech, and lack of joint optimization for exploring the synergy between SD and ASR tasks. To address these limitations, we introduce SpeakerLM, a unified multimodal large language model for SDR that jointly performs SD and ASR in an end-to-end manner. Moreover, to facilitate diverse real-world scenarios, we incorporate a flexible speaker registration mechanism into SpeakerLM, enabling SDR under different speaker registration settings. SpeakerLM is progressively developed with a multi-stage training strategy on large-scale real data. Extensive experiments show that SpeakerLM demonstrates strong data scaling capability and generalizability, outperforming state-of-the-art cascaded baselines on both in-domain and out-of-domain public SDR benchmarks. Furthermore, experimental results show that the proposed speaker registration mechanism effectively ensures robust SDR performance of SpeakerLM across diverse speaker registration conditions and varying numbers of registered speakers.
☆ Automated Creation of the Legal Knowledge Graph Addressing Legislation on Violence Against Women: Resource, Methodology and Lessons Learned
Legal decision-making process requires the availability of comprehensive and detailed legislative background knowledge and up-to-date information on legal cases and related sentences/decisions. Legal Knowledge Graphs (KGs) would be a valuable tool to facilitate access to legal information, to be queried and exploited for the purpose, and to enable advanced reasoning and machine learning applications. Indeed, legal KGs may act as knowledge intensive component to be used by pre-dictive machine learning solutions supporting the decision process of the legal expert. Nevertheless, a few KGs can be found in the legal domain. To fill this gap, we developed a legal KG targeting legal cases of violence against women, along with clear adopted methodologies. Specifically, the paper introduces two complementary approaches for automated legal KG construction; a systematic bottom-up approach, customized for the legal domain, and a new solution leveraging Large Language Models. Starting from legal sentences publicly available from the European Court of Justice, the solutions integrate structured data extraction, ontology development, and semantic enrichment to produce KGs tailored for legal cases involving violence against women. After analyzing and comparing the results of the two approaches, the developed KGs are validated via suitable competency questions. The obtained KG may be impactful for multiple purposes: can improve the accessibility to legal information both to humans and machine, can enable complex queries and may constitute an important knowledge component to be possibly exploited by machine learning tools tailored for predictive justice.
☆ ActivityDiff: A diffusion model with Positive and Negative Activity Guidance for De Novo Drug Design
Achieving precise control over a molecule's biological activity-encompassing targeted activation/inhibition, cooperative multi-target modulation, and off-target toxicity mitigation-remains a critical challenge in de novo drug design. However, existing generative methods primarily focus on producing molecules with a single desired activity, lacking integrated mechanisms for the simultaneous management of multiple intended and unintended molecular interactions. Here, we propose ActivityDiff, a generative approach based on the classifier-guidance technique of diffusion models. It leverages separately trained drug-target classifiers for both positive and negative guidance, enabling the model to enhance desired activities while minimizing harmful off-target effects. Experimental results show that ActivityDiff effectively handles essential drug design tasks, including single-/dual-target generation, fragment-constrained dual-target design, selective generation to enhance target specificity, and reduction of off-target effects. These results demonstrate the effectiveness of classifier-guided diffusion in balancing efficacy and safety in molecular design. Overall, our work introduces a novel paradigm for achieving integrated control over molecular activity, and provides ActivityDiff as a versatile and extensible framework.
☆ Beyond Prompt-Induced Lies: Investigating LLM Deception on Benign Prompts
Large Language Models (LLMs) have been widely deployed in reasoning, planning, and decision-making tasks, making their trustworthiness a critical concern. The potential for intentional deception, where an LLM deliberately fabricates or conceals information to serve a hidden objective, remains a significant and underexplored threat. Existing studies typically induce such deception by explicitly setting a "hidden" objective through prompting or fine-tuning, which may not fully reflect real-world human-LLM interactions. Moving beyond this human-induced deception, we investigate LLMs' self-initiated deception on benign prompts. To address the absence of ground truth in this evaluation, we propose a novel framework using "contact searching questions." This framework introduces two statistical metrics derived from psychological principles to quantify the likelihood of deception. The first, the Deceptive Intention Score, measures the model's bias towards a hidden objective. The second, Deceptive Behavior Score, measures the inconsistency between the LLM's internal belief and its expressed output. Upon evaluating 14 leading LLMs, we find that both metrics escalate as task difficulty increases, rising in parallel for most models. Building on these findings, we formulate a mathematical model to explain this behavior. These results reveal that even the most advanced LLMs exhibit an increasing tendency toward deception when handling complex problems, raising critical concerns for the deployment of LLM agents in complex and crucial domains.
☆ Are you In or Out (of gallery)? Wisdom from the Same-Identity Crowd
A central problem in one-to-many facial identification is that the person in the probe image may or may not have enrolled image(s) in the gallery; that is, may be In-gallery or Out-of-gallery. Past approaches to detect when a rank-one result is Out-of-gallery have mostly focused on finding a suitable threshold on the similarity score. We take a new approach, using the additional enrolled images of the identity with the rank-one result to predict if the rank-one result is In-gallery / Out-of-gallery. Given a gallery of identities and images, we generate In-gallery and Out-of-gallery training data by extracting the ranks of additional enrolled images corresponding to the rank-one identity. We then train a classifier to utilize this feature vector to predict whether a rank-one result is In-gallery or Out-of-gallery. Using two different datasets and four different matchers, we present experimental results showing that our approach is viable for mugshot quality probe images, and also, importantly, for probes degraded by blur, reduced resolution, atmospheric turbulence and sunglasses. We also analyze results across demographic groups, and show that In-gallery / Out-of-gallery classification accuracy is similar across demographics. Our approach has the potential to provide an objective estimate of whether a one-to-many facial identification is Out-of-gallery, and thereby to reduce false positive identifications, wrongful arrests, and wasted investigative time. Interestingly, comparing the results of older deep CNN-based face matchers with newer ones suggests that the effectiveness of our Out-of-gallery detection approach emerges only with matchers trained using advanced margin-based loss functions.
☆ From Explainable to Explanatory Artificial Intelligence: Toward a New Paradigm for Human-Centered Explanations through Generative AI
Current explainable AI (XAI) approaches prioritize algorithmic transparency and present explanations in abstract, non-adaptive formats that often fail to support meaningful end-user understanding. This paper introduces "Explanatory AI" as a complementary paradigm that leverages generative AI capabilities to serve as explanatory partners for human understanding rather than providers of algorithmic transparency. While XAI reveals algorithmic decision processes for model validation, Explanatory AI addresses contextual reasoning to support human decision-making in sociotechnical contexts. We develop a definition and systematic eight-dimensional conceptual model distinguishing Explanatory AI through narrative communication, adaptive personalization, and progressive disclosure principles. Empirical validation through Rapid Contextual Design methodology with healthcare professionals demonstrates that users consistently prefer context-sensitive, multimodal explanations over technical transparency. Our findings reveal the practical urgency for AI systems designed for human comprehension rather than algorithmic introspection, establishing a comprehensive research agenda for advancing user-centered AI explanation approaches across diverse domains and cultural contexts.
☆ AntiCheatPT: A Transformer-Based Approach to Cheat Detection in Competitive Computer Games
Cheating in online video games compromises the integrity of gaming experiences. Anti-cheat systems, such as VAC (Valve Anti-Cheat), face significant challenges in keeping pace with evolving cheating methods without imposing invasive measures on users' systems. This paper presents AntiCheatPT\_256, a transformer-based machine learning model designed to detect cheating behaviour in Counter-Strike 2 using gameplay data. To support this, we introduce and publicly release CS2CD: A labelled dataset of 795 matches. Using this dataset, 90,707 context windows were created and subsequently augmented to address class imbalance. The transformer model, trained on these windows, achieved an accuracy of 89.17\% and an AUC of 93.36\% on an unaugmented test set. This approach emphasizes reproducibility and real-world applicability, offering a robust baseline for future research in data-driven cheat detection.
☆ Structural Equation-VAE: Disentangled Latent Representations for Tabular Data
Learning interpretable latent representations from tabular data remains a challenge in deep generative modeling. We introduce SE-VAE (Structural Equation-Variational Autoencoder), a novel architecture that embeds measurement structure directly into the design of a variational autoencoder. Inspired by structural equation modeling, SE-VAE aligns latent subspaces with known indicator groupings and introduces a global nuisance latent to isolate construct-specific confounding variation. This modular architecture enables disentanglement through design rather than through statistical regularizers alone. We evaluate SE-VAE on a suite of simulated tabular datasets and benchmark its performance against a series of leading baselines using standard disentanglement metrics. SE-VAE consistently outperforms alternatives in factor recovery, interpretability, and robustness to nuisance variation. Ablation results reveal that architectural structure, rather than regularization strength, is the key driver of performance. SE-VAE offers a principled framework for white-box generative modeling in scientific and social domains where latent constructs are theory-driven and measurement validity is essential.
comment: 10 pages, 2 figures
☆ Harnessing Adaptive Topology Representations for Zero-Shot Graph Question Answering
Large Multimodal Models (LMMs) have shown generalized zero-shot capabilities in diverse domain question-answering (QA) tasks, including graph QA that involves complex graph topologies. However, most current approaches use only a single type of graph representation, namely Topology Representation Form (TRF), such as prompt-unified text descriptions or style-fixed visual styles. Those "one-size-fits-all" approaches fail to consider the specific preferences of different models or tasks, often leading to incorrect or overly long responses. To address this, we first analyze the characteristics and weaknesses of existing TRFs, and then design a set of TRFs, denoted by $F_{ZS}$, tailored to zero-shot graph QA. We then introduce a new metric, Graph Response Efficiency (GRE), which measures the balance between the performance and the brevity in graph QA. Built on these, we develop the DynamicTRF framework, which aims to improve both the accuracy and conciseness of graph QA. To be specific, DynamicTRF first creates a TRF Preference (TRFP) dataset that ranks TRFs based on their GRE scores, to probe the question-specific TRF preferences. Then it trains a TRF router on the TRFP dataset, to adaptively assign the best TRF from $F_{ZS}$ for each question during the inference. Extensive experiments across 7 in-domain algorithmic graph QA tasks and 2 out-of-domain downstream tasks show that DynamicTRF significantly enhances the zero-shot graph QA of LMMs in terms of accuracy
☆ On Approximate MMS Allocations on Restricted Graph Classes
We study the problem of fair division of a set of indivisible goods with connectivity constraints. Specifically, we assume that the goods are represented as vertices of a connected graph, and sets of goods allocated to the agents are connected subgraphs of this graph. We focus on the widely-studied maximin share criterion of fairness. It has been shown that an allocation satisfying this criterion may not exist even without connectivity constraints, i.e., if the graph of goods is complete. In view of this, it is natural to seek approximate allocations that guarantee each agent a connected bundle of goods with value at least a constant fraction of the maximin share value to the agent. It is known that for some classes of graphs, such as complete graphs, cycles, and $d$-claw-free graphs for any fixed $d$, such approximate allocations indeed exist. However, it is an open problem whether they exist for the class of all graphs. In this paper, we continue the systematic study of the existence of approximate allocations on restricted graph classes. In particular, we show that such allocations exist for several well-studied classes, including block graphs, cacti, complete multipartite graphs, and split graphs.
☆ Unsupervised Partner Design Enables Robust Ad-hoc Teamwork
We introduce Unsupervised Partner Design (UPD) - a population-free, multi-agent reinforcement learning framework for robust ad-hoc teamwork that adaptively generates training partners without requiring pretrained partners or manual parameter tuning. UPD constructs diverse partners by stochastically mixing an ego agent's policy with biased random behaviours and scores them using a variance-based learnability metric that prioritises partners near the ego agent's current learning frontier. We show that UPD can be integrated with unsupervised environment design, resulting in the first method enabling fully unsupervised curricula over both level and partner distributions in a cooperative setting. Through extensive evaluations on Overcooked-AI and the Overcooked Generalisation Challenge, we demonstrate that this dynamic partner curriculum is highly effective: UPD consistently outperforms both population-based and population-free baselines as well as ablations. In a user study, we further show that UPD achieves higher returns than all baselines and was perceived as significantly more adaptive, more human-like, a better collaborator, and less frustrating.
comment: 16 pages
☆ Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection
Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.
☆ FedMeNF: Privacy-Preserving Federated Meta-Learning for Neural Fields ICCV 2025
Neural fields provide a memory-efficient representation of data, which can effectively handle diverse modalities and large-scale data. However, learning to map neural fields often requires large amounts of training data and computations, which can be limited to resource-constrained edge devices. One approach to tackle this limitation is to leverage Federated Meta-Learning (FML), but traditional FML approaches suffer from privacy leakage. To address these issues, we introduce a novel FML approach called FedMeNF. FedMeNF utilizes a new privacy-preserving loss function that regulates privacy leakage in the local meta-optimization. This enables the local meta-learner to optimize quickly and efficiently without retaining the client's private data. Our experiments demonstrate that FedMeNF achieves fast optimization speed and robust reconstruction performance, even with few-shot or non-IID data across diverse data modalities, while preserving client data privacy.
comment: ICCV 2025
☆ LLM Robustness Leaderboard v1 --Technical report
This technical report accompanies the LLM robustness leaderboard published by PRISM Eval for the Paris AI Action Summit. We introduce PRISM Eval Behavior Elicitation Tool (BET), an AI system performing automated red-teaming through Dynamic Adversarial Optimization that achieves 100% Attack Success Rate (ASR) against 37 of 41 state-of-the-art LLMs. Beyond binary success metrics, we propose a fine-grained robustness metric estimating the average number of attempts required to elicit harmful behaviors, revealing that attack difficulty varies by over 300-fold across models despite universal vulnerability. We introduce primitive-level vulnerability analysis to identify which jailbreaking techniques are most effective for specific hazard categories. Our collaborative evaluation with trusted third parties from the AI Safety Network demonstrates practical pathways for distributed robustness assessment across the community.
☆ Advanced Deep Learning Techniques for Accurate Lung Cancer Detection and Classification
Lung cancer (LC) ranks among the most frequently diagnosed cancers and is one of the most common causes of death for men and women worldwide. Computed Tomography (CT) images are the most preferred diagnosis method because of their low cost and their faster processing times. Many researchers have proposed various ways of identifying lung cancer using CT images. However, such techniques suffer from significant false positives, leading to low accuracy. The fundamental reason results from employing a small and imbalanced dataset. This paper introduces an innovative approach for LC detection and classification from CT images based on the DenseNet201 model. Our approach comprises several advanced methods such as Focal Loss, data augmentation, and regularization to overcome the imbalanced data issue and overfitting challenge. The findings show the appropriateness of the proposal, attaining a promising performance of 98.95% accuracy.
☆ OM2P: Offline Multi-Agent Mean-Flow Policy
Generative models, especially diffusion and flow-based models, have been promising in offline multi-agent reinforcement learning. However, integrating powerful generative models into this framework poses unique challenges. In particular, diffusion and flow-based policies suffer from low sampling efficiency due to their iterative generation processes, making them impractical in time-sensitive or resource-constrained settings. To tackle these difficulties, we propose OM2P (Offline Multi-Agent Mean-Flow Policy), a novel offline MARL algorithm to achieve efficient one-step action sampling. To address the misalignment between generative objectives and reward maximization, we introduce a reward-aware optimization scheme that integrates a carefully-designed mean-flow matching loss with Q-function supervision. Additionally, we design a generalized timestep distribution and a derivative-free estimation strategy to reduce memory overhead and improve training stability. Empirical evaluations on Multi-Agent Particle and MuJoCo benchmarks demonstrate that OM2P achieves superior performance, with up to a 3.8x reduction in GPU memory usage and up to a 10.8x speed-up in training time. Our approach represents the first to successfully integrate mean-flow model into offline MARL, paving the way for practical and scalable generative policies in cooperative multi-agent settings.
☆ Numerical Considerations in Weighted Model Counting
Weighted model counting computes the sum of the rational-valued weights associated with the satisfying assignments for a Boolean formula, where the weight of an assignment is given by the product of the weights assigned to the positive and negated variables comprising the assignment. Weighted model counting finds applications across a variety of domains including probabilistic reasoning and quantitative risk assessment. Most weighted model counting programs operate by (explicitly or implicitly) converting the input formula into a form that enables arithmetic evaluation, using multiplication for conjunctions and addition for disjunctions. Performing this evaluation using floating-point arithmetic can yield inaccurate results, and it cannot quantify the level of precision achieved. Computing with rational arithmetic gives exact results, but it is costly in both time and space. This paper describes how to combine multiple numeric representations to efficiently compute weighted model counts that are guaranteed to achieve a user-specified precision. When all weights are nonnegative, we prove that the precision loss of arithmetic evaluation using floating-point arithmetic can be tightly bounded. We show that supplementing a standard IEEE double-precision representation with a separate 64-bit exponent, a format we call extended-range double (ERD), avoids the underflow and overflow issues commonly encountered in weighted model counting. For problems with mixed negative and positive weights, we show that a combination of interval floating-point arithmetic and rational arithmetic can achieve the twin goals of efficiency and guaranteed precision. For our evaluations, we have devised especially challenging formulas and weight assignments, demonstrating the robustness of our approach.
☆ Symmetry breaking for inductive logic programming
The goal of inductive logic programming is to search for a hypothesis that generalises training data and background knowledge. The challenge is searching vast hypothesis spaces, which is exacerbated because many logically equivalent hypotheses exist. To address this challenge, we introduce a method to break symmetries in the hypothesis space. We implement our idea in answer set programming. Our experiments on multiple domains, including visual reasoning and game playing, show that our approach can reduce solving times from over an hour to just 17 seconds.
☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method.
comment: 15 pages, 13 figures
☆ Synthetic Data Generation and Differential Privacy using Tensor Networks' Matrix Product States (MPS)
Synthetic data generation is a key technique in modern artificial intelligence, addressing data scarcity, privacy constraints, and the need for diverse datasets in training robust models. In this work, we propose a method for generating privacy-preserving high-quality synthetic tabular data using Tensor Networks, specifically Matrix Product States (MPS). We benchmark the MPS-based generative model against state-of-the-art models such as CTGAN, VAE, and PrivBayes, focusing on both fidelity and privacy-preserving capabilities. To ensure differential privacy (DP), we integrate noise injection and gradient clipping during training, enabling privacy guarantees via R\'enyi Differential Privacy accounting. Across multiple metrics analyzing data fidelity and downstream machine learning task performance, our results show that MPS outperforms classical models, particularly under strict privacy constraints. This work highlights MPS as a promising tool for privacy-aware synthetic data generation. By combining the expressive power of tensor network representations with formal privacy mechanisms, the proposed approach offers an interpretable and scalable alternative for secure data sharing. Its structured design facilitates integration into sensitive domains where both data quality and confidentiality are critical.
comment: 10 pages
☆ In-Training Defenses against Emergent Misalignment in Language Models
Fine-tuning lets practitioners repurpose aligned large language models (LLMs) for new domains, yet recent work reveals emergent misalignment (EMA): Even a small, domain-specific fine-tune can induce harmful behaviors far outside the target domain. Even in the case where model weights are hidden behind a fine-tuning API, this gives attackers inadvertent access to a broadly misaligned model in a way that can be hard to detect from the fine-tuning data alone. We present the first systematic study of in-training safeguards against EMA that are practical for providers who expose fine-tuning via an API. We investigate four training regularization interventions: (i) KL-divergence regularization toward a safe reference model, (ii) $\ell_2$ distance in feature space, (iii) projecting onto a safe subspace (SafeLoRA), and (iv) interleaving of a small amount of safe training examples from a general instruct-tuning dataset. We first evaluate the methods' emergent misalignment effect across four malicious, EMA-inducing tasks. Second, we assess the methods' impacts on benign tasks. We conclude with a discussion of open questions in emergent misalignment research.
comment: Under review
☆ Membership Inference Attack with Partial Features
Machine learning models have been shown to be susceptible to membership inference attack, which can be used to determine whether a given sample appears in the training data. Existing membership inference methods commonly assume that the adversary has full access to the features of the target sample. This assumption, however, does not hold in many real-world scenarios where only partial features information is available, thereby limiting the applicability of these methods. In this work, we study an inference scenario where the adversary observes only partial features of each sample and aims to infer whether this observed subset was present in the training set of the target model. We define this problem as Partial Feature Membership Inference (PFMI). To address this problem, we propose MRAD (Memory-guided Reconstruction and Anomaly Detection), a two-stage attack framework. In the first stage, MRAD optimizes the unknown feature values to minimize the loss of the sample. In the second stage, it measures the deviation between the reconstructed sample and the training distribution using anomaly detection. Empirical results demonstrate that MRAD is effective across a range of datasets, and maintains compatibility with various off-the-shelf anomaly detection techniques. For example, on STL-10, our attack achieves an AUC of around 0.6 even with 40% of the missing features.
☆ Learning Logical Rules using Minimum Message Length
Unifying probabilistic and logical learning is a key challenge in AI. We introduce a Bayesian inductive logic programming approach that learns minimum message length programs from noisy data. Our approach balances hypothesis complexity and data fit through priors, which explicitly favour more general programs, and a likelihood that favours accurate programs. Our experiments on several domains, including game playing and drug design, show that our method significantly outperforms previous methods, notably those that learn minimum description length programs. Our results also show that our approach is data-efficient and insensitive to example balance, including the ability to learn from exclusively positive examples.
☆ GeoLaux: A Benchmark for Evaluating MLLMs' Geometry Performance on Long-Step Problems Requiring Auxiliary Lines
Geometry problem solving (GPS) requires models to master diagram comprehension, logical reasoning, knowledge application, numerical computation, and auxiliary line construction. This presents a significant challenge for Multimodal Large Language Models (MLLMs). However, existing benchmarks for evaluating MLLM geometry skills overlook auxiliary line construction and lack fine-grained process evaluation, making them insufficient for assessing MLLMs' long-step reasoning abilities. To bridge these gaps, we present the GeoLaux benchmark, comprising 2,186 geometry problems, incorporating both calculation and proving questions. Notably, the problems require an average of 6.51 reasoning steps, with a maximum of 24 steps, and 41.8% of them need auxiliary line construction. Building on the dataset, we design a novel five-dimensional evaluation strategy assessing answer correctness, process correctness, process quality, auxiliary line impact, and error causes. Extensive experiments on 13 leading MLLMs (including thinking models and non-thinking models) yield three pivotal findings: First, models exhibit substantial performance degradation in extended reasoning steps (nine models demonstrate over 50% performance drop). Second, compared to calculation problems, MLLMs tend to take shortcuts when solving proving problems. Third, models lack auxiliary line awareness, and enhancing this capability proves particularly beneficial for overall geometry reasoning improvement. These findings establish GeoLaux as both a benchmark for evaluating MLLMs' long-step geometric reasoning with auxiliary lines and a guide for capability advancement. Our dataset and code are included in supplementary materials and will be released.
☆ Overconfidence in LLM-as-a-Judge: Diagnosis and Confidence-Driven Solution
Large Language Models (LLMs) are widely used as automated judges, where practical value depends on both accuracy and trustworthy, risk-aware judgments. Existing approaches predominantly focus on accuracy, overlooking the necessity of well-calibrated confidence, which is vital for adaptive and reliable evaluation pipelines. In this work, we advocate a shift from accuracy-centric evaluation to confidence-driven, risk-aware LLM-as-a-Judge systems, emphasizing the necessity of well-calibrated confidence for trustworthy and adaptive evaluation. We systematically identify the **Overconfidence Phenomenon** in current LLM-as-a-Judges, where predicted confidence significantly overstates actual correctness, undermining reliability in practical deployment. To quantify this phenomenon, we introduce **TH-Score**, a novel metric measuring confidence-accuracy alignment. Furthermore, we propose **LLM-as-a-Fuser**, an ensemble framework that transforms LLMs into reliable, risk-aware evaluators. Extensive experiments demonstrate that our approach substantially improves calibration and enables adaptive, confidence-driven evaluation pipelines, achieving superior reliability and accuracy compared to existing baselines.
☆ InfoCausalQA:Can Models Perform Non-explicit Causal Reasoning Based on Infographic?
Recent advances in Vision-Language Models (VLMs) have demonstrated impressive capabilities in perception and reasoning. However, the ability to perform causal inference -- a core aspect of human cognition -- remains underexplored, particularly in multimodal settings. In this study, we introduce InfoCausalQA, a novel benchmark designed to evaluate causal reasoning grounded in infographics that combine structured visual data with textual context. The benchmark comprises two tasks: Task 1 focuses on quantitative causal reasoning based on inferred numerical trends, while Task 2 targets semantic causal reasoning involving five types of causal relations: cause, effect, intervention, counterfactual, and temporal. We manually collected 494 infographic-text pairs from four public sources and used GPT-4o to generate 1,482 high-quality multiple-choice QA pairs. These questions were then carefully revised by humans to ensure they cannot be answered based on surface-level cues alone but instead require genuine visual grounding. Our experimental results reveal that current VLMs exhibit limited capability in computational reasoning and even more pronounced limitations in semantic causal reasoning. Their significantly lower performance compared to humans indicates a substantial gap in leveraging infographic-based information for causal inference. Through InfoCausalQA, we highlight the need for advancing the causal reasoning abilities of multimodal AI systems.
comment: 14 pages, 9 figures
☆ Reparameterization Proximal Policy Optimization
Reparameterization policy gradient (RPG) is promising for improving sample efficiency by leveraging differentiable dynamics. However, a critical barrier is its training instability, where high-variance gradients can destabilize the learning process. To address this, we draw inspiration from Proximal Policy Optimization (PPO), which uses a surrogate objective to enable stable sample reuse in the model-free setting. We first establish a connection between this surrogate objective and RPG, which has been largely unexplored and is non-trivial. Then, we bridge this gap by demonstrating that the reparameterization gradient of a PPO-like surrogate objective can be computed efficiently using backpropagation through time. Based on this key insight, we propose Reparameterization Proximal Policy Optimization (RPO), a stable and sample-efficient RPG-based method. RPO enables multiple epochs of stable sample reuse by optimizing a clipped surrogate objective tailored for RPG, while being further stabilized by Kullback-Leibler (KL) divergence regularization and remaining fully compatible with existing variance reduction methods. We evaluate RPO on a suite of challenging locomotion and manipulation tasks, where experiments demonstrate that our method achieves superior sample efficiency and strong performance.
☆ Graph Federated Learning for Personalized Privacy Recommendation
Federated recommendation systems (FedRecs) have gained significant attention for providing privacy-preserving recommendation services. However, existing FedRecs assume that all users have the same requirements for privacy protection, i.e., they do not upload any data to the server. The approaches overlook the potential to enhance the recommendation service by utilizing publicly available user data. In real-world applications, users can choose to be private or public. Private users' interaction data is not shared, while public users' interaction data can be shared. Inspired by the issue, this paper proposes a novel Graph Federated Learning for Personalized Privacy Recommendation (GFed-PP) that adapts to different privacy requirements while improving recommendation performance. GFed-PP incorporates the interaction data of public users to build a user-item interaction graph, which is then used to form a user relationship graph. A lightweight graph convolutional network (GCN) is employed to learn each user's user-specific personalized item embedding. To protect user privacy, each client learns the user embedding and the scoring function locally. Additionally, GFed-PP achieves optimization of the federated recommendation framework through the initialization of item embedding on clients and the aggregation of the user relationship graph on the server. Experimental results demonstrate that GFed-PP significantly outperforms existing methods for five datasets, offering superior recommendation accuracy without compromising privacy. This framework provides a practical solution for accommodating varying privacy preferences in federated recommendation systems.
☆ Classification is a RAG problem: A case study on hate speech detection
Robust content moderation requires classification systems that can quickly adapt to evolving policies without costly retraining. We present classification using Retrieval-Augmented Generation (RAG), which shifts traditional classification tasks from determining the correct category in accordance with pre-trained parameters to evaluating content in relation to contextual knowledge retrieved at inference. In hate speech detection, this transforms the task from "is this hate speech?" to "does this violate the hate speech policy?" Our Contextual Policy Engine (CPE) - an agentic RAG system - demonstrates this approach and offers three key advantages: (1) robust classification accuracy comparable to leading commercial systems, (2) inherent explainability via retrieved policy segments, and (3) dynamic policy updates without model retraining. Through three experiments, we demonstrate strong baseline performance and show that the system can apply fine-grained policy control by correctly adjusting protection for specific identity groups without requiring retraining or compromising overall performance. These findings establish that RAG can transform classification into a more flexible, transparent, and adaptable process for content moderation and wider classification problems.
☆ LoRA in LoRA: Towards Parameter-Efficient Architecture Expansion for Continual Visual Instruction Tuning
Continual Visual Instruction Tuning (CVIT) enables Multimodal Large Language Models (MLLMs) to incrementally learn new tasks over time. However, this process is challenged by catastrophic forgetting, where performance on previously learned tasks deteriorates as the model adapts to new ones. A common approach to mitigate forgetting is architecture expansion, which introduces task-specific modules to prevent interference. Yet, existing methods often expand entire layers for each task, leading to significant parameter overhead and poor scalability. To overcome these issues, we introduce LoRA in LoRA (LiLoRA), a highly efficient architecture expansion method tailored for CVIT in MLLMs. LiLoRA shares the LoRA matrix A across tasks to reduce redundancy, applies an additional low-rank decomposition to matrix B to minimize task-specific parameters, and incorporates a cosine-regularized stability loss to preserve consistency in shared representations over time. Extensive experiments on a diverse CVIT benchmark show that LiLoRA consistently achieves superior performance in sequential task learning while significantly improving parameter efficiency compared to existing approaches.
☆ Benchmarking Pretrained Molecular Embedding Models For Molecular Representation Learning
Pretrained neural networks have attracted significant interest in chemistry and small molecule drug design. Embeddings from these models are widely used for molecular property prediction, virtual screening, and small data learning in molecular chemistry. This study presents the most extensive comparison of such models to date, evaluating 25 models across 25 datasets. Under a fair comparison framework, we assess models spanning various modalities, architectures, and pretraining strategies. Using a dedicated hierarchical Bayesian statistical testing model, we arrive at a surprising result: nearly all neural models show negligible or no improvement over the baseline ECFP molecular fingerprint. Only the CLAMP model, which is also based on molecular fingerprints, performs statistically significantly better than the alternatives. These findings raise concerns about the evaluation rigor in existing studies. We discuss potential causes, propose solutions, and offer practical recommendations.
☆ Differentially Private Federated Clustering with Random Rebalancing
Federated clustering aims to group similar clients into clusters and produce one model for each cluster. Such a personalization approach typically improves model performance compared with training a single model to serve all clients, but can be more vulnerable to privacy leakage. Directly applying client-level differentially private (DP) mechanisms to federated clustering could degrade the utilities significantly. We identify that such deficiencies are mainly due to the difficulties of averaging privacy noise within each cluster (following standard privacy mechanisms), as the number of clients assigned to the same clusters is uncontrolled. To this end, we propose a simple and effective technique, named RR-Cluster, that can be viewed as a light-weight add-on to many federated clustering algorithms. RR-Cluster achieves reduced privacy noise via randomly rebalancing cluster assignments, guaranteeing a minimum number of clients assigned to each cluster. We analyze the tradeoffs between decreased privacy noise variance and potentially increased bias from incorrect assignments and provide convergence bounds for RR-Clsuter. Empirically, we demonstrate the RR-Cluster plugged into strong federated clustering algorithms results in significantly improved privacy/utility tradeoffs across both synthetic and real-world datasets.
comment: 21 pages
☆ Synthetic Data-Driven Multi-Architecture Framework for Automated Polyp Segmentation Through Integrated Detection and Mask Generation
Colonoscopy is a vital tool for the early diagnosis of colorectal cancer, which is one of the main causes of cancer-related mortality globally; hence, it is deemed an essential technique for the prevention and early detection of colorectal cancer. The research introduces a unique multidirectional architectural framework to automate polyp detection within colonoscopy images while helping resolve limited healthcare dataset sizes and annotation complexities. The research implements a comprehensive system that delivers synthetic data generation through Stable Diffusion enhancements together with detection and segmentation algorithms. This detection approach combines Faster R-CNN for initial object localization while the Segment Anything Model (SAM) refines the segmentation masks. The faster R-CNN detection algorithm achieved a recall of 93.08% combined with a precision of 88.97% and an F1 score of 90.98%.SAM is then used to generate the image mask. The research evaluated five state-of-the-art segmentation models that included U-Net, PSPNet, FPN, LinkNet, and MANet using ResNet34 as a base model. The results demonstrate the superior performance of FPN with the highest scores of PSNR (7.205893) and SSIM (0.492381), while UNet excels in recall (84.85%) and LinkNet shows balanced performance in IoU (64.20%) and Dice score (77.53%).
☆ UW-3DGS: Underwater 3D Reconstruction with Physics-Aware Gaussian Splatting
Underwater 3D scene reconstruction faces severe challenges from light absorption, scattering, and turbidity, which degrade geometry and color fidelity in traditional methods like Neural Radiance Fields (NeRF). While NeRF extensions such as SeaThru-NeRF incorporate physics-based models, their MLP reliance limits efficiency and spatial resolution in hazy environments. We introduce UW-3DGS, a novel framework adapting 3D Gaussian Splatting (3DGS) for robust underwater reconstruction. Key innovations include: (1) a plug-and-play learnable underwater image formation module using voxel-based regression for spatially varying attenuation and backscatter; and (2) a Physics-Aware Uncertainty Pruning (PAUP) branch that adaptively removes noisy floating Gaussians via uncertainty scoring, ensuring artifact-free geometry. The pipeline operates in training and rendering stages. During training, noisy Gaussians are optimized end-to-end with underwater parameters, guided by PAUP pruning and scattering modeling. In rendering, refined Gaussians produce clean Unattenuated Radiance Images (URIs) free from media effects, while learned physics enable realistic Underwater Images (UWIs) with accurate light transport. Experiments on SeaThru-NeRF and UWBundle datasets show superior performance, achieving PSNR of 27.604, SSIM of 0.868, and LPIPS of 0.104 on SeaThru-NeRF, with ~65% reduction in floating artifacts.
☆ UR$^2$: Unify RAG and Reasoning through Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities through two complementary paradigms: Retrieval-Augmented Generation (RAG), which enhances knowledge grounding, and Reinforcement Learning from Verifiable Rewards (RLVR), which optimizes complex reasoning abilities. However, these two capabilities are often developed in isolation, and existing efforts to unify them remain narrow in scope-typically limited to open-domain QA with fixed retrieval settings and task-specific assumptions. This lack of integration constrains generalization and limits the applicability of RAG-RL methods to broader domains. To bridge this gap, we propose UR2 (Unified RAG and Reasoning), a general framework that unifies retrieval and reasoning through reinforcement learning. UR2 introduces two key contributions: a difficulty-aware curriculum training that selectively invokes retrieval only for challenging problems, and a hybrid knowledge access strategy combining domain-specific offline corpora with LLM-generated summaries. These components are designed to enable dynamic coordination between retrieval and reasoning, improving adaptability across a diverse range of tasks. Experiments across open-domain QA, MMLU-Pro, medical, and mathematical reasoning tasks demonstrate that UR2 (built on Qwen2.5-3/7B and LLaMA-3.1-8B) significantly outperforms existing RAG and RL methods, achieving comparable performance to GPT-4o-mini and GPT-4.1-mini on several benchmarks. We have released all code, models, and data at https://github.com/Tsinghua-dhy/UR2.
☆ One Size Does Not Fit All: A Distribution-Aware Sparsification for More Precise Model Merging
Model merging has emerged as a compelling data-free paradigm for multi-task learning, enabling the fusion of multiple fine-tuned models into a single, powerful entity. A key technique in merging methods is sparsification, which prunes redundant parameters from task vectors to mitigate interference. However, prevailing approaches employ a ``one-size-fits-all'' strategy, applying a uniform sparsity ratio that overlooks the inherent structural and statistical heterogeneity of model parameters. This often leads to a suboptimal trade-off, where critical parameters are inadvertently pruned while less useful ones are retained. To address this limitation, we introduce \textbf{TADrop} (\textbf{T}ensor-wise \textbf{A}daptive \textbf{Drop}), an adaptive sparsification strategy that respects this heterogeneity. Instead of a global ratio, TADrop assigns a tailored sparsity level to each parameter tensor based on its distributional properties. The core intuition is that tensors with denser, more redundant distributions can be pruned aggressively, while sparser, more critical ones are preserved. As a simple and plug-and-play module, we validate TADrop by integrating it with foundational, classic, and SOTA merging methods. Extensive experiments across diverse tasks (vision, language, and multimodal) and models (ViT, BEiT) demonstrate that TADrop consistently and significantly boosts their performance. For instance, when enhancing a leading merging method, it achieves an average performance gain of 2.0\% across 8 ViT-B/32 tasks. TADrop provides a more effective way to mitigate parameter interference by tailoring sparsification to the model's structure, offering a new baseline for high-performance model merging.
comment: Under review
☆ Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
☆ Retrieval Augmented Large Language Model System for Comprehensive Drug Contraindications
The versatility of large language models (LLMs) has been explored across various sectors, but their application in healthcare poses challenges, particularly in the domain of pharmaceutical contraindications where accurate and reliable information is required. This study enhances the capability of LLMs to address contraindications effectively by implementing a Retrieval Augmented Generation (RAG) pipeline. Utilizing OpenAI's GPT-4o-mini as the base model, and the text-embedding-3-small model for embeddings, our approach integrates Langchain to orchestrate a hybrid retrieval system with re-ranking. This system leverages Drug Utilization Review (DUR) data from public databases, focusing on contraindications for specific age groups, pregnancy, and concomitant drug use. The dataset includes 300 question-answer pairs across three categories, with baseline model accuracy ranging from 0.49 to 0.57. Post-integration of the RAG pipeline, we observed a significant improvement in model accuracy, achieving rates of 0.94, 0.87, and 0.89 for contraindications related to age groups, pregnancy, and concomitant drug use, respectively. The results indicate that augmenting LLMs with a RAG framework can substantially reduce uncertainty in prescription and drug intake decisions by providing more precise and reliable drug contraindication information.
☆ Roll Your Eyes: Gaze Redirection via Explicit 3D Eyeball Rotation
We propose a novel 3D gaze redirection framework that leverages an explicit 3D eyeball structure. Existing gaze redirection methods are typically based on neural radiance fields, which employ implicit neural representations via volume rendering. Unlike these NeRF-based approaches, where the rotation and translation of 3D representations are not explicitly modeled, we introduce a dedicated 3D eyeball structure to represent the eyeballs with 3D Gaussian Splatting (3DGS). Our method generates photorealistic images that faithfully reproduce the desired gaze direction by explicitly rotating and translating the 3D eyeball structure. In addition, we propose an adaptive deformation module that enables the replication of subtle muscle movements around the eyes. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our framework is capable of generating diverse novel gaze images, achieving superior image quality and gaze estimation accuracy compared to previous state-of-the-art methods.
comment: 9 pages, 5 figures, ACM Multimeida 2025 accepted
☆ Less is More: Selective Reflection for Compatible and Efficient Knowledge Distillation in Large Language Models
Knowledge Distillation (KD) is a fundamental technique for compressing large language models (LLMs) into compact, efficient student models. However, existing white-box KD methods mainly focus on balancing ground truth and student-generated responses while overlooking two critical factors: training data quality and student-model compatibility. To address these limitations, we propose Selective Reflection Distillation (SRD), a novel data curation framework that leverages reflections from student models to systematically refine training data. SRD dynamically evaluates and selects prompt-response pairs by comparing ground truth data with student model outputs, selectively curating high-quality, student-compatible training instances through automated ranking based on difficulty. Furthermore, after selecting the training data, a curriculum scheduling strategy is employed to incrementally introduce these curated subsets into the distillation process at fixed intervals. As a plug-and-play enhancement, SRD consistently improves distillation outcomes across diverse white-box KD approaches and model architectures, as well as decreases computational cost significantly during KD training. Experiments on a range of language model benchmarks demonstrate SRD's consistent improvements in distilled model performance, as well as a reduction in training runtime by up to 39%, under diverse KD methods and model families. Notably, SRD operates as a plug-and-play module, enhancing sample efficiency without modifying underlying KD algorithms. Our findings highlight that data quality and compatibility are pivotal to effective and efficient distillation of LLMs, and SRD provides a principled framework to achieve both. This work advances the understanding of data-centric factors in KD and offers practical insights for enhancing the capability and efficiency of compressed LLMs.
☆ LLM Serving Optimization with Variable Prefill and Decode Lengths
We study the problem of serving LLM (Large Language Model) requests where each request has heterogeneous prefill and decode lengths. In LLM serving, the prefill length corresponds to the input prompt length, which determines the initial memory usage in the KV cache. The decode length refers to the number of output tokens generated sequentially, with each additional token increasing the KV cache memory usage by one unit. Given a set of n requests, our goal is to schedule and process them to minimize the total completion time. We show that this problem is NP-hard due to the interplay of batching, placement constraints, precedence relationships, and linearly increasing memory usage. We then analyze commonly used scheduling strategies in practice, such as First-Come-First-Serve (FCFS) and Shortest-First (SF), and prove that their competitive ratios scale up sublinearly with the memory limit-a significant drawback in real-world settings where memory demand is large. To address this, we propose a novel algorithm based on a new selection metric that efficiently forms batches over time. We prove that this algorithm achieves a constant competitive ratio. Finally, we develop and evaluate a few algorithm variants inspired by this approach, including dynamic programming variants, local search methods, and an LP-based scheduler, demonstrating through comprehensive simulations that they outperform standard baselines while maintaining computational efficiency.
☆ Study of Robust Features in Formulating Guidance for Heuristic Algorithms for Solving the Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a complex optimization problem with numerous real-world applications, mostly solved using metaheuristic algorithms due to its $\mathcal{NP}$-Hard nature. Traditionally, these metaheuristics rely on human-crafted designs developed through empirical studies. However, recent research shows that machine learning methods can be used the structural characteristics of solutions in combinatorial optimization, thereby aiding in designing more efficient algorithms, particularly for solving VRP. Building on this advancement, this study extends the previous research by conducting a sensitivity analysis using multiple classifier models that are capable of predicting the quality of VRP solutions. Hence, by leveraging explainable AI, this research is able to extend the understanding of how these models make decisions. Finally, our findings indicate that while feature importance varies, certain features consistently emerge as strong predictors. Furthermore, we propose a unified framework able of ranking feature impact across different scenarios to illustrate this finding. These insights highlight the potential of feature importance analysis as a foundation for developing a guidance mechanism of metaheuristic algorithms for solving the VRP.
comment: 22 pages, 14 figures
☆ SKATE, a Scalable Tournament Eval: Weaker LLMs differentiate between stronger ones using verifiable challenges
Evaluating the capabilities and risks of foundation models is paramount, yet current methods demand extensive domain expertise, hindering their scalability as these models rapidly evolve. We introduce SKATE: a novel evaluation framework in which large language models (LLMs) compete by generating and solving verifiable tasks for one another. Our core insight is to treat evaluation as a game: models act as both task-setters and solvers, incentivized to create questions which highlight their own strengths while exposing others' weaknesses. SKATE offers several key advantages, balancing scalability, open-endedness, and objectivity. It is fully automated, data-free, and scalable, requiring no human input or domain expertise. By using verifiable tasks rather than LLM judges, scoring is objective. Unlike domain-limited programmatically-generated benchmarks (e.g. chess-playing or spatial reasoning), having LLMs creatively pose challenges enables open-ended and scalable evaluation. As a proof of concept, we introduce LLM-set code-output-prediction (COP) challenges as a verifiable and extensible framework in which to test our approach. Using a TrueSkill-based ranking system, we evaluate six frontier LLMs and find that: (1) weaker models can reliably differentiate and score stronger ones, (2) LLM-based systems are capable of self-preferencing behavior, generating questions that align with their own capabilities, and (3) SKATE automatically surfaces fine-grained capability differences between models. Our findings are an important step towards general, scalable evaluation frameworks which can keep pace with LLM progress.
comment: 7 pages and appendices
☆ PanelTR: Zero-Shot Table Reasoning Framework Through Multi-Agent Scientific Discussion IJCNN 2025
Table reasoning, including tabular QA and fact verification, often depends on annotated data or complex data augmentation, limiting flexibility and generalization. LLMs, despite their versatility, often underperform compared to simple supervised models. To approach these issues, we introduce PanelTR, a framework utilizing LLM agent scientists for robust table reasoning through a structured scientific approach. PanelTR's workflow involves agent scientists conducting individual investigations, engaging in self-review, and participating in collaborative peer-review discussions. This process, driven by five scientist personas, enables semantic-level transfer without relying on data augmentation or parametric optimization. Experiments across four benchmarks show that PanelTR outperforms vanilla LLMs and rivals fully supervised models, all while remaining independent of training data. Our findings indicate that structured scientific methodology can effectively handle complex tasks beyond table reasoning with flexible semantic understanding in a zero-shot context.
comment: Accepted at IJCNN 2025
☆ FMCE-Net++: Feature Map Convergence Evaluation and Training
Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
☆ GCHR : Goal-Conditioned Hindsight Regularization for Sample-Efficient Reinforcement Learning
Goal-conditioned reinforcement learning (GCRL) with sparse rewards remains a fundamental challenge in reinforcement learning. While hindsight experience replay (HER) has shown promise by relabeling collected trajectories with achieved goals, we argue that trajectory relabeling alone does not fully exploit the available experiences in off-policy GCRL methods, resulting in limited sample efficiency. In this paper, we propose Hindsight Goal-conditioned Regularization (HGR), a technique that generates action regularization priors based on hindsight goals. When combined with hindsight self-imitation regularization (HSR), our approach enables off-policy RL algorithms to maximize experience utilization. Compared to existing GCRL methods that employ HER and self-imitation techniques, our hindsight regularizations achieve substantially more efficient sample reuse and the best performances, which we empirically demonstrate on a suite of navigation and manipulation tasks.
☆ Mask & Match: Learning to Recognize Handwritten Math with Self-Supervised Attention
Recognizing handwritten mathematical expressions (HMER) is a challenging task due to the inherent two-dimensional structure, varying symbol scales, and complex spatial relationships among symbols. In this paper, we present a self-supervised learning (SSL) framework for HMER that eliminates the need for expensive labeled data. Our approach begins by pretraining an image encoder using a combination of global and local contrastive loss, enabling the model to learn both holistic and fine-grained representations. A key contribution of this work is a novel self-supervised attention network, which is trained using a progressive spatial masking strategy. This attention mechanism is designed to learn semantically meaningful focus regions, such as operators, exponents, and nested mathematical notation, without requiring any supervision. The progressive masking curriculum encourages the network to become increasingly robust to missing or occluded visual information, ultimately improving structural understanding. Our complete pipeline consists of (1) self-supervised pretraining of the encoder, (2) self-supervised attention learning, and (3) supervised fine-tuning with a transformer decoder to generate LATEX sequences. Extensive experiments on CROHME benchmarks demonstrate that our method outperforms existing SSL and fully supervised baselines, validating the effectiveness of our progressive attention mechanism in enhancing HMER performance. Our codebase can be found here.
☆ MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows
Recent developments in diffusion- and flow- based models have significantly advanced Text-to-Audio Generation (TTA). While achieving great synthesis quality and controllability, current TTA systems still suffer from slow inference speed, which significantly limits their practical applicability. This paper presents MeanAudio, a novel MeanFlow-based model tailored for fast and faithful text-to-audio generation. Built on a Flux-style latent transformer, MeanAudio regresses the average velocity field during training, enabling fast generation by mapping directly from the start to the endpoint of the flow trajectory. By incorporating classifier-free guidance (CFG) into the training target, MeanAudio incurs no additional cost in the guided sampling process. To further stabilize training, we propose an instantaneous-to-mean curriculum with flow field mix-up, which encourages the model to first learn the foundational instantaneous dynamics, and then gradually adapt to mean flows. This strategy proves critical for enhancing training efficiency and generation quality. Experimental results demonstrate that MeanAudio achieves state-of-the-art performance in single-step audio generation. Specifically, it achieves a real time factor (RTF) of 0.013 on a single NVIDIA RTX 3090, yielding a 100x speedup over SOTA diffusion-based TTA systems. Moreover, MeanAudio also demonstrates strong performance in multi-step generation, enabling smooth and coherent transitions across successive synthesis steps.
comment: 9 pages, 3 figures
☆ Bounding Distributional Shifts in World Modeling through Novelty Detection
Recent work on visual world models shows significant promise in latent state dynamics obtained from pre-trained image backbones. However, most of the current approaches are sensitive to training quality, requiring near-complete coverage of the action and state space during training to prevent divergence during inference. To make a model-based planning algorithm more robust to the quality of the learned world model, we propose in this work to use a variational autoencoder as a novelty detector to ensure that proposed action trajectories during planning do not cause the learned model to deviate from the training data distribution. To evaluate the effectiveness of this approach, a series of experiments in challenging simulated robot environments was carried out, with the proposed method incorporated into a model-predictive control policy loop extending the DINO-WM architecture. The results clearly show that the proposed method improves over state-of-the-art solutions in terms of data efficiency.
comment: 7 pages, 6 figures
☆ Aggregate-Combine-Readout GNNs Are More Expressive Than Logic C2
In recent years, there has been growing interest in understanding the expressive power of graph neural networks (GNNs) by relating them to logical languages. This research has been been initialised by an influential result of Barcel\'o et al. (2020), who showed that the graded modal logic (or a guarded fragment of the logic C2), characterises the logical expressiveness of aggregate-combine GNNs. As a ``challenging open problem'' they left the question whether full C2 characterises the logical expressiveness of aggregate-combine-readout GNNs. This question has remained unresolved despite several attempts. In this paper, we solve the above open problem by proving that the logical expressiveness of aggregate-combine-readout GNNs strictly exceeds that of C2. This result holds over both undirected and directed graphs. Beyond its implications for GNNs, our work also leads to purely logical insights on the expressive power of infinitary logics.
comment: 18 pages
☆ Towards MR-Based Trochleoplasty Planning MICCAI
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.
comment: Accepted at MICCAI COLAS Workshop 2025. Code: https://wehrlimi.github.io/sr-3d-planning/
☆ ME$^3$-BEV: Mamba-Enhanced Deep Reinforcement Learning for End-to-End Autonomous Driving with BEV-Perception
Autonomous driving systems face significant challenges in perceiving complex environments and making real-time decisions. Traditional modular approaches, while offering interpretability, suffer from error propagation and coordination issues, whereas end-to-end learning systems can simplify the design but face computational bottlenecks. This paper presents a novel approach to autonomous driving using deep reinforcement learning (DRL) that integrates bird's-eye view (BEV) perception for enhanced real-time decision-making. We introduce the \texttt{Mamba-BEV} model, an efficient spatio-temporal feature extraction network that combines BEV-based perception with the Mamba framework for temporal feature modeling. This integration allows the system to encode vehicle surroundings and road features in a unified coordinate system and accurately model long-range dependencies. Building on this, we propose the \texttt{ME$^3$-BEV} framework, which utilizes the \texttt{Mamba-BEV} model as a feature input for end-to-end DRL, achieving superior performance in dynamic urban driving scenarios. We further enhance the interpretability of the model by visualizing high-dimensional features through semantic segmentation, providing insight into the learned representations. Extensive experiments on the CARLA simulator demonstrate that \texttt{ME$^3$-BEV} outperforms existing models across multiple metrics, including collision rate and trajectory accuracy, offering a promising solution for real-time autonomous driving.
☆ Can Large Models Fool the Eye? A New Turing Test for Biological Animation
Evaluating the abilities of large models and manifesting their gaps are challenging. Current benchmarks adopt either ground-truth-based score-form evaluation on static datasets or indistinct textual chatbot-style human preferences collection, which may not provide users with immediate, intuitive, and perceptible feedback on performance differences. In this paper, we introduce BioMotion Arena, a novel framework for evaluating large language models (LLMs) and multimodal large language models (MLLMs) via visual animation. Our methodology draws inspiration from the inherent visual perception of motion patterns characteristic of living organisms that utilizes point-light source imaging to amplify the performance discrepancies between models. Specifically, we employ a pairwise comparison evaluation and collect more than 45k votes for 53 mainstream LLMs and MLLMs on 90 biological motion variants. Data analyses show that the crowd-sourced human votes are in good agreement with those of expert raters, demonstrating the superiority of our BioMotion Arena in offering discriminative feedback. We also find that over 90\% of evaluated models, including the cutting-edge open-source InternVL3 and proprietary Claude-4 series, fail to produce fundamental humanoid point-light groups, much less smooth and biologically plausible motions. This enables BioMotion Arena to serve as a challenging benchmark for performance visualization and a flexible evaluation framework without restrictions on ground-truth.
comment: 24 pages, 10 figures
☆ Architecture-Aware Generalization Bounds for Temporal Networks: Theory and Fair Comparison Methodology
Deep temporal architectures such as Temporal Convolutional Networks (TCNs) achieve strong predictive performance on sequential data, yet theoretical understanding of their generalization remains limited. We address this gap by providing both the first non-vacuous, architecture-aware generalization bounds for deep temporal models and a principled evaluation methodology. For exponentially $\beta$-mixing sequences, we derive bounds scaling as $ O\!\Bigl(R\,\sqrt{\tfrac{D\,p\,n\,\log N}{N}}\Bigr), $ where $D$ is network depth, $p$ kernel size, $n$ input dimension, and $R$ weight norm. Our delayed-feedback blocking mechanism transforms dependent samples into effectively independent ones while discarding only $O(1/\log N)$ of the data, yielding $\sqrt{D}$ scaling instead of exponential, implying that doubling depth requires approximately quadrupling the training data. We also introduce a fair-comparison methodology that fixes the effective sample size to isolate the effect of temporal structure from information content. Under $N_{\text{eff}}=2{,}000$, strongly dependent sequences ($\rho=0.8$) exhibit $\approx76\%$ smaller generalization gaps than weakly dependent ones ($\rho=0.2$), challenging the intuition that dependence is purely detrimental. Yet convergence rates diverge from theory: weak dependencies follow $N_{\text{eff}}^{-1.21}$ scaling and strong dependencies follow $N_{\text{eff}}^{-0.89}$, both steeper than the predicted $N^{-0.5}$. These findings reveal that temporal dependence can enhance learning under fixed information budgets, while highlighting gaps between theory and practice that motivate future research.
☆ ThematicPlane: Bridging Tacit User Intent and Latent Spaces for Image Generation
Generative AI has made image creation more accessible, yet aligning outputs with nuanced creative intent remains challenging, particularly for non-experts. Existing tools often require users to externalize ideas through prompts or references, limiting fluid exploration. We introduce ThematicPlane, a system that enables users to navigate and manipulate high-level semantic concepts (e.g., mood, style, or narrative tone) within an interactive thematic design plane. This interface bridges the gap between tacit creative intent and system control. In our exploratory study (N=6), participants engaged in divergent and convergent creative modes, often embracing unexpected results as inspiration or iteration cues. While they grounded their exploration in familiar themes, differing expectations of how themes mapped to outputs revealed a need for more explainable controls. Overall, ThematicPlane fosters expressive, iterative workflows and highlights new directions for intuitive, semantics-driven interaction in generative design tools.
☆ A Generic Complete Anytime Beam Search for Optimal Decision Tree
Finding an optimal decision tree that minimizes classification error is known to be NP-hard. While exact algorithms based on MILP, CP, SAT, or dynamic programming guarantee optimality, they often suffer from poor anytime behavior -- meaning they struggle to find high-quality decision trees quickly when the search is stopped before completion -- due to unbalanced search space exploration. To address this, several anytime extensions of exact methods have been proposed, such as LDS-DL8.5, Top-k-DL8.5, and Blossom, but they have not been systematically compared, making it difficult to assess their relative effectiveness. In this paper, we propose CA-DL8.5, a generic, complete, and anytime beam search algorithm that extends the DL8.5 framework and unifies some existing anytime strategies. In particular, CA-DL8.5 generalizes previous approaches LDS-DL8.5 and Top-k-DL8.5, by allowing the integration of various heuristics and relaxation mechanisms through a modular design. The algorithm reuses DL8.5's efficient branch-and-bound pruning and trie-based caching, combined with a restart-based beam search that gradually relaxes pruning criteria to improve solution quality over time. Our contributions are twofold: (1) We introduce this new generic framework for exact and anytime decision tree learning, enabling the incorporation of diverse heuristics and search strategies; (2) We conduct a rigorous empirical comparison of several instantiations of CA-DL8.5 -- based on Purity, Gain, Discrepancy, and Top-k heuristics -- using an anytime evaluation metric called the primal gap integral. Experimental results on standard classification benchmarks show that CA-DL8.5 using LDS (limited discrepancy) consistently provides the best anytime performance, outperforming both other CA-DL8.5 variants and the Blossom algorithm while maintaining completeness and optimality guarantees.
☆ Don't Forget Imagination!
Cognitive imagination is a type of imagination that plays a key role in human thinking. It is not a ``picture-in-the-head'' imagination. It is a faculty to mentally visualize coherent and holistic systems of concepts and causal links that serve as semantic contexts for reasoning, decision making and prediction. Our position is that the role of cognitive imagination is still greatly underestimated, and this creates numerous problems and diminishes the current capabilities of AI. For instance, when reasoning, humans rely on imaginary contexts to retrieve background info. They also constantly return to the context for semantic verification that their reasoning is still reasonable. Thus, reasoning without imagination is blind. This paper is a call for greater attention to cognitive imagination as the next promising breakthrough in artificial intelligence. As an instrument for simulating cognitive imagination, we propose semantic models -- a new approach to mathematical models that can learn, like neural networks, and are based on probabilistic causal relationships. Semantic models can simulate cognitive imagination because they ensure the consistency of imaginary contexts and implement a glass-box approach that allows the context to be manipulated as a holistic and coherent system of interrelated facts glued together with causal relations.
comment: 14 pages, 2 figures
☆ LLMs for Resource Allocation: A Participatory Budgeting Approach to Inferring Preferences ECAI 2025
Large Language Models (LLMs) are increasingly expected to handle complex decision-making tasks, yet their ability to perform structured resource allocation remains underexplored. Evaluating their reasoning is also difficult due to data contamination and the static nature of existing benchmarks. We present a dual-purpose framework leveraging Participatory Budgeting (PB) both as (i) a practical setting for LLM-based resource allocation and (ii) an adaptive benchmark for evaluating their reasoning capabilities. We task LLMs with selecting project subsets under feasibility (e.g., budget) constraints via three prompting strategies: greedy selection, direct optimization, and a hill-climbing-inspired refinement. We benchmark LLMs' allocations against a utility-maximizing oracle. Interestingly, we also test whether LLMs can infer structured preferences from natural-language voter input or metadata, without explicit votes. By comparing allocations based on inferred preferences to those from ground-truth votes, we evaluate LLMs' ability to extract preferences from open-ended input. Our results underscore the role of prompt design and show that LLMs hold promise for mechanism design with unstructured inputs.
comment: Published in the Proceedings of the 28th European Conference on Artificial Intelligence (ECAI 2025)
☆ EvolvR: Self-Evolving Pairwise Reasoning for Story Evaluation to Enhance Generation
Although the effectiveness of Large Language Models (LLMs) as judges (LLM-as-a-judge) has been validated, their performance remains limited in open-ended tasks, particularly in story evaluation. Accurate story evaluation is crucial not only for assisting human quality judgment but also for providing key signals to guide story generation. However, existing methods face a dilemma: prompt engineering for closed-source models suffers from poor adaptability, while fine-tuning approaches for open-source models lack the rigorous reasoning capabilities essential for story evaluation. To address this, we propose the Self-Evolving Pairwise Reasoning (EvolvR) framework. Grounded in pairwise comparison, the framework first self-synthesizes score-aligned Chain-of-Thought (CoT) data via a multi-persona strategy. To ensure data quality, these raw CoTs undergo a self-filtering process, utilizing multi-agents to guarantee their logical rigor and robustness. Finally, the evaluator trained on the refined data is deployed as a reward model to guide the story generation task. Experimental results demonstrate that our framework achieves state-of-the-art (SOTA) performance on three evaluation benchmarks including StoryER, HANNA and OpenMEVA. Furthermore, when served as a reward model, it significantly enhances the quality of generated stories, thereby fully validating the superiority of our self-evolving approach.
☆ Society of Mind Meets Real-Time Strategy: A Hierarchical Multi-Agent Framework for Strategic Reasoning
Large Language Models (LLMs) have recently demonstrated impressive action sequence prediction capabilities but often struggle with dynamic, long-horizon tasks such as real-time strategic games. In a game such as StarCraftII (SC2), agents need to manage resource constraints and adapt to evolving battlefield situations in a partially observable environment. This often overwhelms exisiting LLM-based approaches. To address these challenges, we propose a hierarchical multi-agent framework that employs specialized imitation learning agents under a meta-controller called Strategic Planner (SP). By expert demonstrations, each specialized agent learns a distinctive strategy, such as aerial support or defensive maneuvers, and produces coherent, structured multistep action sequences. The SP then orchestrates these proposals into a single, environmentally adaptive plan that ensures local decisions aligning with long-term strategies. We call this HIMA (Hierarchical Imitation Multi-Agent). We also present TEXTSCII-ALL, a comprehensive SC2 testbed that encompasses all race match combinations in SC2. Our empirical results show that HIMA outperforms state of the arts in strategic clarity, adaptability, and computational efficiency, underscoring the potential of combining specialized imitation modules with meta-level orchestration to develop more robust, general-purpose AI agents.
comment: COLM 2025
☆ DP-LLM: Runtime Model Adaptation with Dynamic Layer-wise Precision Assignment
How can we effectively handle queries for on-device large language models (LLMs) with varying runtime constraints, such as latency and accuracy? Multi-scale quantization addresses this challenge by enabling memory-efficient runtime model adaptation of LLMs through the overlaying of multiple model variants quantized to different bitwidths. Meanwhile, an important question still remains open-ended: how can models be properly configured to match a target precision or latency? While mixed-precision offers a promising solution, we take this further by leveraging the key observation that the sensitivity of each layer dynamically changes across decoding iterations. Building on this insight, we introduce DP-LLM, a novel mechanism that dynamically assigns precision to each layer based on input values. DP-LLM augments each linear layer in an LLM with a precision selector that determines the bitwidth at runtime using a lightweight error estimator and threshold values learned through fine-tuning. Experimental results across multiple models and benchmarks demonstrate that DP-LLM achieves a superior performance-latency trade-off, outperforming prior approaches.
☆ Fourier-VLM: Compressing Vision Tokens in the Frequency Domain for Large Vision-Language Models
Vision-Language Models (VLMs) typically replace the predefined image placeholder token () in textual instructions with visual features from an image encoder, forming the input to a backbone Large Language Model (LLM). However, the large number of vision tokens significantly increases the context length, leading to high computational overhead and inference latency. While previous efforts mitigate this by selecting only important visual features or leveraging learnable queries to reduce token count, they often compromise performance or introduce substantial extra costs. In response, we propose Fourier-VLM, a simple yet efficient method that compresses visual representations in the frequency domain. Our approach is motivated by the observation that vision features output from the vision encoder exhibit concentrated energy in low-frequency components. Leveraging this, we apply a low-pass filter to the vision features using a two-dimentional Discrete Cosine Transform (DCT). Notably, the DCT is efficiently computed via the Fast Fourier Transform (FFT) operator with a time complexity of $\mathcal{O}(n\log n)$, minimizing the extra computational cost while introducing no additional parameters. Extensive experiments across various image-based benchmarks demonstrate that Fourier-VLM achieves competitive performance with strong generalizability across both LLaVA and Qwen-VL architectures. Crucially, it reduce inference FLOPs by up to 83.8% and boots generation speed by 31.2% compared to LLaVA-v1.5, highlighting the superior efficiency and practicality.
comment: 12 pages, 4 figures
☆ Adaptive Heterogeneous Graph Neural Networks: Bridging Heterophily and Heterogeneity CIKM 2025
Heterogeneous graphs (HGs) are common in real-world scenarios and often exhibit heterophily. However, most existing studies focus on either heterogeneity or heterophily in isolation, overlooking the prevalence of heterophilic HGs in practical applications. Such ignorance leads to their performance degradation. In this work, we first identify two main challenges in modeling heterophily HGs: (1) varying heterophily distributions across hops and meta-paths; (2) the intricate and often heterophily-driven diversity of semantic information across different meta-paths. Then, we propose the Adaptive Heterogeneous Graph Neural Network (AHGNN) to tackle these challenges. AHGNN employs a heterophily-aware convolution that accounts for heterophily distributions specific to both hops and meta-paths. It then integrates messages from diverse semantic spaces using a coarse-to-fine attention mechanism, which filters out noise and emphasizes informative signals. Experiments on seven real-world graphs and twenty baselines demonstrate the superior performance of AHGNN, particularly in high-heterophily situations.
comment: Accepted tp CIKM 2025
☆ Temporal Self-Rewarding Language Models: Decoupling Chosen-Rejected via Past-Future
Self-Rewarding Language Models propose an architecture in which the Large Language Models(LLMs) both generates responses and evaluates its own outputs via LLM-as-a-Judge prompting, dynamically improving its generative capabilities through iterative Direct Preference Optimization (DPO). However, our analysis reveals a critical limitation in existing Self-Rewarding paradigms: the synchronized improvement of chosen and rejected responses progressively narrows the representational difference between contrasting samples, undermining effective preference learning. We propose \textbf{Temporal Self-Rewarding Language Models} that strategically coordinate past, present, and future model generations to sustain learning signals. Our dual-phase framework introduces: (1) \textit{Anchored Rejection} - fixing rejected responses using the past initial model's outputs and (2) \textit{Future-Guided Chosen} - dynamically curating chosen samples using next-generation model predictions. Extensive experiments across three model families (Llama, Qwen, Mistral) and different model sizes (Llama3B/8B/70B) demonstrate significant improvements when trained with our method compared to Self-Rewarding using same computation resources. For example, Llama3.1-8B reaches a 29.44 win rate on AlpacaEval 2.0 with our method, outperforming the Self-Rewarding baseline (19.69) by 9.75. Notably, our method also demonstrates superior out-of-distribution generalization across mathematical reasoning (GSM8K), knowledge-based QA (ARC, TruthfulQA), and code generation (HumanEval) tasks, even though we do not specifically collect such training data.
comment: 12 pages, 5 figures
☆ Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.
☆ Crisp Attention: Regularizing Transformers via Structured Sparsity
The quadratic computational cost of the self-attention mechanism is a primary challenge in scaling Transformer models. While attention sparsity is widely studied as a technique to improve computational efficiency, it is almost universally assumed to come at the cost of model accuracy. In this paper, we report a surprising counter-example to this common wisdom. By introducing structured, post-hoc sparsity to the attention mechanism of a DistilBERT model during fine-tuning on the SST-2 sentiment analysis task, we find that model accuracy improves significantly. Our model with 80\% attention sparsity achieves a validation accuracy of 91.59\%, a 0.97\% absolute improvement over the dense baseline. We hypothesize that this phenomenon is due to sparsity acting as a powerful implicit regularizer, preventing the model from overfitting by forcing it to make predictions with a more constrained and robust set of features. Our work recasts attention sparsity not just as a tool for computational efficiency, but as a potential method for improving the generalization and performance of Transformer models.
♻ ☆ LaDi-WM: A Latent Diffusion-based World Model for Predictive Manipulation
Predictive manipulation has recently gained considerable attention in the Embodied AI community due to its potential to improve robot policy performance by leveraging predicted states. However, generating accurate future visual states of robot-object interactions from world models remains a well-known challenge, particularly in achieving high-quality pixel-level representations. To this end, we propose LaDi-WM, a world model that predicts the latent space of future states using diffusion modeling. Specifically, LaDi-WM leverages the well-established latent space aligned with pre-trained Visual Foundation Models (VFMs), which comprises both geometric features (DINO-based) and semantic features (CLIP-based). We find that predicting the evolution of the latent space is easier to learn and more generalizable than directly predicting pixel-level images. Building on LaDi-WM, we design a diffusion policy that iteratively refines output actions by incorporating forecasted states, thereby generating more consistent and accurate results. Extensive experiments on both synthetic and real-world benchmarks demonstrate that LaDi-WM significantly enhances policy performance by 27.9\% on the LIBERO-LONG benchmark and 20\% on the real-world scenario. Furthermore, our world model and policies achieve impressive generalizability in real-world experiments.
comment: CoRL 2025
♻ ☆ Self-Steering Language Models
While test-time reasoning enables language models (LMs) to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B or Qwen3-1.7B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. Our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
comment: Accepted to COLM 2025
♻ ☆ AI-Assisted Conversational Interviewing: Effects on Data Quality and User Experience
Standardized surveys scale efficiently but sacrifice depth, while conversational interviews improve response quality at the cost of scalability and consistency. This study bridges the gap between these methods by introducing a framework for AI-assisted conversational interviewing. To evaluate this framework, we conducted a web survey experiment where 1,800 participants were randomly assigned to AI 'chatbots' which use large language models (LLMs) to dynamically probe respondents for elaboration and interactively code open-ended responses to fixed questions developed by human researchers. We assessed the AI chatbot's performance in terms of coding accuracy, response quality, and respondent experience. Our findings reveal that AI chatbots perform moderately well in live coding even without survey-specific fine-tuning, despite slightly inflated false positive errors due to respondent acquiescence bias. Open-ended responses were more detailed and informative, but this came at a slight cost to respondent experience. Our findings highlight the feasibility of using AI methods such as chatbots enhanced by LLMs to enhance open-ended data collection in web surveys.
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
comment: This version adds co-authors who were unintentionally left out of the prior submission. Additionally, Table 1 has been reformatted for clarity, and several typographical errors have been corrected
♻ ☆ SPARTA: Advancing Sparse Attention in Spiking Neural Networks via Spike-Timing-Based Prioritization
Current Spiking Neural Networks (SNNs) underutilize the temporal dynamics inherent in spike-based processing, relying primarily on rate coding while overlooking precise timing information that provides rich computational cues. We propose SPARTA (Spiking Priority Attention with Resource-Adaptive Temporal Allocation), a framework that leverages heterogeneous neuron dynamics and spike-timing information to enable efficient sparse attention. SPARTA prioritizes tokens based on temporal cues, including firing patterns, spike timing, and inter-spike intervals, achieving 65.4% sparsity through competitive gating. By selecting only the most salient tokens, SPARTA reduces attention complexity from O(N^2) to O(K^2) with k << n, while maintaining high accuracy. Our method achieves state-of-the-art performance on DVS-Gesture (98.78%) and competitive results on CIFAR10-DVS (83.06%) and CIFAR-10 (95.3%), demonstrating that exploiting spike timing dynamics improves both computational efficiency and accuracy.
♻ ☆ From Next-Token to Mathematics: The Learning Dynamics of Mathematical Reasoning in Language Models
Large Language Models (LLMs) solely trained on next-token prediction learn to solve a wide range of problems involving mathematical reasoning. But how does this ability evolve during training? We show the first analysis of how mathematical reasoning abilities of several open-weight LLMs develop during pre-training and post-training. To this end, we construct MathCAMPS, a synthetic dataset of novel mathematical reasoning problems grounded in 44 fine-grained skills taken from the Common Core curriculum from K to 8th grades. In one experiment, we show that mathematical skills are learned during pre-training in an order that measurably correlates with the human-designed curriculum, even though training data are randomly ordered. We also show a detailed analysis of which mathematical abilities benefit from instruction tuning, a widely used post-training method and, in contrast, which skills suffer. Our work paves the way for an empirical understanding of LLM training dynamics in relation to reasoning.
comment: Accepted to COLM 2025. Dataset and code: https://github.com/gpoesia/mathcamps/
♻ ☆ Algorithmic Segmentation and Behavioral Profiling for Ransomware Detection Using Temporal-Correlation Graphs
The rapid evolution of cyber threats has outpaced traditional detection methodologies, necessitating innovative approaches capable of addressing the adaptive and complex behaviors of modern adversaries. A novel framework was introduced, leveraging Temporal-Correlation Graphs to model the intricate relationships and temporal patterns inherent in malicious operations. The approach dynamically captured behavioral anomalies, offering a robust mechanism for distinguishing between benign and malicious activities in real-time scenarios. Extensive experiments demonstrated the framework's effectiveness across diverse ransomware families, with consistently high precision, recall, and overall detection accuracy. Comparative evaluations highlighted its better performance over traditional signature-based and heuristic methods, particularly in handling polymorphic and previously unseen ransomware variants. The architecture was designed with scalability and modularity in mind, ensuring compatibility with enterprise-scale environments while maintaining resource efficiency. Analysis of encryption speeds, anomaly patterns, and temporal correlations provided deeper insights into the operational strategies of ransomware, validating the framework's adaptability to evolving threats. The research contributes to advancing cybersecurity technologies by integrating dynamic graph analytics and machine learning for future innovations in threat detection. Results from this study underline the potential for transforming the way organizations detect and mitigate complex cyberattacks.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextual Reinforcement in Multimodal Token Compression for Large Language Models
Effective token compression remains a critical challenge for scaling models to handle increasingly complex and diverse datasets. A novel mechanism based on contextual reinforcement is introduced, dynamically adjusting token importance through interdependencies and semantic relevance. This approach enables substantial reductions in token usage while preserving the quality and coherence of information representation. Incorporating graph-based algorithms and adaptive weighting, the method captures subtle contextual relationships across textual and multimodal data, ensuring robust alignment and performance in downstream tasks. Evaluations across varied domains reveal significant improvements in accuracy and semantic retention, particularly for tasks requiring detailed cross-modal interactions. Memory usage analyses demonstrate improved computational efficiency, with minimal overhead despite the additional reinforcement processes. Performance gains are further validated through error distribution analyses, showing reduced semantic loss and syntactic inconsistencies compared to baseline models. The modular architecture ensures compatibility with a wide range of open-source frameworks, facilitating scalable implementation for real-world applications. These findings highlight the potential of contextual reinforcement in redefining token management strategies and advancing large-scale model design.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Hierarchical Pattern Decryption Methodology for Ransomware Detection Using Probabilistic Cryptographic Footprints
The increasing sophistication of encryption-based ransomware has demanded innovative approaches to detection and mitigation, prompting the development of a hierarchical framework grounded in probabilistic cryptographic analysis. By focusing on the statistical characteristics of encryption patterns, the proposed methodology introduces a layered approach that combines advanced clustering algorithms with machine learning to isolate ransomware-induced anomalies. Through comprehensive testing across diverse ransomware families, the framework demonstrated exceptional accuracy, effectively distinguishing malicious encryption operations from benign activities while maintaining low false positive rates. The system's design integrates dynamic feedback mechanisms, enabling adaptability to varying cryptographic complexities and operational environments. Detailed entropy-based evaluations revealed its sensitivity to subtle deviations in encryption workflows, offering a robust alternative to traditional detection methods reliant on static signatures or heuristics. Computational benchmarks confirmed its scalability and efficiency, achieving consistent performance even under high data loads and complex cryptographic scenarios. The inclusion of real-time clustering and anomaly evaluation ensures rapid response capabilities, addressing critical latency challenges in ransomware detection. Performance comparisons with established methods highlighted its improvements in detection efficacy, particularly against advanced ransomware employing extended key lengths and unique cryptographic protocols.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation
Transformative innovations in model architectures have introduced hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures, offering enhanced adaptability to complex linguistic inputs. Autonomous structural memory manipulation further advances this paradigm through dynamic memory reallocation mechanisms that prioritize critical contextual features while suppressing less relevant information, enabling scalable and efficient performance across diverse tasks. Experimental results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences, achieved through memory reorganization strategies that adapt to evolving contextual requirements. Hierarchical embeddings not only improved contextual alignment but also facilitated task generalization by capturing relationships at varying semantic granularities, ensuring coherence across layers without introducing significant computational redundancies. Comparative analysis against baseline models demonstrated unique advantages in accuracy, efficiency, and interpretability, particularly in tasks requiring complex contextual understanding or domain-specific adaptability. The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions. Applications benefiting from these advancements include multi-domain generalization, interactive systems, and scenarios involving real-time decision-making, where traditional static memory architectures often face limitations. The proposed methodology combines advanced embedding and memory management strategies into a cohesive framework that addresses scalability challenges while preserving task-specific relevance.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Contextually Entangled Gradient Mapping for Optimized LLM Comprehension
Contextually Entangled Gradient Mapping (CEGM) introduces a new approach to gradient optimization, redefining the relationship between contextual embeddings and gradient updates to enhance semantic coherence and reasoning capabilities in neural architectures. By treating gradients as dynamic carriers of contextual dependencies rather than isolated numerical entities, the proposed methodology bridges critical gaps in existing optimization strategies. The integration of entangled gradient dynamics into a loss regularization framework demonstrated significant improvements in tasks involving long-form reasoning, contextual retention, and adaptability to unseen domains. Experimental evaluations showed that the CEGM-enhanced model consistently outperformed baseline approaches, achieving higher accuracy in token-level predictions and greater resilience to noisy inputs. Practical implementations involved modifications to training pipelines, introducing entanglement layers and dynamic coefficient adjustments that seamlessly align with existing architectures. Results further highlighted reductions in semantic drift during sequential transformations and improvements in embedding coherence across paraphrased sentences, showing the robustness and versatility of the proposed methodology. The findings demonstrate the broader implications of gradient entanglement for both theoretical advancements and practical applications in optimization strategies.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Unveiling Zero-Space Detection: A Novel Framework for Autonomous Ransomware Identification in High-Velocity Environments
Modern cybersecurity landscapes increasingly demand sophisticated detection frameworks capable of identifying evolving threats with precision and adaptability. The proposed Zero-Space Detection framework introduces a novel approach that dynamically identifies latent behavioral patterns through unsupervised clustering and advanced deep learning techniques. Designed to address the limitations of signature-based and heuristic methods, it operates effectively in high-velocity environments by integrating multi-phase filtering and ensemble learning for refined decision-making. Experimental evaluation reveals high detection rates across diverse ransomware families, including LockBit, Conti, REvil, and BlackMatter, while maintaining low false positive rates and scalable performance. Computational overhead remains minimal, with average processing times ensuring compatibility with real-time systems even under peak operational loads. The framework demonstrates resilience against adversarial strategies such as obfuscation and encryption speed variability, which frequently challenge conventional detection systems. Analysis across multiple data sources highlights its versatility in handling diverse file types and operational contexts. Comprehensive metrics, including detection probability, latency, and resource efficiency, validate its efficacy under real-world conditions. Through its modular architecture, the framework achieves seamless integration with existing cybersecurity infrastructures without significant reconfiguration. The results demonstrate its robustness and scalability, offering a transformative paradigm for ransomware identification in dynamic and resource-constrained environments.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Architectural Fusion Through Contextual Partitioning in Large Language Models: A Novel Approach to Parameterized Knowledge Integration
Contextual Partitioning introduces an innovative approach to enhancing the architectural design of large-scale computational models through the dynamic segmentation of parameters into context-aware regions. This methodology emphasizes the importance of task-specific specialization, achieved through adaptive parameter allocation mechanisms that align with the linguistic features of input data. Experimental evaluations demonstrated substantial improvements in accuracy, perplexity, and contextual coherence across a variety of linguistic tasks, highlighting the adaptability and scalability of the proposed framework. By reducing redundancy and enhancing computational efficiency, Contextual Partitioning not only streamlines model operations but also expands the scope of applications for advanced language processing systems. The approach operates autonomously, requiring no external fine-tuning, thereby addressing a significant limitation in conventional parameter optimization techniques. Empirical results demonstrate the effectiveness of gradient-driven segmentation, enabling models to dynamically recalibrate and specialize in response to task-specific demands. Furthermore, resource utilization metrics reveal notable reductions in memory usage and training times, confirming the efficiency of the approach. Observations from qualitative analyses illustrate improved contextual coherence and logical flow in generated outputs, reinforcing the practical value of this technique. The findings collectively demonstrate the potential for Contextual Partitioning to redefine the scalability and adaptability of computational language architectures in diverse and complex domains.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Neural Contextual Reinforcement Framework for Logical Structure Language Generation
The Neural Contextual Reinforcement Framework introduces an innovative approach to enhancing the logical coherence and structural consistency of text generated by large language models. Leveraging reinforcement learning principles, the framework integrates custom reward functions and dynamic context alignment mechanisms to address challenges inherent in maintaining long-range dependencies across extended sequences. The architecture incorporates multi-head attention layers and hierarchical encoding modules, enabling the model to produce outputs that align closely with human expectations of logical structure and semantic flow. Quantitative evaluations across diverse datasets demonstrate substantial improvements in coherence metrics, perplexity reduction, and semantic alignment, showcasing the framework's ability to outperform baseline models in both general and domain-specific tasks. Qualitative analyses further highlight the framework's capacity to generate text with improved narrative clarity and reduced redundancy, reflecting its effectiveness in balancing fluency with structural precision. In addition to its performance gains, the framework exhibits robustness in handling noisy input data and scalability across varying model sizes, reinforcing its versatility in practical applications. Experimental results reveal that optimal context window sizes significantly influence coherence outcomes, showing the importance of architectural flexibility in adapting to diverse linguistic structures. Cross-lingual performance evaluations affirm the framework's adaptability to multiple languages, extending its utility beyond monolingual contexts. Resource efficiency analyses indicate a reduction in computational overhead compared to traditional approaches, emphasizing the practicality of the framework for large-scale deployment.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.
♻ ☆ Noosemia: toward a Cognitive and Phenomenological Account of Intentionality Attribution in Human-Generative AI Interaction
This paper introduces and formalizes Noosem\`ia, a novel cognitive-phenomenological pattern emerging from human interaction with generative AI systems, particularly those enabling dialogic or multimodal exchanges. We propose a multidisciplinary framework to explain how, under certain conditions, users attribute intentionality, agency, and even interiority to these systems - a process grounded not in physical resemblance, but in linguistic performance, epistemic opacity, and emergent technological complexity. By linking an LLM declination of meaning holism to our technical notion of the LLM Contextual Cognitive Field, we clarify how LLMs construct meaning relationally and how coherence and a simulacrum of agency arise at the human-AI interface. The analysis situates noosemia alongside pareidolia, animism, the intentional stance and the uncanny valley, distinguishing its unique characteristics. We also introduce a-noosemia to describe the phenomenological withdrawal of such projections. The paper concludes with reflections on the broader philosophical, epistemological and social implications of noosemic dynamics and directions for future research.
comment: This version has been extensively revised and revisited in light of feedback and further research. Several sections have been expanded or improved for greater clarity and completeness. Specifically, new clarification on complex system foundation related to Noosemia has been added (Secs. "2.4 and "2.5")
♻ ☆ Are Your LLMs Capable of Stable Reasoning? ACL 2025
The rapid advancement of large language models (LLMs) has shown remarkable progress in complex reasoning tasks. However, a significant disparity exists between benchmark performances and real-world applications. We attribute this gap primarily to current evaluation protocols and metrics, which inadequately capture the full spectrum of LLM capabilities, especially in complex reasoning tasks where both accuracy and consistency are essential. In this paper, we introduce G-Pass@$k$, a novel evaluation metric that continuously assesses model performance across multiple sampling attempts, quantifying both the model's performance potential and its stability. Through extensive experiments on various public and newly constructed benchmarks, we employ G-Pass@$k$ in conjunction with state-of-the-art large language models to provide comprehensive insights into their potential capabilities and operational consistency. Our findings reveal a significant opportunity to enhance the realistic reasoning abilities of LLMs, underscoring the necessity for more robust evaluation metrics.
comment: ACL 2025 Camera, Benchmark: https://huggingface.co/datasets/opencompass/LiveMathBench, Code: https://github.com/open-compass/GPassK
♻ ☆ Web3 x AI Agents: Landscape, Integrations, and Foundational Challenges
The convergence of Web3 technologies and AI agents represents a rapidly evolving frontier poised to reshape decentralized ecosystems. This paper presents the first and most comprehensive analysis of the intersection between Web3 and AI agents, examining five critical dimensions: landscape, economics, governance, security, and trust mechanisms. Through an analysis of 133 existing projects, we first develop a taxonomy and systematically map the current market landscape (RQ1), identifying distinct patterns in project distribution and capitalization. Building upon these findings, we further investigate four key integrations: (1) the role of AI agents in participating in and optimizing decentralized finance (RQ2); (2) their contribution to enhancing Web3 governance mechanisms (RQ3); (3) their capacity to strengthen Web3 security via intelligent vulnerability detection and automated smart contract auditing (RQ4); and (4) the establishment of robust reliability frameworks for AI agent operations leveraging Web3's inherent trust infrastructure (RQ5). By synthesizing these dimensions, we identify key integration patterns, highlight foundational challenges related to scalability, security, and ethics, and outline critical considerations for future research toward building robust, intelligent, and trustworthy decentralized systems with effective AI agent interactions.
♻ ☆ Training Plug-n-Play Knowledge Modules with Deep Context Distillation
Dynamically integrating new or rapidly evolving information after (Large) Language Model pre-training remains challenging, particularly in low-data scenarios or when dealing with private and specialized documents. In-context learning and retrieval-augmented generation (RAG) face limitations, including their high inference costs and their inability to capture global document information. In this paper, we propose a way of modularizing knowledge by training document-level Knowledge Modules (KMs). KMs are lightweight components implemented as parameter-efficient LoRA modules, which are trained to store information about new documents and can be easily plugged into models on demand. We show that next-token prediction performs poorly as the training objective for KMs. We instead propose Deep Context Distillation: we learn KMs parameters such as to simulate hidden states and logits of a teacher that takes the document in context. Our method outperforms standard next-token prediction and pre-instruction training techniques, across two datasets. Finally, we highlight synergies between KMs and RAG.
comment: Accepted at the CONFERENCE ON LANGUAGE MODELING (COLM) 2025
♻ ☆ Bench-2-CoP: Can We Trust Benchmarking for EU AI Compliance?
The rapid advancement of General Purpose AI (GPAI) models necessitates robust evaluation frameworks, especially with emerging regulations like the EU AI Act and its associated Code of Practice (CoP). Current AI evaluation practices depend heavily on established benchmarks, but these tools were not designed to measure the systemic risks that are the focus of the new regulatory landscape. This research addresses the urgent need to quantify this "benchmark-regulation gap." We introduce Bench-2-CoP, a novel, systematic framework that uses validated LLM-as-judge analysis to map the coverage of 194,955 questions from widely-used benchmarks against the EU AI Act's taxonomy of model capabilities and propensities. Our findings reveal a profound misalignment: the evaluation ecosystem dedicates the vast majority of its focus to a narrow set of behavioral propensities. On average, benchmarks devote 61.6% of their regulatory-relevant questions to "Tendency to hallucinate" and 31.2% to "Lack of performance reliability", while critical functional capabilities are dangerously neglected. Crucially, capabilities central to loss-of-control scenarios, including evading human oversight, self-replication, and autonomous AI development, receive zero coverage in the entire benchmark corpus. This study provides the first comprehensive, quantitative analysis of this gap, demonstrating that current public benchmarks are insufficient, on their own, for providing the evidence of comprehensive risk assessment required for regulatory compliance and offering critical insights for the development of next-generation evaluation tools.
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has emerged as a cost-efficient approximation to multitask learning. Among merging strategies, task arithmetic is notable for its simplicity and effectiveness. In this work, we provide a theoretical motivation for task vectors by highlighting that, under single-epoch full-batch gradient descent, they are equivalent to multitask gradients. This insight leads us to reinterpret model merging as a single step in an iterative procedure that Alternates between Tuning and Merging (ATM). We propose two applications of ATM: (1) as an alternative to multitask learning in scenarios where data sharing is restricted (e.g., federated settings), and (2) as a lightweight refinement step to improve existing model merging methods using a small validation set. Experiments across diverse vision tasks demonstrate the effectiveness of ATM.
comment: Main paper: 9 Pages, 4 figures, 1 table
♻ ☆ HASD: Hierarchical Adaption for pathology Slide-level Domain-shift MICCAI 2025
Domain shift is a critical problem for pathology AI as pathology data is heavily influenced by center-specific conditions. Current pathology domain adaptation methods focus on image patches rather than WSI, thus failing to capture global WSI features required in typical clinical scenarios. In this work, we address the challenges of slide-level domain shift by proposing a Hierarchical Adaptation framework for Slide-level Domain-shift (HASD). HASD achieves multi-scale feature consistency and computationally efficient slide-level domain adaptation through two key components: (1) a hierarchical adaptation framework that integrates a Domain-level Alignment Solver for feature alignment, a Slide-level Geometric Invariance Regularization to preserve the morphological structure, and a Patch-level Attention Consistency Regularization to maintain local critical diagnostic cues; and (2) a prototype selection mechanism that reduces computational overhead. We validate our method on two slide-level tasks across five datasets, achieving a 4.1\% AUROC improvement in a Breast Cancer HER2 Grading cohort and a 3.9\% C-index gain in a UCEC survival prediction cohort. Our method provides a practical and reliable slide-level domain adaption solution for pathology institutions, minimizing both computational and annotation costs.
comment: Accepted by MICCAI 2025
♻ ☆ Reconsidering the Performance of GAE in Link Prediction CIKM 2025
Recent advancements in graph neural networks (GNNs) for link prediction have introduced sophisticated training techniques and model architectures. However, reliance on outdated baselines may exaggerate the benefits of these new approaches. To tackle this issue, we systematically explore Graph Autoencoders (GAEs) by applying model-agnostic tricks in recent methods and tuning hyperparameters. We find that a well-tuned GAE can match the performance of recent sophisticated models while offering superior computational efficiency on widely-used link prediction benchmarks. Our approach delivers substantial performance gains on datasets where structural information dominates and feature data is limited. Specifically, our GAE achieves a state-of-the-art Hits@100 score of 78.41\% on the ogbl-ppa dataset. Furthermore, we examine the impact of various tricks to uncover the reasons behind our success and to guide the design of future methods. Our study emphasizes the critical need to update baselines for a more accurate assessment of progress in GNNs for link prediction. Our code is available at https://github.com/GraphPKU/Refined-GAE.
comment: Accepted at CIKM 2025
♻ ☆ M$^2$IV: Towards Efficient and Fine-grained Multimodal In-Context Learning via Representation Engineering
Multimodal in-context learning (ICL) equips Large Vision-language Models (LVLMs) with the ability to adapt to new tasks via multiple user-provided demonstrations, without requiring any model parameter updates. However, its effectiveness is constrained by the token-intensive nature of multimodal inputs and the complexity of cross-modal few-shot reasoning, which together hinder LVLMs from extracting useful patterns from demonstrations. To address these challenges, we propose \textbf{M$^2$IV}, a novel representation engineering approach that replaces explicit token-level demonstrations with a set of learnable Multimodal In-context Vectors directly injected into the residual streams of LVLMs. By analyzing the distinct roles of multi-head attention (MHA) and multi-layer perceptrons (MLP) in the ICL process, we design a training strategy that enables M$^2$IV to perform fine-grained semantic distillation and robust cross-modal representation learning. M$^2$IV not only improves performance across diverse tasks and LVLMs but also significantly reduces token overhead, enabling graceful scaling to many-shot scenarios. To further enhance usability, we introduce \textbf{VLibrary}, a repository that stores trained M$^2$IVs for flexible retrieval and injection. With VLibrary, users can steer pre-trained LVLMs in a customized manner that meets diverse requirements. Extensive experiments demonstrate that M$^2$IV consistently outperforms vanilla ICL and prior representation engineering baselines, achieving an average accuracy gain of 3.74\% with substantial improvements in overall efficiency.
comment: COLM 2025, 30 pages, 10 figures, 16 tables
♻ ☆ DeToNATION: Decoupled Torch Network-Aware Training on Interlinked Online Nodes
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, DeMo assumes that models fit on a single accelerator. We relax this assumption and introduce FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication is reduced by synchronizing only fast-moving components instead of the full gradients -- resulting in a hybrid sharded data parallel training strategy. We further introduce a framework, denoted as DeToNATION, that generalizes DeMo, FlexDeMo, and other popular distributed training schemes such as DiLoCo -- introducing new variations of replication schemes and challenging choices made in DeMo. Our results across language and vision domains show that FlexDeMo attains similar validation loss as hybrid sharded data parallel training employing AdamW and full gradient synchronization, while being substantially faster. FlexDeMo is thus a promising distributed training scheme for the largest machine learning models.
♻ ☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
♻ ☆ DONOD: Efficient and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Ad-hoc instruction fine-tuning of large language models (LLMs) is widely adopted for domain-specific adaptation. While domain-specific supervised fine-tuning (SFT) is effective and efficient, it often weakens cross-domain generalization and struggles with noisy training data. To address these challenges, we propose DONOD, a lightweight model-intrinsic data pruning method. Our approach evaluates data using two model-parameter-based metrics: Delta of Norm (DON), which captures the cumulative influence on model weights, and Norm of Delta (NOD), which quantifies weight instability. Moreover, by employing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) algorithm, we effectively filter noisy, unlearnable, and generalization-harming samples without relying on auxiliary models during the SFT process. Experiments on mathematical tasks demonstrate that data selected by DONOD achieves superior fine-tuning efficiency and improved robustness against noisy data. By filtering out 70% of the whole dataset, we improve target-domain accuracy by 14.90% and cross-domain accuracy by 5.67%. Meanwhile, our selected data present superior cross-architecture generalization. Data pruned by smaller models (e.g., Llama 3.1-8B) generalize effectively on larger models (e.g., Llama 2-13B). Compared to existing related methodologies, DONOD demonstrates comparable or superior performance while remaining dataset-agnostic, enabling broader applicability. Code will be made publicly available.
♻ ☆ MagicGUI: A Foundational Mobile GUI Agent with Scalable Data Pipeline and Reinforcement Fine-tuning
This paper presents MagicGUI, a foundational mobile GUI agent designed to address critical challenges in perception, grounding, and reasoning within real-world mobile GUI environments. The framework is underpinned by following six key components: (1) a comprehensive and accurate dataset, constructed via the scalable GUI Data Pipeline, which aggregates the largest and most diverse GUI-centric multimodal data to date from open-source repositories, automated crawling, and targeted manual annotation; (2) enhanced perception and grounding capabilities, facilitating fine-grained multimodal alignment for UI element referencing, grounding, and screen comprehension; (3) a comprehensive and unified action space, encompassing both fundamental UI operations and complex interactive intents to support human-agent interactions; (4) planning-oriented reasoning mechanisms that enable the model to decompose complex user instructions into sequential actions with explicit intermediate meta-paln reasoning; (5) an iterative two-stage training procedure, combining large-scale continue pre-training on 7.8M samples with reinforcement fine-tuning utilizing a spatially enhanced composite reward and dual filtering strategy; and (6) competitive performance on both the proprietary Magic-RICH benchmark and over a dozen public benchmarks, achieving superior performance across GUI perception and agent tasks, while demonstrating robust generalization and real-world deployment potential in practical mobile GUI scenarios, as detailed in Figure 1.
♻ ☆ A Study of Gender Classification Techniques Based on Iris Images: A Deep Survey and Analysis
Gender classification is attractive in a range of applications, including surveillance and monitoring, corporate profiling, and human-computer interaction. Individuals' identities may be gleaned from information about their gender, which is a kind of soft biometric. Over the years, several methods for determining a person's gender have been devised. Some of the most well-known ones are based on physical characteristics like face, fingerprint, palmprint, DNA, ears, gait, and iris. On the other hand, facial features account for the vast majority of gender classification methods. Also, the iris is a significant biometric trait because the iris, according to research, remains basically constant during an individual's life. Besides that, the iris is externally visible and is non-invasive to the user, which is important for practical applications. Furthermore, there are already high-quality methods for segmenting and encoding iris images, and the current methods facilitate selecting and extracting attribute vectors from iris textures. This study discusses several approaches to determining gender. The previous works of literature are briefly reviewed. Additionally, there are a variety of methodologies for different steps of gender classification. This study provides researchers with knowledge and analysis of the existing gender classification approaches. Also, it will assist researchers who are interested in this specific area, as well as highlight the gaps and challenges in the field, and finally provide suggestions and future paths for improvement.
comment: 13 Pages, 8 Figures, 1 Table
♻ ☆ Topic Over Source: The Key to Effective Data Mixing for Language Models Pre-training
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various languages, sources, and topics. Effectively integrating these heterogeneous data groups is crucial for optimizing LLM performance. Previous research has predominantly concentrated on source-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a topic-based data mixing strategy that utilizes detailed topic labels generated through a multi-stage process combining unsupervised clustering, LLM-based summarization, and supervised classifier training. With this strategy, we conduct the first comprehensive comparison of topic-based versus source-based partitioning across multiple mixing strategies. We demonstrate that language models pretrained on data mixed by topics consistently outperform those trained on data mixed by sources across multiple methods including RegMix, DoReMi,temperature-based sampling, and a manual mixing method based on downstream task performance. Our theoretical analysis reveals that topic-based data achieves significantly lower validation loss compared to source-based approaches, creating a better optimization landscape for model training. We will make our code, annotated datasets, and topic classification models publicly available to facilitate further research.
♻ ☆ Learning to Initialize Trajectory Optimization for Vision-Based Autonomous Flight in Unknown Environments IROS 2025
Autonomous flight in unknown environments requires precise spatial and temporal trajectory planning, often involving computationally expensive nonconvex optimization prone to local optima. To overcome these challenges, we present the Neural-Enhanced Trajectory Planner (NEO-Planner), a novel approach that leverages a Neural Network (NN) Planner to provide informed initial values for trajectory optimization. The NN-Planner is trained on a dataset generated by an expert planner using batch sampling, capturing multimodal trajectory solutions. It learns to predict spatial and temporal parameters for trajectories directly from raw sensor observations. NEO-Planner starts optimization from these predictions, accelerating computation speed while maintaining explainability. Furthermore, we introduce a robust online replanning framework that accommodates planning latency for smooth trajectory tracking. Extensive simulations demonstrate that NEO-Planner reduces optimization iterations by 20%, leading to a 26% decrease in computation time compared with pure optimization-based methods. It maintains trajectory quality comparable to baseline approaches and generalizes well to unseen environments. Real-world experiments validate its effectiveness for autonomous drone navigation in cluttered, unknown environments.
comment: Accepted to IROS 2025. Source code available
♻ ☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) are widely used in mechanistic interpretability research for large language models; however, the state-of-the-art method of using $k$-sparse autoencoders lacks a theoretical grounding for selecting the hyperparameter $k$ that represents the number of nonzero activations, often denoted by $\ell_0$. In this paper, we reveal a theoretical link that the $\ell_2$-norm of the sparse feature vector can be approximated with the $\ell_2$-norm of the dense vector with a closed-form error, which allows sparse autoencoders to be trained without the need to manually determine $\ell_0$. Specifically, we validate two applications of our theoretical findings. First, we introduce a new methodology that can assess the feature activations of pre-trained SAEs by computing the theoretically expected value from the input embedding, which has been overlooked by existing SAE evaluation methods and loss functions. Second, we introduce a novel activation function, top-AFA, which builds upon our formulation of approximate feature activation (AFA). This function enables top-$k$ style activation without requiring a constant hyperparameter $k$ to be tuned, dynamically determining the number of activated features for each input. By training SAEs on three intermediate layers to reconstruct GPT2 hidden embeddings for over 80 million tokens from the OpenWebText dataset, we demonstrate the empirical merits of this approach and compare it with current state-of-the-art $k$-sparse autoencoders. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
♻ ☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
♻ ☆ A Markov Random Field model for Hypergraph-based Machine Learning
Understanding the data-generating process is essential for building machine learning models that generalise well while ensuring robustness and interpretability. This paper addresses the fundamental challenge of modelling the data generation processes on hypergraphs and explores how such models can inform the design of machine learning algorithms for hypergraph data. The key to our approach is the development of a hypergraph Markov random field that models the joint distribution of the node features and hyperedge features in a hypergraph through a multivariate Gaussian distribution whose covariance matrix is uniquely determined by the hypergraph structure. The proposed data-generating process provides a valuable inductive bias for various hypergraph machine learning tasks, thus enhancing the algorithm design. In this paper, we focus on two representative downstream tasks: structure inference and node classification. Accordingly, we introduce two novel frameworks: 1) an original hypergraph structure inference framework named HGSI, and 2) a novel learning framework entitled Hypergraph-MLP for node classification on hypergraphs. Empirical evaluation of the proposed frameworks demonstrates that: 1) HGSI outperforms existing hypergraph structure inference methods on both synthetic and real-world data; and 2) Hypergraph-MLP outperforms baselines in six hypergraph node classification benchmarks, at the same time promoting runtime efficiency and robustness against structural perturbations during inference.
♻ ☆ iTFKAN: Interpretable Time Series Forecasting with Kolmogorov-Arnold Network
As time evolves, data within specific domains exhibit predictability that motivates time series forecasting to predict future trends from historical data. However, current deep forecasting methods can achieve promising performance but generally lack interpretability, hindering trustworthiness and practical deployment in safety-critical applications such as auto-driving and healthcare. In this paper, we propose a novel interpretable model, iTFKAN, for credible time series forecasting. iTFKAN enables further exploration of model decision rationales and underlying data patterns due to its interpretability achieved through model symbolization. Besides, iTFKAN develops two strategies, prior knowledge injection, and time-frequency synergy learning, to effectively guide model learning under complex intertwined time series data. Extensive experimental results demonstrated that iTFKAN can achieve promising forecasting performance while simultaneously possessing high interpretive capabilities.
comment: Currently under review at IEEE Transactions on Knowledge and Data Engineering
♻ ☆ Contemplative Artificial Intelligence
As artificial intelligence (AI) improves, traditional alignment strategies may falter in the face of unpredictable self-improvement, hidden subgoals, and the sheer complexity of intelligent systems. Inspired by contemplative wisdom traditions, we show how four axiomatic principles can instil a resilient Wise World Model in AI systems. First, mindfulness enables self-monitoring and recalibration of emergent subgoals. Second, emptiness forestalls dogmatic goal fixation and relaxes rigid priors. Third, non-duality dissolves adversarial self-other boundaries. Fourth, boundless care motivates the universal reduction of suffering. We find that prompting AI to reflect on these principles improves performance on the AILuminate Benchmark (d=.96) and boosts cooperation and joint-reward on the Prisoner's Dilemma task (d=7+). We offer detailed implementation strategies at the level of architectures, constitutions, and reinforcement on chain-of-thought. For future systems, active inference may offer the self-organizing and dynamic coupling capabilities needed to enact Contemplative AI in embodied agents.
♻ ☆ Are Large Language Models Robust in Understanding Code Against Semantics-Preserving Mutations?
Understanding the reasoning and robustness of Large Language Models (LLMs) is critical for their reliable use in programming tasks. While recent studies have assessed LLMs' ability to predict program outputs, most focus solely on the accuracy of those predictions, without evaluating the reasoning behind them. Moreover, it has been observed on mathematical reasoning tasks that LLMs can arrive at correct answers through flawed logic, raising concerns about similar issues in code understanding. In this work, we evaluate whether state-of-the-art LLMs with up to 8B parameters can reason about Python programs or are simply guessing. We apply five semantics-preserving code mutations: renaming variables, mirroring comparison expressions, swapping if-else branches, converting for loops to while, and loop unrolling. These mutations maintain program semantics while altering its syntax. We evaluated six LLMs and performed a human expert analysis using LiveCodeBench to assess whether the correct predictions are based on sound reasoning. We also evaluated prediction stability across different code mutations on LiveCodeBench and CruxEval. Our findings show that LLMs trained for code produce correct predictions based on flawed reasoning between 10% and 50% of cases. Furthermore, LLMs often change predictions in response to our code mutations, indicating they do not yet exhibit stable, semantically grounded reasoning.
comment: 11 pages, 5 tables, 1 figure
♻ ☆ Solving Copyright Infringement on Short Video Platforms: Novel Datasets and an Audio Restoration Deep Learning Pipeline IJCAI 2025
Short video platforms like YouTube Shorts and TikTok face significant copyright compliance challenges, as infringers frequently embed arbitrary background music (BGM) to obscure original soundtracks (OST) and evade content originality detection. To tackle this issue, we propose a novel pipeline that integrates Music Source Separation (MSS) and cross-modal video-music retrieval (CMVMR). Our approach effectively separates arbitrary BGM from the original OST, enabling the restoration of authentic video audio tracks. To support this work, we introduce two domain-specific datasets: OASD-20K for audio separation and OSVAR-160 for pipeline evaluation. OASD-20K contains 20,000 audio clips featuring mixed BGM and OST pairs, while OSVAR-160 is a unique benchmark dataset comprising 1,121 video and mixed-audio pairs, specifically designed for short video restoration tasks. Experimental results demonstrate that our pipeline not only removes arbitrary BGM with high accuracy but also restores OSTs, ensuring content integrity. This approach provides an ethical and scalable solution to copyright challenges in user-generated content on short video platforms.
comment: Accepted for publication at IJCAI 2025. 9 pages, 4 tables, 3 figures
♻ ☆ ACTIVA: Amortized Causal Effect Estimation via Transformer-based Variational Autoencoder
Predicting the distribution of outcomes under hypothetical interventions is crucial across healthcare, economics, and policy-making. However, existing methods often require restrictive assumptions, and are typically limited by the lack of amortization across problem instances. We propose ACTIVA, a transformer-based conditional variational autoencoder (VAE) architecture for amortized causal inference, which estimates interventional distributions directly from observational data without. ACTIVA learns a latent representation conditioned on observational inputs and intervention queries, enabling zero-shot inference by amortizing causal knowledge from diverse training scenarios. We provide theoretical insights showing that ACTIVA predicts interventional distributions as mixtures over observationally equivalent causal models. Empirical evaluations on synthetic and semi-synthetic datasets confirm the effectiveness of our amortized approach and highlight promising directions for future real-world applications.
♻ ☆ Survey on the Evaluation of Generative Models in Music
Research on generative systems in music has seen considerable attention and growth in recent years. A variety of attempts have been made to systematically evaluate such systems. We present an interdisciplinary review of the common evaluation targets, methodologies, and metrics for the evaluation of both system output and model use, covering subjective and objective approaches, qualitative and quantitative approaches, as well as empirical and computational methods. We examine the benefits and limitations of these approaches from a musicological, an engineering, and an HCI perspective.
comment: Minor Revision submitted to ACM CSUR on 08-Aug-2025, original manuscript submitted on 26-Jun-2024
♻ ☆ LeakAgent: RL-based Red-teaming Agent for LLM Privacy Leakage
Recent studies have discovered that large language models (LLM) may be ``fooled'' to output private information, including training data, system prompts, and personally identifiable information, under carefully crafted adversarial prompts. Existing red-teaming approaches for privacy leakage either rely on manual efforts or focus solely on system prompt extraction, making them ineffective for severe risks of training data leakage. We propose LeakAgent, a novel black-box red-teaming framework for LLM privacy leakage. Our framework trains an open-source LLM through reinforcement learning as the attack agent to generate adversarial prompts for both training data extraction and system prompt extraction. To achieve this, we propose a novel reward function to provide effective and fine-grained rewards and design novel mechanisms to balance exploration and exploitation during learning and enhance the diversity of adversarial prompts. Through extensive evaluations, we first show that LeakAgent significantly outperforms existing rule-based approaches in training data extraction and automated methods in system prompt leakage. We also demonstrate the effectiveness of LeakAgent in extracting system prompts from real-world applications in OpenAI's GPT Store. We further demonstrate LeakAgent's effectiveness in evading the existing guardrail defense and its helpfulness in enabling better safety alignment. Finally, we validate our customized designs through a detailed ablation study. We release our code here https://github.com/rucnyz/LeakAgent.
comment: Accepted by COLM 2025
♻ ☆ Movement-Prediction-Adjusted Naive Forecast
In financial time series forecasting, surpassing the naive forecast is challenging due to the randomness in the data. To address this challenge, this study proposes a novel forecast combination method, the movement-prediction-adjusted naive forecast (MPANF), which is designed to improve point forecasts beyond the naive baseline. Specifically, MPANF integrates two forecasting components: a naive forecast and a movement prediction. The final forecast is generated by adjusting the naive forecast with a movement prediction term, the weight of which is the product of two in-sample quantities: one is a coefficient determined from the movement prediction accuracy and the other is the mean absolute increment. The performance of MPANF was evaluated on eight financial time series via standard metrics, including the RMSE, MAE, MAPE, and sMAPE. Under modest movement prediction accuracy slightly above 0.55, MPANF generally outperforms common benchmarks such as the naive forecast, naive forecast with drift, integrated moving average of order (1,1) (IMA(1,1)), and linear regression. These findings suggest that MPANF can serve as an effective second-stage method when reliable movement predictions are available.
♻ ☆ StepFun-Prover Preview: Let's Think and Verify Step by Step
We present StepFun-Prover Preview, a large language model designed for formal theorem proving through tool-integrated reasoning. Using a reinforcement learning pipeline that incorporates tool-based interactions, StepFun-Prover can achieve strong performance in generating Lean 4 proofs with minimal sampling. Our approach enables the model to emulate human-like problem-solving strategies by iteratively refining proofs based on real-time environment feedback. On the miniF2F-test benchmark, StepFun-Prover achieves a pass@1 success rate of $70.0\%$. Beyond advancing benchmark performance, we introduce an end-to-end training framework for developing tool-integrated reasoning models, offering a promising direction for automated theorem proving and Math AI assistant.
comment: 25 pages, 4 figures. The experimental results of StepFun-Prover-Preview-7B are updated. The information of corresponding author and some reference are added
♻ ☆ Reshaping MOFs text mining with a dynamic multi-agents framework of large language model
Accurately identifying the synthesis conditions of metal-organic frameworks (MOFs) is essential for guiding experimental design, yet remains challenging because relevant information in the literature is often scattered, inconsistent, and difficult to interpret. We present MOFh6, a large language model driven system that reads raw articles or crystal codes and converts them into standardized synthesis tables. It links related descriptions across paragraphs, unifies ligand abbreviations with full names, and outputs structured parameters ready for use. MOFh6 achieved 99% extraction accuracy, resolved 94.1% of abbreviation cases across five major publishers, and maintained a precision of 0.93 +/- 0.01. Processing a full text takes 9.6 s, locating synthesis descriptions 36 s, with 100 papers processed for USD 4.24. By replacing static database lookups with real-time extraction, MOFh6 reshapes MOF synthesis research, accelerating the conversion of literature knowledge into practical synthesis protocols and enabling scalable, data-driven materials discovery.
♻ ☆ Probabilistic Foundations for Metacognition via Hybrid-AI AAAI
Metacognition is the concept of reasoning about an agent's own internal processes, and it has recently received renewed attention with respect to artificial intelligence (AI) and, more specifically, machine learning systems. This paper reviews a hybrid-AI approach known as "error detecting and correcting rules" (EDCR) that allows for the learning of rules to correct perceptual (e.g., neural) models. Additionally, we introduce a probabilistic framework that adds rigor to prior empirical studies, and we use this framework to prove results on necessary and sufficient conditions for metacognitive improvement, as well as limits to the approach. A set of future
comment: Accepted to AAAI-MAKE 2025
♻ ☆ The Docking Game: Loop Self-Play for Fast, Dynamic, and Accurate Prediction of Flexible Protein-Ligand Binding
Molecular docking is a crucial aspect of drug discovery, as it predicts the binding interactions between small-molecule ligands and protein pockets. However, current multi-task learning models for docking often show inferior performance in ligand docking compared to protein pocket docking. This disparity arises largely due to the distinct structural complexities of ligands and proteins. To address this issue, we propose a novel game-theoretic framework that models the protein-ligand interaction as a two-player game called the Docking Game, with the ligand docking module acting as the ligand player and the protein pocket docking module as the protein player. To solve this game, we develop a novel Loop Self-Play (LoopPlay) algorithm, which alternately trains these players through a two-level loop. In the outer loop, the players exchange predicted poses, allowing each to incorporate the other's structural predictions, which fosters mutual adaptation over multiple iterations. In the inner loop, each player dynamically refines its predictions by incorporating its own predicted ligand or pocket poses back into its model. We theoretically show the convergence of LoopPlay, ensuring stable optimization. Extensive experiments conducted on public benchmark datasets demonstrate that LoopPlay achieves approximately a 10\% improvement in predicting accurate binding modes compared to previous state-of-the-art methods. This highlights its potential to enhance the accuracy of molecular docking in drug discovery.
comment: 21 pages, 9 figures
♻ ☆ From research to clinic: Accelerating the translation of clinical decision support systems by making synthetic data interoperable
The translation of clinical decision support system (CDSS) tools from research settings into the clinic is often non-existent, partly because the focus tends to be on training machine learning models rather than tool development using the model for inference. To develop a CDSS tool that can be deployed in the clinical workflow, there is a need to integrate, validate, and test the tool on the Electronic Health Record (EHR) systems that store and manage patient data. Not surprisingly, it is rarely possible for researchers to get the necessary access to an EHR system due to legal restrictions pertaining to the protection of data privacy in patient records. We propose an architecture for using synthetic data in EHR systems to make CDSS tool development and testing much easier. In this study, the architecture is implemented in the SyntHIR system. SyntHIR has three noteworthy architectural features enabling (i) integration with synthetic data generators, (ii) data interoperability, and (iii) tool transportability. The translational value of this approach was evaluated through two primary steps. First, a working proof-of-concept of a machine learning-based CDSS tool was developed using data from patient registries in Norway. Second, the transportability of this CDSS tool was demonstrated by successfully deploying it in Norway's largest EHR system vendor (DIPS). These findings showcase the value of the SyntHIR architecture as a useful reference model to accelerate the translation of "bench to bedside" research of CDSS tools.
♻ ☆ CAST: Cross Attention based multimodal fusion of Structure and Text for materials property prediction
Recent advancements in graph neural networks (GNNs) have significantly enhanced the prediction of material properties by modeling crystal structures as graphs. However, GNNs often struggle to capture global structural characteristics, such as crystal systems, limiting their predictive performance. To overcome this issue, we propose CAST, a cross-attention-based multimodal model that integrates graph representations with textual descriptions of materials, effectively preserving critical structural and compositional information. Unlike previous approaches, such as CrysMMNet and MultiMat, which rely on aggregated material-level embeddings, CAST leverages cross-attention mechanisms to combine fine-grained graph node-level and text token-level features. Additionally, we introduce a masked node prediction pretraining strategy that further enhances the alignment between node and text embeddings. Our experimental results demonstrate that CAST outperforms existing baseline models across four key material properties-formation energy, band gap, bulk modulus, and shear modulus-with average relative MAE improvements ranging from 10.2% to 35.7%. Analysis of attention maps confirms the importance of pretraining in effectively aligning multimodal representations. This study underscores the potential of multimodal learning frameworks for developing more accurate and globally informed predictive models in materials science.
comment: 11 pages, 4 figures
♻ ☆ SuperRL: Reinforcement Learning with Supervision to Boost Language Model Reasoning
Large language models are increasingly used for complex reasoning tasks where high-quality offline data such as expert-annotated solutions and distilled reasoning traces are often available. However, in environments with sparse rewards, reinforcement learning struggles to sample successful trajectories, leading to inefficient learning. At the same time, these offline trajectories that represent correct reasoning paths are not utilized by standard on-policy reinforcement learning methods. We introduce SuperRL, a unified training framework that adaptively alternates between RL and SFT. Whenever every rollout for a given instance receives zero reward, indicating the absence of a learning signal, SuperRL falls back to SFT on the curated offline data. Extensive experiments across diverse reasoning benchmarks show that SuperRL surpasses vanilla RL by delivering higher sample efficiency, stronger generalization, and improved robustness under sparse rewards.
♻ ☆ Fusing Cross-Domain Knowledge from Multimodal Data to Solve Problems in the Physical World
The proliferation of artificial intelligence has enabled a diversity of applications that bridge the gap between digital and physical worlds. As physical environments are too complex to model through a single information acquisition approach, it is crucial to fuse multimodal data generated by different sources, such as sensors, devices, systems, and people, to solve a problem in the real world. Unfortunately, it is neither applicable nor sustainable to deploy new resources to collect original data from scratch for every problem. Thus, when data is inadequate in the domain of problem, it is vital to fuse knowledge from multimodal data that is already available in other domains. We call this cross-domain knowledge fusion. Existing research focus on fusing multimodal data in a single domain, supposing the knowledge from different datasets is intrinsically aligned; however, this assumption may not hold in the scenarios of cross-domain knowledge fusion. In this paper, we formally define the cross-domain multimodal data fusion problem, discussing its unique challenges, differences and advantages beyond data fusion in a single domain. We propose a four-layer framework, consisting of Domains, Links, Models and Data layers, answering three key questions:"what to fuse", "why can be fused", and "how to fuse". The Domains Layer selects relevant data from different domains for a given problem. The Links Layer reveals the philosophy of knowledge alignment beyond specific model structures. The Models Layer provides two knowledge fusion paradigms based on the fundamental mechanisms for processing data. The Data Layer turns data of different structures, resolutions, scales and distributions into a consistent representation that can be fed into an AI model. With this framework, we can design solutions that fuse cross-domain multimodal data effectively for solving real-world problems.
♻ ☆ CUB: Benchmarking Context Utilisation Techniques for Language Models
Incorporating external knowledge is crucial for knowledge-intensive tasks, such as question answering and fact checking. However, language models (LMs) may ignore relevant information that contradicts outdated parametric memory or be distracted by irrelevant contexts. While many context utilisation manipulation techniques (CMTs) have recently been proposed to alleviate these issues, few have seen systematic comparison. In this paper, we develop CUB (Context Utilisation Benchmark) - the first comprehensive benchmark designed to help practitioners within retrieval-augmented generation (RAG) diagnose CMTs under different context conditions. With this benchmark, we conduct the most extensive evaluation to date of seven state-of-the-art methods, representative of the main categories of CMTs, across three diverse datasets and tasks, applied to nine LMs. Our results reveal that most existing CMTs struggle to handle the full spectrum of context types encountered in real-world retrieval-augmented scenarios. We also find that many CMTs display inflated performance on simple synthesised datasets, compared to more realistic datasets with naturally occurring samples. Our findings expose critical gaps in current CMT evaluation practices and demonstrate the need for holistic testing and the development of CMTs that can robustly handle multiple context types.
comment: 28 pages
♻ ☆ Time-Prompt: Integrated Heterogeneous Prompts for Unlocking LLMs in Time Series Forecasting
Time series forecasting aims to model temporal dependencies among variables for future state inference, holding significant importance and widespread applications in real-world scenarios. Although deep learning-based methods have achieved remarkable progress, they still exhibit suboptimal performance in long-term forecasting and data-scarce scenarios. Recent research demonstrates that large language models (LLMs) achieve promising performance in time series forecasting. However, we find existing LLM-based methods still have shortcomings: (1) the absence of a unified paradigm for textual prompt formulation and (2) the neglect of modality discrepancies between textual prompts and time series. To address this, we propose LLM-Prompt, an LLM-based time series forecasting framework integrating multi-prompt information and cross-modal semantic alignment. Specifically, we first construct a unified textual prompt paradigm containing learnable soft prompts and textualized hard prompts. Second, to enhance LLMs' comprehensive understanding of the forecasting task, we design a semantic space embedding and cross-modal alignment module to achieve cross-modal fusion of temporal and textual information. Finally, the transformed time series from the LLMs are projected to obtain the forecasts. Comprehensive evaluations on 6 public datasets and 3 carbon emission datasets demonstrate that LLM-Prompt is a powerful framework for time series forecasting.
♻ ☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning. Our code, data, and models are publicly available at https://github.com/Anjiang-Wei/CodeARC
♻ ☆ Hypothesis-Driven Theory-of-Mind Reasoning for Large Language Models
Existing LLM reasoning methods have shown impressive capabilities across various tasks, such as solving math and coding problems. However, applying these methods to scenarios without ground-truth answers or rule-based verification methods - such as tracking the mental states of an agent - remains challenging. Inspired by the sequential Monte Carlo algorithm, we introduce thought-tracing, an inference-time reasoning algorithm designed to trace the mental states of specific agents by generating hypotheses and weighting them based on observations without relying on ground-truth solutions to questions in datasets. Our algorithm is modeled after the Bayesian theory-of-mind framework, using LLMs to approximate probabilistic inference over agents' evolving mental states based on their perceptions and actions. We evaluate thought-tracing on diverse theory-of-mind benchmarks, demonstrating significant performance improvements compared to baseline LLMs. Our experiments also reveal interesting behaviors of the recent reasoning models - e.g., o3 and R1 - on theory-of-mind, highlighting the difference of social reasoning compared to other domains.
comment: COLM 2025. For code and data, see https://hyunw.kim/thought-tracing
♻ ☆ Systemizing Multiplicity: The Curious Case of Arbitrariness in Machine Learning
Algorithmic modeling relies on limited information in data to extrapolate outcomes for unseen scenarios, often embedding an element of arbitrariness in its decisions. A perspective on this arbitrariness that has recently gained interest is multiplicity-the study of arbitrariness across a set of "good models", i.e., those likely to be deployed in practice. In this work, we systemize the literature on multiplicity by: (a) formalizing the terminology around model design choices and their contribution to arbitrariness, (b) expanding the definition of multiplicity to incorporate underrepresented forms beyond just predictions and explanations, (c) clarifying the distinction between multiplicity and other lenses of arbitrariness, i.e., uncertainty and variance, and (d) distilling the benefits and potential risks of multiplicity into overarching trends, situating it within the broader landscape of responsible AI. We conclude by identifying open research questions and highlighting emerging trends in this young but rapidly growing area of research.
comment: To appear at AIES 2025
♻ ☆ LLM-Meta-SR: In-Context Learning for Evolving Selection Operators in Symbolic Regression
Large language models (LLMs) have revolutionized algorithm development, yet their application in symbolic regression, where algorithms automatically discover symbolic expressions from data, remains constrained and is typically designed manually by human experts. In this paper, we propose a meta learning framework that enables LLMs to automatically design selection operators for evolutionary symbolic regression algorithms. We first identify two key limitations in existing LLM-based algorithm evolution techniques: a lack of semantic guidance and code bloat. The absence of semantic awareness can lead to ineffective exchange of useful code components, and bloat results in unnecessarily complex components, both of which can reduce the interpretability of the designed algorithm or hinder evolutionary learning progress. To address these issues, we enhance the LLM-based evolution framework for meta symbolic regression with two key innovations: a complementary, semantics-aware selection operator and bloat control. Additionally, we embed domain knowledge into the prompt, enabling the LLM to generate more effective and contextually relevant selection operators. Our experimental results on symbolic regression benchmarks show that LLMs can devise selection operators that outperform nine expert-designed baselines, achieving state-of-the-art performance. Moreover, the evolved operator can further improve the state-of-the-art symbolic regression algorithm, achieving the best performance among 26 symbolic regression and machine learning algorithms across 116 regression datasets. This demonstrates that LLMs can exceed expert-level algorithm design for symbolic regression.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements KDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ The Alternative Annotator Test for LLM-as-a-Judge: How to Statistically Justify Replacing Human Annotators with LLMs
The "LLM-as-an-annotator" and "LLM-as-a-judge" paradigms employ Large Language Models (LLMs) as annotators, judges, and evaluators in tasks traditionally performed by humans. LLM annotations are widely used, not only in NLP research but also in fields like medicine, psychology, and social science. Despite their role in shaping study results and insights, there is no standard or rigorous procedure to determine whether LLMs can replace human annotators. In this paper, we propose a novel statistical procedure, the Alternative Annotator Test (alt-test), that requires only a modest subset of annotated examples to justify using LLM annotations. Additionally, we introduce a versatile and interpretable measure for comparing LLM annotators and judges. To demonstrate our procedure, we curated a diverse collection of ten datasets, consisting of language and vision-language tasks, and conducted experiments with six LLMs and four prompting techniques. Our results show that LLMs can sometimes replace humans with closed-source LLMs (such as GPT-4o), outperforming the open-source LLMs we examine, and that prompting techniques yield judges of varying quality. We hope this study encourages more rigorous and reliable practices.
♻ ☆ Entropy Causal Graphs for Multivariate Time Series Anomaly Detection
Many multivariate time series anomaly detection frameworks have been proposed and widely applied. However, most of these frameworks do not consider intrinsic relationships between variables in multivariate time series data, thus ignoring the causal relationship among variables and degrading anomaly detection performance. This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection. CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data. Weighted graph convolutional networks combined with causal convolutions are employed to model both the causal graph structures and the temporal patterns within multivariate time series data. Furthermore, CGAD applies anomaly scoring, leveraging median absolute deviation-based normalization to improve the robustness of the anomaly identification process. Extensive experiments demonstrate that CGAD outperforms state-of-the-art methods on real-world datasets with a 9% average improvement in terms of three different multivariate time series anomaly detection metrics.
comment: 25 pages, 8 figures
♻ ☆ Quality over Quantity: An Effective Large-Scale Data Reduction Strategy Based on Pointwise V-Information
In order to increase the effectiveness of model training, data reduction is essential to data-centric Artificial Intelligence (AI). It achieves this by locating the most instructive examples in massive datasets. To increase data quality and training efficiency, the main difficulty is choosing the best examples rather than the complete datasets. In this paper, we propose an effective data reduction strategy based on Pointwise V-Information (PVI). To enable a static method, we first use PVI to quantify instance difficulty and remove instances with low difficulty. Experiments show that classifier performance is maintained with only a 0.0001% to 0.76% decline in accuracy when 10%-30% of the data is removed. Second, we train the classifiers using a progressive learning strategy on examples sorted by increasing PVI, accelerating convergence and achieving a 0.8% accuracy gain over conventional training. Our findings imply that training a classifier on the chosen optimal subset may improve model performance and increase training efficiency when combined with an efficient data reduction strategy. Furthermore, we have adapted the PVI framework, which was previously limited to English datasets, to a variety of Chinese Natural Language Processing (NLP) tasks and base models, yielding insightful results for faster training and cross-lingual data reduction.
♻ ☆ AVA-Bench: Atomic Visual Ability Benchmark for Vision Foundation Models
The rise of vision foundation models (VFMs) calls for systematic evaluation. A common approach pairs VFMs with large language models (LLMs) as general-purpose heads, followed by evaluation on broad Visual Question Answering (VQA) benchmarks. However, this protocol has two key blind spots: (i) the instruction tuning data may not align with VQA test distributions, meaning a wrong prediction can stem from such data mismatch rather than a VFM' visual shortcomings; (ii) VQA benchmarks often require multiple visual abilities, making it hard to tell whether errors stem from lacking all required abilities or just a single critical one. To address these gaps, we introduce AVA-Bench, the first benchmark that explicitly disentangles 14 Atomic Visual Abilities (AVAs) -- foundational skills like localization, depth estimation, and spatial understanding that collectively support complex visual reasoning tasks. By decoupling AVAs and matching training and test distributions within each, AVA-Bench pinpoints exactly where a VFM excels or falters. Applying AVA-Bench to leading VFMs thus reveals distinctive "ability fingerprints," turning VFM selection from educated guesswork into principled engineering. Notably, we find that a 0.5B LLM yields similar VFM rankings as a 7B LLM while cutting GPU hours by 8x, enabling more efficient evaluation. By offering a comprehensive and transparent benchmark, we hope AVA-Bench lays the foundation for the next generation of VFMs.
comment: First two authors contribute equally
♻ ☆ FIT-Print: Towards False-claim-resistant Model Ownership Verification via Targeted Fingerprint
Model fingerprinting is a widely adopted approach to safeguard the intellectual property rights of open-source models by preventing their unauthorized reuse. It is promising and convenient since it does not necessitate modifying the protected model. In this paper, we revisit existing fingerprinting methods and reveal that they are vulnerable to false claim attacks where adversaries falsely assert ownership of any third-party model. We demonstrate that this vulnerability mostly stems from their untargeted nature, where they generally compare the outputs of given samples on different models instead of the similarities to specific references. Motivated by these findings, we propose a targeted fingerprinting paradigm (i.e., FIT-Print) to counteract false claim attacks. Specifically, FIT-Print transforms the fingerprint into a targeted signature via optimization. Building on the principles of FIT-Print, we develop bit-wise and list-wise black-box model fingerprinting methods, i.e., FIT-ModelDiff and FIT-LIME, which exploit the distance between model outputs and the feature attribution of specific samples as the fingerprint, respectively. Extensive experiments on benchmark models and datasets verify the effectiveness, conferrability, and resistance to false claim attacks of our FIT-Print.
♻ ☆ A dataset of primary nasopharyngeal carcinoma MRI with multi-modalities segmentation
Multi-modality magnetic resonance imaging(MRI) data facilitate the early diagnosis, tumor segmentation, and disease staging in the management of nasopharyngeal carcinoma (NPC). The lack of publicly available, comprehensive datasets limits advancements in diagnosis, treatment planning, and the development of machine learning algorithms for NPC. Addressing this critical need, we introduce the first comprehensive NPC MRI dataset, encompassing MR axial imaging of 277 primary NPC patients. This dataset includes T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences, totaling 831 scans. In addition to the corresponding clinical data, manually annotated and labeled segmentations by experienced radiologists offer high-quality data resources from untreated primary NPC.
comment: This preprint has been submitted to and accepted in principle for publication in Scientific Data without significant changes
♻ ☆ Layers at Similar Depths Generate Similar Activations Across LLM Architectures
How do the latent spaces used by independently-trained LLMs relate to one another? We study the nearest neighbor relationships induced by activations at different layers of 24 open-weight LLMs, and find that they 1) tend to vary from layer to layer within a model, and 2) are approximately shared between corresponding layers of different models. Claim 2 shows that these nearest neighbor relationships are not arbitrary, as they are shared across models, but Claim 1 shows that they are not "obvious" either, as there is no single set of nearest neighbor relationships that is universally shared. Together, these suggest that LLMs generate a progression of activation geometries from layer to layer, but that this entire progression is largely shared between models, stretched and squeezed to fit into different architectures.
Computer Vision and Pattern Recognition 150
☆ LightSwitch: Multi-view Relighting with Material-guided Diffusion ICCV 2025
Recent approaches for 3D relighting have shown promise in integrating 2D image relighting generative priors to alter the appearance of a 3D representation while preserving the underlying structure. Nevertheless, generative priors used for 2D relighting that directly relight from an input image do not take advantage of intrinsic properties of the subject that can be inferred or cannot consider multi-view data at scale, leading to subpar relighting. In this paper, we propose Lightswitch, a novel finetuned material-relighting diffusion framework that efficiently relights an arbitrary number of input images to a target lighting condition while incorporating cues from inferred intrinsic properties. By using multi-view and material information cues together with a scalable denoising scheme, our method consistently and efficiently relights dense multi-view data of objects with diverse material compositions. We show that our 2D relighting prediction quality exceeds previous state-of-the-art relighting priors that directly relight from images. We further demonstrate that LightSwitch matches or outperforms state-of-the-art diffusion inverse rendering methods in relighting synthetic and real objects in as little as 2 minutes.
comment: ICCV 2025, Project page & Code: https://yehonathanlitman.github.io/light_switch/
☆ Effective Training Data Synthesis for Improving MLLM Chart Understanding ICCV 2025
Being able to effectively read scientific plots, or chart understanding, is a central part toward building effective agents for science. However, existing multimodal large language models (MLLMs), especially open-source ones, are still falling behind with a typical success rate of 30%-50% on challenging benchmarks. Previous studies on fine-tuning MLLMs with synthetic charts are often restricted by their inadequate similarity to the real charts, which could compromise model training and performance on complex real-world charts. In this study, we show that modularizing chart generation and diversifying visual details improves chart understanding capabilities. In particular, we design a five-step data synthesis pipeline, where we separate data and function creation for single plot generation, condition the generation of later subplots on earlier ones for multi-subplot figures, visually diversify the generated figures, filter out low quality data, and finally generate the question-answer (QA) pairs with GPT-4o. This approach allows us to streamline the generation of fine-tuning datasets and introduce the effective chart dataset (ECD), which contains 10k+ chart images and 300k+ QA pairs, covering 25 topics and featuring 250+ chart type combinations with high visual complexity. We show that ECD consistently improves the performance of various MLLMs on a range of real-world and synthetic test sets. Code, data and models are available at: https://github.com/yuweiyang-anu/ECD.
comment: Accepted by ICCV 2025 (poster). 26 pages, 17 figures
☆ Multivariate Fields of Experts
We introduce the multivariate fields of experts, a new framework for the learning of image priors. Our model generalizes existing fields of experts methods by incorporating multivariate potential functions constructed via Moreau envelopes of the $\ell_\infty$-norm. We demonstrate the effectiveness of our proposal across a range of inverse problems that include image denoising, deblurring, compressed-sensing magnetic-resonance imaging, and computed tomography. The proposed approach outperforms comparable univariate models and achieves performance close to that of deep-learning-based regularizers while being significantly faster, requiring fewer parameters, and being trained on substantially fewer data. In addition, our model retains a relatively high level of interpretability due to its structured design.
☆ WGAST: Weakly-Supervised Generative Network for Daily 10 m Land Surface Temperature Estimation via Spatio-Temporal Fusion
Urbanization, climate change, and agricultural stress are increasing the demand for precise and timely environmental monitoring. Land Surface Temperature (LST) is a key variable in this context and is retrieved from remote sensing satellites. However, these systems face a trade-off between spatial and temporal resolution. While spatio-temporal fusion methods offer promising solutions, few have addressed the estimation of daily LST at 10 m resolution. In this study, we present WGAST, a Weakly-Supervised Generative Network for Daily 10 m LST Estimation via Spatio-Temporal Fusion of Terra MODIS, Landsat 8, and Sentinel-2. WGAST is the first end-to-end deep learning framework designed for this task. It adopts a conditional generative adversarial architecture, with a generator composed of four stages: feature extraction, fusion, LST reconstruction, and noise suppression. The first stage employs a set of encoders to extract multi-level latent representations from the inputs, which are then fused in the second stage using cosine similarity, normalization, and temporal attention mechanisms. The third stage decodes the fused features into high-resolution LST, followed by a Gaussian filter to suppress high-frequency noise. Training follows a weakly supervised strategy based on physical averaging principles and reinforced by a PatchGAN discriminator. Experiments demonstrate that WGAST outperforms existing methods in both quantitative and qualitative evaluations. Compared to the best-performing baseline, on average, WGAST reduces RMSE by 17.18% and improves SSIM by 11.00%. Furthermore, WGAST is robust to cloud-induced LST and effectively captures fine-scale thermal patterns, as validated against 33 ground-based sensors. The code is available at https://github.com/Sofianebouaziz1/WGAST.git.
comment: Submitted to IEEE Transactions on Geoscience and Remote Sensing (TGRS)
☆ Text Embedded Swin-UMamba for DeepLesion Segmentation
Segmentation of lesions on CT enables automatic measurement for clinical assessment of chronic diseases (e.g., lymphoma). Integrating large language models (LLMs) into the lesion segmentation workflow offers the potential to combine imaging features with descriptions of lesion characteristics from the radiology reports. In this study, we investigate the feasibility of integrating text into the Swin-UMamba architecture for the task of lesion segmentation. The publicly available ULS23 DeepLesion dataset was used along with short-form descriptions of the findings from the reports. On the test dataset, a high Dice Score of 82% and low Hausdorff distance of 6.58 (pixels) was obtained for lesion segmentation. The proposed Text-Swin-UMamba model outperformed prior approaches: 37% improvement over the LLM-driven LanGuideMedSeg model (p < 0.001),and surpassed the purely image-based xLSTM-UNet and nnUNet models by 1.74% and 0.22%, respectively. The dataset and code can be accessed at https://github.com/ruida/LLM-Swin-UMamba
☆ TRUST: Leveraging Text Robustness for Unsupervised Domain Adaptation
Recent unsupervised domain adaptation (UDA) methods have shown great success in addressing classical domain shifts (e.g., synthetic-to-real), but they still suffer under complex shifts (e.g. geographical shift), where both the background and object appearances differ significantly across domains. Prior works showed that the language modality can help in the adaptation process, exhibiting more robustness to such complex shifts. In this paper, we introduce TRUST, a novel UDA approach that exploits the robustness of the language modality to guide the adaptation of a vision model. TRUST generates pseudo-labels for target samples from their captions and introduces a novel uncertainty estimation strategy that uses normalised CLIP similarity scores to estimate the uncertainty of the generated pseudo-labels. Such estimated uncertainty is then used to reweight the classification loss, mitigating the adverse effects of wrong pseudo-labels obtained from low-quality captions. To further increase the robustness of the vision model, we propose a multimodal soft-contrastive learning loss that aligns the vision and language feature spaces, by leveraging captions to guide the contrastive training of the vision model on target images. In our contrastive loss, each pair of images acts as both a positive and a negative pair and their feature representations are attracted and repulsed with a strength proportional to the similarity of their captions. This solution avoids the need for hardly determining positive and negative pairs, which is critical in the UDA setting. Our approach outperforms previous methods, setting the new state-of-the-art on classical (DomainNet) and complex (GeoNet) domain shifts. The code will be available upon acceptance.
☆ CLIPin: A Non-contrastive Plug-in to CLIP for Multimodal Semantic Alignment
Large-scale natural image-text datasets, especially those automatically collected from the web, often suffer from loose semantic alignment due to weak supervision, while medical datasets tend to have high cross-modal correlation but low content diversity. These properties pose a common challenge for contrastive language-image pretraining (CLIP): they hinder the model's ability to learn robust and generalizable representations. In this work, we propose CLIPin, a unified non-contrastive plug-in that can be seamlessly integrated into CLIP-style architectures to improve multimodal semantic alignment, providing stronger supervision and enhancing alignment robustness. Furthermore, two shared pre-projectors are designed for image and text modalities respectively to facilitate the integration of contrastive and non-contrastive learning in a parameter-compromise manner. Extensive experiments on diverse downstream tasks demonstrate the effectiveness and generality of CLIPin as a plug-and-play component compatible with various contrastive frameworks. Code is available at https://github.com/T6Yang/CLIPin.
☆ MotionSwap
Face swapping technology has gained significant attention in both academic research and commercial applications. This paper presents our implementation and enhancement of SimSwap, an efficient framework for high fidelity face swapping. We introduce several improvements to the original model, including the integration of self and cross-attention mechanisms in the generator architecture, dynamic loss weighting, and cosine annealing learning rate scheduling. These enhancements lead to significant improvements in identity preservation, attribute consistency, and overall visual quality. Our experimental results, spanning 400,000 training iterations, demonstrate progressive improvements in generator and discriminator performance. The enhanced model achieves better identity similarity, lower FID scores, and visibly superior qualitative results compared to the baseline. Ablation studies confirm the importance of each architectural and training improvement. We conclude by identifying key future directions, such as integrating StyleGAN3, improving lip synchronization, incorporating 3D facial modeling, and introducing temporal consistency for video-based applications.
comment: 8 pages, 7 figures, 5 tables. This is a student research submission from BITS Pilani, Hyderabad Campus. Our implementation enhances SimSwap with attention modules and dynamic training strategies
☆ SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.
☆ Shortcut Learning in Generalist Robot Policies: The Role of Dataset Diversity and Fragmentation
Generalist robot policies trained on large-scale datasets such as Open X-Embodiment (OXE) demonstrate strong performance across a wide range of tasks. However, they often struggle to generalize beyond the distribution of their training data. In this paper, we investigate the underlying cause of this limited generalization capability. We identify shortcut learning -- the reliance on task-irrelevant features -- as a key impediment to generalization. Through comprehensive theoretical and empirical analysis, we uncover two primary contributors to shortcut learning: (1) limited diversity within individual sub-datasets, and (2) significant distributional disparities across sub-datasets, leading to dataset fragmentation. These issues arise from the inherent structure of large-scale datasets like OXE, which are typically composed of multiple sub-datasets collected independently across varied environments and embodiments. Our findings provide critical insights into dataset collection strategies that can reduce shortcut learning and enhance the generalization ability of generalist robot policies. Moreover, in scenarios where acquiring new large-scale data is impractical, we demonstrate that carefully selected robotic data augmentation strategies can effectively reduce shortcut learning in existing offline datasets, thereby improving generalization capabilities of generalist robot policies, e.g., $\pi_0$, in both simulation and real-world environments. More information at https://lucky-light-sun.github.io/proj/shortcut-learning-in-grps/.
comment: CoRL 2025
☆ Feature-Space Oversampling for Addressing Class Imbalance in SAR Ship Classification
SAR ship classification faces the challenge of long-tailed datasets, which complicates the classification of underrepresented classes. Oversampling methods have proven effective in addressing class imbalance in optical data. In this paper, we evaluated the effect of oversampling in the feature space for SAR ship classification. We propose two novel algorithms inspired by the Major-to-minor (M2m) method M2m$_f$, M2m$_u$. The algorithms are tested on two public datasets, OpenSARShip (6 classes) and FuSARShip (9 classes), using three state-of-the-art models as feature extractors: ViT, VGG16, and ResNet50. Additionally, we also analyzed the impact of oversampling methods on different class sizes. The results demonstrated the effectiveness of our novel methods over the original M2m and baselines, with an average F1-score increase of 8.82% for FuSARShip and 4.44% for OpenSARShip.
comment: Accepted and presented at IGARSS
☆ A Classification-Aware Super-Resolution Framework for Ship Targets in SAR Imagery
High-resolution imagery plays a critical role in improving the performance of visual recognition tasks such as classification, detection, and segmentation. In many domains, including remote sensing and surveillance, low-resolution images can limit the accuracy of automated analysis. To address this, super-resolution (SR) techniques have been widely adopted to attempt to reconstruct high-resolution images from low-resolution inputs. Related traditional approaches focus solely on enhancing image quality based on pixel-level metrics, leaving the relationship between super-resolved image fidelity and downstream classification performance largely underexplored. This raises a key question: can integrating classification objectives directly into the super-resolution process further improve classification accuracy? In this paper, we try to respond to this question by investigating the relationship between super-resolution and classification through the deployment of a specialised algorithmic strategy. We propose a novel methodology that increases the resolution of synthetic aperture radar imagery by optimising loss functions that account for both image quality and classification performance. Our approach improves image quality, as measured by scientifically ascertained image quality indicators, while also enhancing classification accuracy.
☆ FVGen: Accelerating Novel-View Synthesis with Adversarial Video Diffusion Distillation
Recent progress in 3D reconstruction has enabled realistic 3D models from dense image captures, yet challenges persist with sparse views, often leading to artifacts in unseen areas. Recent works leverage Video Diffusion Models (VDMs) to generate dense observations, filling the gaps when only sparse views are available for 3D reconstruction tasks. A significant limitation of these methods is their slow sampling speed when using VDMs. In this paper, we present FVGen, a novel framework that addresses this challenge by enabling fast novel view synthesis using VDMs in as few as four sampling steps. We propose a novel video diffusion model distillation method that distills a multi-step denoising teacher model into a few-step denoising student model using Generative Adversarial Networks (GANs) and softened reverse KL-divergence minimization. Extensive experiments on real-world datasets show that, compared to previous works, our framework generates the same number of novel views with similar (or even better) visual quality while reducing sampling time by more than 90%. FVGen significantly improves time efficiency for downstream reconstruction tasks, particularly when working with sparse input views (more than 2) where pre-trained VDMs need to be run multiple times to achieve better spatial coverage.
☆ Text as Any-Modality for Zero-Shot Classification by Consistent Prompt Tuning
The integration of prompt tuning with multimodal learning has shown significant generalization abilities for various downstream tasks. Despite advancements, existing methods heavily depend on massive modality-specific labeled data (e.g., video, audio, and image), or are customized for a single modality. In this study, we present Text as Any-Modality by Consistent Prompt Tuning (TaAM-CPT), a scalable approach for constructing a general representation model toward unlimited modalities using solely text data. TaAM-CPT comprises modality prompt pools, text construction, and modality-aligned text encoders from pre-trained models, which allows for extending new modalities by simply adding prompt pools and modality-aligned text encoders. To harmonize the learning across different modalities, TaAM-CPT designs intra- and inter-modal learning objectives, which can capture category details within modalities while maintaining semantic consistency across different modalities. Benefiting from its scalable architecture and pre-trained models, TaAM-CPT can be seamlessly extended to accommodate unlimited modalities. Remarkably, without any modality-specific labeled data, TaAM-CPT achieves leading results on diverse datasets spanning various modalities, including video classification, image classification, and audio classification. The code is available at https://github.com/Jinx630/TaAM-CPT.
comment: Accepted for publication at ACMMM 2025
☆ Are you In or Out (of gallery)? Wisdom from the Same-Identity Crowd
A central problem in one-to-many facial identification is that the person in the probe image may or may not have enrolled image(s) in the gallery; that is, may be In-gallery or Out-of-gallery. Past approaches to detect when a rank-one result is Out-of-gallery have mostly focused on finding a suitable threshold on the similarity score. We take a new approach, using the additional enrolled images of the identity with the rank-one result to predict if the rank-one result is In-gallery / Out-of-gallery. Given a gallery of identities and images, we generate In-gallery and Out-of-gallery training data by extracting the ranks of additional enrolled images corresponding to the rank-one identity. We then train a classifier to utilize this feature vector to predict whether a rank-one result is In-gallery or Out-of-gallery. Using two different datasets and four different matchers, we present experimental results showing that our approach is viable for mugshot quality probe images, and also, importantly, for probes degraded by blur, reduced resolution, atmospheric turbulence and sunglasses. We also analyze results across demographic groups, and show that In-gallery / Out-of-gallery classification accuracy is similar across demographics. Our approach has the potential to provide an objective estimate of whether a one-to-many facial identification is Out-of-gallery, and thereby to reduce false positive identifications, wrongful arrests, and wasted investigative time. Interestingly, comparing the results of older deep CNN-based face matchers with newer ones suggests that the effectiveness of our Out-of-gallery detection approach emerges only with matchers trained using advanced margin-based loss functions.
☆ An Implemention of Two-Phase Image Segmentation using the Split Bregman Method
In this paper, we describe an implementation of the two-phase image segmentation algorithm proposed by Goldstein, Bresson, Osher in \cite{gold:bre}. This algorithm partitions the domain of a given 2d image into foreground and background regions, and each pixel of the image is assigned membership to one of these two regions. The underlying assumption for the segmentation model is that the pixel values of the input image can be summarized by two distinct average values, and that the region boundaries are smooth. Accordingly, the model is defined as an energy in which the variable is a region membership function to assign pixels to either region, originally proposed by Chan and Vese in \cite{chan:vese}. This energy is the sum of image data terms in the regions and a length penalty for region boundaries. Goldstein, Bresson, Osher modify the energy of Chan-Vese in \cite{gold:bre} so that their new energy can be minimized efficiently using the split Bregman method to produce an equivalent two-phase segmentation. We provide a detailed implementation of this method \cite{gold:bre}, and document its performance with several images over a range of algorithm parameters.
comment: 15 pages
☆ Aligning Effective Tokens with Video Anomaly in Large Language Models
Understanding abnormal events in videos is a vital and challenging task that has garnered significant attention in a wide range of applications. Although current video understanding Multi-modal Large Language Models (MLLMs) are capable of analyzing general videos, they often struggle to handle anomalies due to the spatial and temporal sparsity of abnormal events, where the redundant information always leads to suboptimal outcomes. To address these challenges, exploiting the representation and generalization capabilities of Vison Language Models (VLMs) and Large Language Models (LLMs), we propose VA-GPT, a novel MLLM designed for summarizing and localizing abnormal events in various videos. Our approach efficiently aligns effective tokens between visual encoders and LLMs through two key proposed modules: Spatial Effective Token Selection (SETS) and Temporal Effective Token Generation (TETG). These modules enable our model to effectively capture and analyze both spatial and temporal information associated with abnormal events, resulting in more accurate responses and interactions. Furthermore, we construct an instruction-following dataset specifically for fine-tuning video-anomaly-aware MLLMs, and introduce a cross-domain evaluation benchmark based on XD-Violence dataset. Our proposed method outperforms existing state-of-the-art methods on various benchmarks.
☆ Street View Sociability: Interpretable Analysis of Urban Social Behavior Across 15 Cities
Designing socially active streets has long been a goal of urban planning, yet existing quantitative research largely measures pedestrian volume rather than the quality of social interactions. We hypothesize that street view imagery -- an inexpensive data source with global coverage -- contains latent social information that can be extracted and interpreted through established social science theory. As a proof of concept, we analyzed 2,998 street view images from 15 cities using a multimodal large language model guided by Mehta's taxonomy of passive, fleeting, and enduring sociability -- one illustrative example of a theory grounded in urban design that could be substituted or complemented by other sociological frameworks. We then used linear regression models, controlling for factors like weather, time of day, and pedestrian counts, to test whether the inferred sociability measures correlate with city-level place attachment scores from the World Values Survey and with environmental predictors (e.g., green, sky, and water view indices) derived from individual street view images. Results aligned with long-standing urban planning theory: the sky view index was associated with all three sociability types, the green view index predicted enduring sociability, and place attachment was positively associated with fleeting sociability. These results provide preliminary evidence that street view images can be used to infer relationships between specific types of social interactions and built environment variables. Further research could establish street view imagery as a scalable, privacy-preserving tool for studying urban sociability, enabling cross-cultural theory testing and evidence-based design of socially vibrant cities.
☆ ViPro-2: Unsupervised State Estimation via Integrated Dynamics for Guiding Video Prediction IJCNN
Predicting future video frames is a challenging task with many downstream applications. Previous work has shown that procedural knowledge enables deep models for complex dynamical settings, however their model ViPro assumed a given ground truth initial symbolic state. We show that this approach led to the model learning a shortcut that does not actually connect the observed environment with the predicted symbolic state, resulting in the inability to estimate states given an observation if previous states are noisy. In this work, we add several improvements to ViPro that enables the model to correctly infer states from observations without providing a full ground truth state in the beginning. We show that this is possible in an unsupervised manner, and extend the original Orbits dataset with a 3D variant to close the gap to real world scenarios.
comment: Published in 2025 International Joint Conference on Neural Networks (IJCNN)
☆ Can Diffusion Models Bridge the Domain Gap in Cardiac MR Imaging? ICONIP 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.
comment: ICONIP 2025
☆ Mixture of Experts Guided by Gaussian Splatters Matters: A new Approach to Weakly-Supervised Video Anomaly Detection
Video Anomaly Detection (VAD) is a challenging task due to the variability of anomalous events and the limited availability of labeled data. Under the Weakly-Supervised VAD (WSVAD) paradigm, only video-level labels are provided during training, while predictions are made at the frame level. Although state-of-the-art models perform well on simple anomalies (e.g., explosions), they struggle with complex real-world events (e.g., shoplifting). This difficulty stems from two key issues: (1) the inability of current models to address the diversity of anomaly types, as they process all categories with a shared model, overlooking category-specific features; and (2) the weak supervision signal, which lacks precise temporal information, limiting the ability to capture nuanced anomalous patterns blended with normal events. To address these challenges, we propose Gaussian Splatting-guided Mixture of Experts (GS-MoE), a novel framework that employs a set of expert models, each specialized in capturing specific anomaly types. These experts are guided by a temporal Gaussian splatting loss, enabling the model to leverage temporal consistency and enhance weak supervision. The Gaussian splatting approach encourages a more precise and comprehensive representation of anomalies by focusing on temporal segments most likely to contain abnormal events. The predictions from these specialized experts are integrated through a mixture-of-experts mechanism to model complex relationships across diverse anomaly patterns. Our approach achieves state-of-the-art performance, with a 91.58% AUC on the UCF-Crime dataset, and demonstrates superior results on XD-Violence and MSAD datasets. By leveraging category-specific expertise and temporal guidance, GS-MoE sets a new benchmark for VAD under weak supervision.
☆ Uncertainty-quantified Rollout Policy Adaptation for Unlabelled Cross-domain Temporal Grounding
Video Temporal Grounding (TG) aims to temporally locate video segments matching a natural language description (a query) in a long video. While Vision-Language Models (VLMs) are effective at holistic semantic matching, they often struggle with fine-grained temporal localisation. Recently, Group Relative Policy Optimisation (GRPO) reformulates the inference process as a reinforcement learning task, enabling fine-grained grounding and achieving strong in-domain performance. However, GRPO relies on labelled data, making it unsuitable in unlabelled domains. Moreover, because videos are large and expensive to store and process, performing full-scale adaptation introduces prohibitive latency and computational overhead, making it impractical for real-time deployment. To overcome both problems, we introduce a Data-Efficient Unlabelled Cross-domain Temporal Grounding method, from which a model is first trained on a labelled source domain, then adapted to a target domain using only a small number of unlabelled videos from the target domain. This approach eliminates the need for target annotation and keeps both computational and storage overhead low enough to run in real time. Specifically, we introduce. Uncertainty-quantified Rollout Policy Adaptation (URPA) for cross-domain knowledge transfer in learning video temporal grounding without target labels. URPA generates multiple candidate predictions using GRPO rollouts, averages them to form a pseudo label, and estimates confidence from the variance across these rollouts. This confidence then weights the training rewards, guiding the model to focus on reliable supervision. Experiments on three datasets across six cross-domain settings show that URPA generalises well using only a few unlabelled target videos. Codes will be released once published.
☆ FedMeNF: Privacy-Preserving Federated Meta-Learning for Neural Fields ICCV 2025
Neural fields provide a memory-efficient representation of data, which can effectively handle diverse modalities and large-scale data. However, learning to map neural fields often requires large amounts of training data and computations, which can be limited to resource-constrained edge devices. One approach to tackle this limitation is to leverage Federated Meta-Learning (FML), but traditional FML approaches suffer from privacy leakage. To address these issues, we introduce a novel FML approach called FedMeNF. FedMeNF utilizes a new privacy-preserving loss function that regulates privacy leakage in the local meta-optimization. This enables the local meta-learner to optimize quickly and efficiently without retaining the client's private data. Our experiments demonstrate that FedMeNF achieves fast optimization speed and robust reconstruction performance, even with few-shot or non-IID data across diverse data modalities, while preserving client data privacy.
comment: ICCV 2025
☆ Advanced Deep Learning Techniques for Accurate Lung Cancer Detection and Classification
Lung cancer (LC) ranks among the most frequently diagnosed cancers and is one of the most common causes of death for men and women worldwide. Computed Tomography (CT) images are the most preferred diagnosis method because of their low cost and their faster processing times. Many researchers have proposed various ways of identifying lung cancer using CT images. However, such techniques suffer from significant false positives, leading to low accuracy. The fundamental reason results from employing a small and imbalanced dataset. This paper introduces an innovative approach for LC detection and classification from CT images based on the DenseNet201 model. Our approach comprises several advanced methods such as Focal Loss, data augmentation, and regularization to overcome the imbalanced data issue and overfitting challenge. The findings show the appropriateness of the proposal, attaining a promising performance of 98.95% accuracy.
☆ SIFThinker: Spatially-Aware Image Focus for Visual Reasoning
Current multimodal large language models (MLLMs) still face significant challenges in complex visual tasks (e.g., spatial understanding, fine-grained perception). Prior methods have tried to incorporate visual reasoning, however, they fail to leverage attention correction with spatial cues to iteratively refine their focus on prompt-relevant regions. In this paper, we introduce SIFThinker, a spatially-aware "think-with-images" framework that mimics human visual perception. Specifically, SIFThinker enables attention correcting and image region focusing by interleaving depth-enhanced bounding boxes and natural language. Our contributions are twofold: First, we introduce a reverse-expansion-forward-inference strategy that facilitates the generation of interleaved image-text chains of thought for process-level supervision, which in turn leads to the construction of the SIF-50K dataset. Besides, we propose GRPO-SIF, a reinforced training paradigm that integrates depth-informed visual grounding into a unified reasoning pipeline, teaching the model to dynamically correct and focus on prompt-relevant regions. Extensive experiments demonstrate that SIFThinker outperforms state-of-the-art methods in spatial understanding and fine-grained visual perception, while maintaining strong general capabilities, highlighting the effectiveness of our method.
comment: 15 pages, 13 figures
☆ XAG-Net: A Cross-Slice Attention and Skip Gating Network for 2.5D Femur MRI Segmentation
Accurate segmentation of femur structures from Magnetic Resonance Imaging (MRI) is critical for orthopedic diagnosis and surgical planning but remains challenging due to the limitations of existing 2D and 3D deep learning-based segmentation approaches. In this study, we propose XAG-Net, a novel 2.5D U-Net-based architecture that incorporates pixel-wise cross-slice attention (CSA) and skip attention gating (AG) mechanisms to enhance inter-slice contextual modeling and intra-slice feature refinement. Unlike previous CSA-based models, XAG-Net applies pixel-wise softmax attention across adjacent slices at each spatial location for fine-grained inter-slice modeling. Extensive evaluations demonstrate that XAG-Net surpasses baseline 2D, 2.5D, and 3D U-Net models in femur segmentation accuracy while maintaining computational efficiency. Ablation studies further validate the critical role of the CSA and AG modules, establishing XAG-Net as a promising framework for efficient and accurate femur MRI segmentation.
comment: Accepted at the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA). This is the preprint version of the paper
☆ FedX: Explanation-Guided Pruning for Communication-Efficient Federated Learning in Remote Sensing
Federated learning (FL) enables the collaborative training of deep neural networks across decentralized data archives (i.e., clients), where each client stores data locally and only shares model updates with a central server. This makes FL a suitable learning paradigm for remote sensing (RS) image classification tasks, where data centralization may be restricted due to legal and privacy constraints. However, a key challenge in applying FL to RS tasks is the communication overhead caused by the frequent exchange of large model updates between clients and the central server. To address this issue, in this paper we propose a novel strategy (denoted as FedX) that uses explanation-guided pruning to reduce communication overhead by minimizing the size of the transmitted models without compromising performance. FedX leverages backpropagation-based explanation methods to estimate the task-specific importance of model components and prunes the least relevant ones at the central server. The resulting sparse global model is then sent to clients, substantially reducing communication overhead. We evaluate FedX on multi-label scene classification using the BigEarthNet-S2 dataset and single-label scene classification using the EuroSAT dataset. Experimental results show the success of FedX in significantly reducing the number of shared model parameters while enhancing the generalization capability of the global model, compared to both unpruned model and state-of-the-art pruning methods. The code of FedX will be available at https://git.tu-berlin.de/rsim/FedX.
☆ Deepfake Detection that Generalizes Across Benchmarks
The generalization of deepfake detectors to unseen manipulation techniques remains a challenge for practical deployment. Although many approaches adapt foundation models by introducing significant architectural complexity, this work demonstrates that robust generalization is achievable through a parameter-efficient adaptation of a pre-trained CLIP vision encoder. The proposed method, LNCLIP-DF, fine-tunes only the Layer Normalization parameters (0.03% of the total) and enhances generalization by enforcing a hyperspherical feature manifold using L2 normalization and latent space augmentations. We conducted an extensive evaluation on 13 benchmark datasets spanning from 2019 to 2025. The proposed method achieves state-of-the-art performance, outperforming more complex, recent approaches in average cross-dataset AUROC. Our analysis yields two primary findings for the field: 1) training on paired real-fake data from the same source video is essential for mitigating shortcut learning and improving generalization, and 2) detection difficulty on academic datasets has not strictly increased over time, with models trained on older, diverse datasets showing strong generalization capabilities. This work delivers a computationally efficient and reproducible method, proving that state-of-the-art generalization is attainable by making targeted, minimal changes to a pre-trained CLIP model. The code will be made publicly available upon acceptance.
☆ Towards Unified Image Deblurring using a Mixture-of-Experts Decoder
Image deblurring, removing blurring artifacts from images, is a fundamental task in computational photography and low-level computer vision. Existing approaches focus on specialized solutions tailored to particular blur types, thus, these solutions lack generalization. This limitation in current methods implies requiring multiple models to cover several blur types, which is not practical in many real scenarios. In this paper, we introduce the first all-in-one deblurring method capable of efficiently restoring images affected by diverse blur degradations, including global motion, local motion, blur in low-light conditions, and defocus blur. We propose a mixture-of-experts (MoE) decoding module, which dynamically routes image features based on the recognized blur degradation, enabling precise and efficient restoration in an end-to-end manner. Our unified approach not only achieves performance comparable to dedicated task-specific models, but also demonstrates remarkable robustness and generalization capabilities on unseen blur degradation scenarios.
comment: Preprint. Under review
☆ Depth Jitter: Seeing through the Depth
Depth information is essential in computer vision, particularly in underwater imaging, robotics, and autonomous navigation. However, conventional augmentation techniques overlook depth aware transformations, limiting model robustness in real world depth variations. In this paper, we introduce Depth-Jitter, a novel depth-based augmentation technique that simulates natural depth variations to improve generalization. Our approach applies adaptive depth offsetting, guided by depth variance thresholds, to generate synthetic depth perturbations while preserving structural integrity. We evaluate Depth-Jitter on two benchmark datasets, FathomNet and UTDAC2020 demonstrating its impact on model stability under diverse depth conditions. Extensive experiments compare Depth-Jitter against traditional augmentation strategies such as ColorJitter, analyzing performance across varying learning rates, encoders, and loss functions. While Depth-Jitter does not always outperform conventional methods in absolute performance, it consistently enhances model stability and generalization in depth-sensitive environments. These findings highlight the potential of depth-aware augmentation for real-world applications and provide a foundation for further research into depth-based learning strategies. The proposed technique is publicly available to support advancements in depth-aware augmentation. The code is publicly available on \href{https://github.com/mim-team/Depth-Jitter}{github}.
☆ TEFormer: Texture-Aware and Edge-Guided Transformer for Semantic Segmentation of Urban Remote Sensing Images
Semantic segmentation of urban remote sensing images (URSIs) is crucial for applications such as urban planning and environmental monitoring. However, geospatial objects often exhibit subtle texture differences and similar spatial structures, which can easily lead to semantic ambiguity and misclassification. Moreover, challenges such as irregular object shapes, blurred boundaries, and overlapping spatial distributions of semantic objects contribute to complex and diverse edge morphologies, further complicating accurate segmentation. To tackle these issues, we propose a texture-aware and edge-guided Transformer (TEFormer) that integrates texture awareness and edge-guidance mechanisms for semantic segmentation of URSIs. In the encoder, a texture-aware module (TaM) is designed to capture fine-grained texture differences between visually similar categories to enhance semantic discrimination. Then, an edge-guided tri-branch decoder (Eg3Head) is constructed to preserve local edges and details for multiscale context-awareness. Finally, an edge-guided feature fusion module (EgFFM) is to fuse contextual and detail information with edge information to realize refined semantic segmentation. Extensive experiments show that TEFormer achieves mIoU of 88.57%, 81.46%, and 53.55% on the Potsdam, Vaihingen, and LoveDA datasets, respectively, shows the effectiveness in URSI semantic segmentation.
comment: Submitted to GRSL
☆ Interpretable Rheumatoid Arthritis Scoring via Anatomy-aware Multiple Instance Learning MICCAI
The Sharp/van der Heijde (SvdH) score has been widely used in clinical trials to quantify radiographic damage in Rheumatoid Arthritis (RA), but its complexity has limited its adoption in routine clinical practice. To address the inefficiency of manual scoring, this work proposes a two-stage pipeline for interpretable image-level SvdH score prediction using dual-hand radiographs. Our approach extracts disease-relevant image regions and integrates them using attention-based multiple instance learning to generate image-level features for prediction. We propose two region extraction schemes: 1) sampling image tiles most likely to contain abnormalities, and 2) cropping patches containing disease-relevant joints. With Scheme 2, our best individual score prediction model achieved a Pearson's correlation coefficient (PCC) of 0.943 and a root mean squared error (RMSE) of 15.73. Ensemble learning further boosted prediction accuracy, yielding a PCC of 0.945 and RMSE of 15.57, achieving state-of-the-art performance that is comparable to that of experienced radiologists (PCC = 0.97, RMSE = 18.75). Finally, our pipeline effectively identified and made decisions based on anatomical structures which clinicians consider relevant to RA progression.
comment: Accepted by MICCAI AMAI Workshop 2025
☆ Affordance-R1: Reinforcement Learning for Generalizable Affordance Reasoning in Multimodal Large Language Model
Affordance grounding focuses on predicting the specific regions of objects that are associated with the actions to be performed by robots. It plays a vital role in the fields of human-robot interaction, human-object interaction, embodied manipulation, and embodied perception. Existing models often neglect the affordance shared among different objects because they lack the Chain-of-Thought(CoT) reasoning abilities, limiting their out-of-domain (OOD) generalization and explicit reasoning capabilities. To address these challenges, we propose Affordance-R1, the first unified affordance grounding framework that integrates cognitive CoT guided Group Relative Policy Optimization (GRPO) within a reinforcement learning paradigm. Specifically, we designed a sophisticated affordance function, which contains format, perception, and cognition rewards to effectively guide optimization directions. Furthermore, we constructed a high-quality affordance-centric reasoning dataset, ReasonAff, to support training. Trained exclusively via reinforcement learning with GRPO and without explicit reasoning data, Affordance-R1 achieves robust zero-shot generalization and exhibits emergent test-time reasoning capabilities. Comprehensive experiments demonstrate that our model outperforms well-established methods and exhibits open-world generalization. To the best of our knowledge, Affordance-R1 is the first to integrate GRPO-based RL with reasoning into affordance reasoning. The code of our method and our dataset is released on https://github.com/hq-King/Affordance-R1.
☆ PA-HOI: A Physics-Aware Human and Object Interaction Dataset
The Human-Object Interaction (HOI) task explores the dynamic interactions between humans and objects in physical environments, providing essential biomechanical and cognitive-behavioral foundations for fields such as robotics, virtual reality, and human-computer interaction. However, existing HOI data sets focus on details of affordance, often neglecting the influence of physical properties of objects on human long-term motion. To bridge this gap, we introduce the PA-HOI Motion Capture dataset, which highlights the impact of objects' physical attributes on human motion dynamics, including human posture, moving velocity, and other motion characteristics. The dataset comprises 562 motion sequences of human-object interactions, with each sequence performed by subjects of different genders interacting with 35 3D objects that vary in size, shape, and weight. This dataset stands out by significantly extending the scope of existing ones for understanding how the physical attributes of different objects influence human posture, speed, motion scale, and interacting strategies. We further demonstrate the applicability of the PA-HOI dataset by integrating it with existing motion generation methods, validating its capacity to transfer realistic physical awareness.
☆ AnomalyMoE: Towards a Language-free Generalist Model for Unified Visual Anomaly Detection
Anomaly detection is a critical task across numerous domains and modalities, yet existing methods are often highly specialized, limiting their generalizability. These specialized models, tailored for specific anomaly types like textural defects or logical errors, typically exhibit limited performance when deployed outside their designated contexts. To overcome this limitation, we propose AnomalyMoE, a novel and universal anomaly detection framework based on a Mixture-of-Experts (MoE) architecture. Our key insight is to decompose the complex anomaly detection problem into three distinct semantic hierarchies: local structural anomalies, component-level semantic anomalies, and global logical anomalies. AnomalyMoE correspondingly employs three dedicated expert networks at the patch, component, and global levels, and is specialized in reconstructing features and identifying deviations at its designated semantic level. This hierarchical design allows a single model to concurrently understand and detect a wide spectrum of anomalies. Furthermore, we introduce an Expert Information Repulsion (EIR) module to promote expert diversity and an Expert Selection Balancing (ESB) module to ensure the comprehensive utilization of all experts. Experiments on 8 challenging datasets spanning industrial imaging, 3D point clouds, medical imaging, video surveillance, and logical anomaly detection demonstrate that AnomalyMoE establishes new state-of-the-art performance, significantly outperforming specialized methods in their respective domains.
☆ LoRA in LoRA: Towards Parameter-Efficient Architecture Expansion for Continual Visual Instruction Tuning
Continual Visual Instruction Tuning (CVIT) enables Multimodal Large Language Models (MLLMs) to incrementally learn new tasks over time. However, this process is challenged by catastrophic forgetting, where performance on previously learned tasks deteriorates as the model adapts to new ones. A common approach to mitigate forgetting is architecture expansion, which introduces task-specific modules to prevent interference. Yet, existing methods often expand entire layers for each task, leading to significant parameter overhead and poor scalability. To overcome these issues, we introduce LoRA in LoRA (LiLoRA), a highly efficient architecture expansion method tailored for CVIT in MLLMs. LiLoRA shares the LoRA matrix A across tasks to reduce redundancy, applies an additional low-rank decomposition to matrix B to minimize task-specific parameters, and incorporates a cosine-regularized stability loss to preserve consistency in shared representations over time. Extensive experiments on a diverse CVIT benchmark show that LiLoRA consistently achieves superior performance in sequential task learning while significantly improving parameter efficiency compared to existing approaches.
☆ A Semantic Segmentation Algorithm for Pleural Effusion Based on DBIF-AUNet
Pleural effusion semantic segmentation can significantly enhance the accuracy and timeliness of clinical diagnosis and treatment by precisely identifying disease severity and lesion areas. Currently, semantic segmentation of pleural effusion CT images faces multiple challenges. These include similar gray levels between effusion and surrounding tissues, blurred edges, and variable morphology. Existing methods often struggle with diverse image variations and complex edges, primarily because direct feature concatenation causes semantic gaps. To address these challenges, we propose the Dual-Branch Interactive Fusion Attention model (DBIF-AUNet). This model constructs a densely nested skip-connection network and innovatively refines the Dual-Domain Feature Disentanglement module (DDFD). The DDFD module orthogonally decouples the functions of dual-domain modules to achieve multi-scale feature complementarity and enhance characteristics at different levels. Concurrently, we design a Branch Interaction Attention Fusion module (BIAF) that works synergistically with the DDFD. This module dynamically weights and fuses global, local, and frequency band features, thereby improving segmentation robustness. Furthermore, we implement a nested deep supervision mechanism with hierarchical adaptive hybrid loss to effectively address class imbalance. Through validation on 1,622 pleural effusion CT images from Southwest Hospital, DBIF-AUNet achieved IoU and Dice scores of 80.1% and 89.0% respectively. These results outperform state-of-the-art medical image segmentation models U-Net++ and Swin-UNet by 5.7%/2.7% and 2.2%/1.5% respectively, demonstrating significant optimization in segmentation accuracy for complex pleural effusion CT images.
comment: 12 pages, 6 figures, 2 tables
☆ MA-CBP: A Criminal Behavior Prediction Framework Based on Multi-Agent Asynchronous Collaboration
With the acceleration of urbanization, criminal behavior in public scenes poses an increasingly serious threat to social security. Traditional anomaly detection methods based on feature recognition struggle to capture high-level behavioral semantics from historical information, while generative approaches based on Large Language Models (LLMs) often fail to meet real-time requirements. To address these challenges, we propose MA-CBP, a criminal behavior prediction framework based on multi-agent asynchronous collaboration. This framework transforms real-time video streams into frame-level semantic descriptions, constructs causally consistent historical summaries, and fuses adjacent image frames to perform joint reasoning over long- and short-term contexts. The resulting behavioral decisions include key elements such as event subjects, locations, and causes, enabling early warning of potential criminal activity. In addition, we construct a high-quality criminal behavior dataset that provides multi-scale language supervision, including frame-level, summary-level, and event-level semantic annotations. Experimental results demonstrate that our method achieves superior performance on multiple datasets and offers a promising solution for risk warning in urban public safety scenarios.
☆ Clinically-guided Data Synthesis for Laryngeal Lesion Detection
Although computer-aided diagnosis (CADx) and detection (CADe) systems have made significant progress in various medical domains, their application is still limited in specialized fields such as otorhinolaryngology. In the latter, current assessment methods heavily depend on operator expertise, and the high heterogeneity of lesions complicates diagnosis, with biopsy persisting as the gold standard despite its substantial costs and risks. A critical bottleneck for specialized endoscopic CADx/e systems is the lack of well-annotated datasets with sufficient variability for real-world generalization. This study introduces a novel approach that exploits a Latent Diffusion Model (LDM) coupled with a ControlNet adapter to generate laryngeal endoscopic image-annotation pairs, guided by clinical observations. The method addresses data scarcity by conditioning the diffusion process to produce realistic, high-quality, and clinically relevant image features that capture diverse anatomical conditions. The proposed approach can be leveraged to expand training datasets for CADx/e models, empowering the assessment process in laryngology. Indeed, during a downstream task of detection, the addition of only 10% synthetic data improved the detection rate of laryngeal lesions by 9% when the model was internally tested and 22.1% on out-of-domain external data. Additionally, the realism of the generated images was evaluated by asking 5 expert otorhinolaryngologists with varying expertise to rate their confidence in distinguishing synthetic from real images. This work has the potential to accelerate the development of automated tools for laryngeal disease diagnosis, offering a solution to data scarcity and demonstrating the applicability of synthetic data in real-world scenarios.
☆ Graph-based Robot Localization Using a Graph Neural Network with a Floor Camera and a Feature Rich Industrial Floor
Accurate localization represents a fundamental challenge in robotic navigation. Traditional methodologies, such as Lidar or QR-code based systems, suffer from inherent scalability and adaptability con straints, particularly in complex environments. In this work, we propose an innovative localization framework that harnesses flooring characteris tics by employing graph-based representations and Graph Convolutional Networks (GCNs). Our method uses graphs to represent floor features, which helps localize the robot more accurately (0.64cm error) and more efficiently than comparing individual image features. Additionally, this approach successfully addresses the kidnapped robot problem in every frame without requiring complex filtering processes. These advancements open up new possibilities for robotic navigation in diverse environments.
comment: Accepted at 28th RoboCup International Symposium, Salvador, Brasil
☆ Synthetic Data-Driven Multi-Architecture Framework for Automated Polyp Segmentation Through Integrated Detection and Mask Generation
Colonoscopy is a vital tool for the early diagnosis of colorectal cancer, which is one of the main causes of cancer-related mortality globally; hence, it is deemed an essential technique for the prevention and early detection of colorectal cancer. The research introduces a unique multidirectional architectural framework to automate polyp detection within colonoscopy images while helping resolve limited healthcare dataset sizes and annotation complexities. The research implements a comprehensive system that delivers synthetic data generation through Stable Diffusion enhancements together with detection and segmentation algorithms. This detection approach combines Faster R-CNN for initial object localization while the Segment Anything Model (SAM) refines the segmentation masks. The faster R-CNN detection algorithm achieved a recall of 93.08% combined with a precision of 88.97% and an F1 score of 90.98%.SAM is then used to generate the image mask. The research evaluated five state-of-the-art segmentation models that included U-Net, PSPNet, FPN, LinkNet, and MANet using ResNet34 as a base model. The results demonstrate the superior performance of FPN with the highest scores of PSNR (7.205893) and SSIM (0.492381), while UNet excels in recall (84.85%) and LinkNet shows balanced performance in IoU (64.20%) and Dice score (77.53%).
☆ UW-3DGS: Underwater 3D Reconstruction with Physics-Aware Gaussian Splatting
Underwater 3D scene reconstruction faces severe challenges from light absorption, scattering, and turbidity, which degrade geometry and color fidelity in traditional methods like Neural Radiance Fields (NeRF). While NeRF extensions such as SeaThru-NeRF incorporate physics-based models, their MLP reliance limits efficiency and spatial resolution in hazy environments. We introduce UW-3DGS, a novel framework adapting 3D Gaussian Splatting (3DGS) for robust underwater reconstruction. Key innovations include: (1) a plug-and-play learnable underwater image formation module using voxel-based regression for spatially varying attenuation and backscatter; and (2) a Physics-Aware Uncertainty Pruning (PAUP) branch that adaptively removes noisy floating Gaussians via uncertainty scoring, ensuring artifact-free geometry. The pipeline operates in training and rendering stages. During training, noisy Gaussians are optimized end-to-end with underwater parameters, guided by PAUP pruning and scattering modeling. In rendering, refined Gaussians produce clean Unattenuated Radiance Images (URIs) free from media effects, while learned physics enable realistic Underwater Images (UWIs) with accurate light transport. Experiments on SeaThru-NeRF and UWBundle datasets show superior performance, achieving PSNR of 27.604, SSIM of 0.868, and LPIPS of 0.104 on SeaThru-NeRF, with ~65% reduction in floating artifacts.
☆ Fewer Denoising Steps or Cheaper Per-Step Inference: Towards Compute-Optimal Diffusion Model Deployment ICCV 2025
Diffusion models have shown remarkable success across generative tasks, yet their high computational demands challenge deployment on resource-limited platforms. This paper investigates a critical question for compute-optimal diffusion model deployment: Under a post-training setting without fine-tuning, is it more effective to reduce the number of denoising steps or to use a cheaper per-step inference? Intuitively, reducing the number of denoising steps increases the variability of the distributions across steps, making the model more sensitive to compression. In contrast, keeping more denoising steps makes the differences smaller, preserving redundancy, and making post-training compression more feasible. To systematically examine this, we propose PostDiff, a training-free framework for accelerating pre-trained diffusion models by reducing redundancy at both the input level and module level in a post-training manner. At the input level, we propose a mixed-resolution denoising scheme based on the insight that reducing generation resolution in early denoising steps can enhance low-frequency components and improve final generation fidelity. At the module level, we employ a hybrid module caching strategy to reuse computations across denoising steps. Extensive experiments and ablation studies demonstrate that (1) PostDiff can significantly improve the fidelity-efficiency trade-off of state-of-the-art diffusion models, and (2) to boost efficiency while maintaining decent generation fidelity, reducing per-step inference cost is often more effective than reducing the number of denoising steps. Our code is available at https://github.com/GATECH-EIC/PostDiff.
comment: Accepted by ICCV 2025
☆ An Interpretable Multi-Plane Fusion Framework With Kolmogorov-Arnold Network Guided Attention Enhancement for Alzheimer's Disease Diagnosis
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that severely impairs cognitive function and quality of life. Timely intervention in AD relies heavily on early and precise diagnosis, which remains challenging due to the complex and subtle structural changes in the brain. Most existing deep learning methods focus only on a single plane of structural magnetic resonance imaging (sMRI) and struggle to accurately capture the complex and nonlinear relationships among pathological regions of the brain, thus limiting their ability to precisely identify atrophic features. To overcome these limitations, we propose an innovative framework, MPF-KANSC, which integrates multi-plane fusion (MPF) for combining features from the coronal, sagittal, and axial planes, and a Kolmogorov-Arnold Network-guided spatial-channel attention mechanism (KANSC) to more effectively learn and represent sMRI atrophy features. Specifically, the proposed model enables parallel feature extraction from multiple anatomical planes, thus capturing more comprehensive structural information. The KANSC attention mechanism further leverages a more flexible and accurate nonlinear function approximation technique, facilitating precise identification and localization of disease-related abnormalities. Experiments on the ADNI dataset confirm that the proposed MPF-KANSC achieves superior performance in AD diagnosis. Moreover, our findings provide new evidence of right-lateralized asymmetry in subcortical structural changes during AD progression, highlighting the model's promising interpretability.
☆ Improving Diagnostic Accuracy for Oral Cancer with inpainting Synthesis Lesions Generated Using Diffusion Models
In oral cancer diagnostics, the limited availability of annotated datasets frequently constrains the performance of diagnostic models, particularly due to the variability and insufficiency of training data. To address these challenges, this study proposed a novel approach to enhance diagnostic accuracy by synthesizing realistic oral cancer lesions using an inpainting technique with a fine-tuned diffusion model. We compiled a comprehensive dataset from multiple sources, featuring a variety of oral cancer images. Our method generated synthetic lesions that exhibit a high degree of visual fidelity to actual lesions, thereby significantly enhancing the performance of diagnostic algorithms. The results show that our classification model achieved a diagnostic accuracy of 0.97 in differentiating between cancerous and non-cancerous tissues, while our detection model accurately identified lesion locations with 0.85 accuracy. This method validates the potential for synthetic image generation in medical diagnostics and paves the way for further research into extending these methods to other types of cancer diagnostics.
☆ VISTAR:A User-Centric and Role-Driven Benchmark for Text-to-Image Evaluation
We present VISTAR, a user-centric, multi-dimensional benchmark for text-to-image (T2I) evaluation that addresses the limitations of existing metrics. VISTAR introduces a two-tier hybrid paradigm: it employs deterministic, scriptable metrics for physically quantifiable attributes (e.g., text rendering, lighting) and a novel Hierarchical Weighted P/N Questioning (HWPQ) scheme that uses constrained vision-language models to assess abstract semantics (e.g., style fusion, cultural fidelity). Grounded in a Delphi study with 120 experts, we defined seven user roles and nine evaluation angles to construct the benchmark, which comprises 2,845 prompts validated by over 15,000 human pairwise comparisons. Our metrics achieve high human alignment (>75%), with the HWPQ scheme reaching 85.9% accuracy on abstract semantics, significantly outperforming VQA baselines. Comprehensive evaluation of state-of-the-art models reveals no universal champion, as role-weighted scores reorder rankings and provide actionable guidance for domain-specific deployment. All resources are publicly released to foster reproducible T2I assessment.
comment: 17 pages,8 figures
☆ DSConv: Dynamic Splitting Convolution for Pansharpening
Aiming to obtain a high-resolution image, pansharpening involves the fusion of a multi-spectral image (MS) and a panchromatic image (PAN), the low-level vision task remaining significant and challenging in contemporary research. Most existing approaches rely predominantly on standard convolutions, few making the effort to adaptive convolutions, which are effective owing to the inter-pixel correlations of remote sensing images. In this paper, we propose a novel strategy for dynamically splitting convolution kernels in conjunction with attention, selecting positions of interest, and splitting the original convolution kernel into multiple smaller kernels, named DSConv. The proposed DSConv more effectively extracts features of different positions within the receptive field, enhancing the network's generalization, optimization, and feature representation capabilities. Furthermore, we innovate and enrich concepts of dynamic splitting convolution and provide a novel network architecture for pansharpening capable of achieving the tasks more efficiently, building upon this methodology. Adequate fair experiments illustrate the effectiveness and the state-of-the-art performance attained by DSConv.Comprehensive and rigorous discussions proved the superiority and optimal usage conditions of DSConv.
☆ Text-guided Visual Prompt DINO for Generic Segmentation
Recent advancements in multimodal vision models have highlighted limitations in late-stage feature fusion and suboptimal query selection for hybrid prompts open-world segmentation, alongside constraints from caption-derived vocabularies. To address these challenges, we propose Prompt-DINO, a text-guided visual Prompt DINO framework featuring three key innovations. First, we introduce an early fusion mechanism that unifies text/visual prompts and backbone features at the initial encoding stage, enabling deeper cross-modal interactions to resolve semantic ambiguities. Second, we design order-aligned query selection for DETR-based architectures, explicitly optimizing the structural alignment between text and visual queries during decoding to enhance semantic-spatial consistency. Third, we develop a generative data engine powered by the Recognize Anything via Prompting (RAP) model, which synthesizes 0.5B diverse training instances through a dual-path cross-verification pipeline, reducing label noise by 80.5% compared to conventional approaches. Extensive experiments demonstrate that Prompt-DINO achieves state-of-the-art performance on open-world detection benchmarks while significantly expanding semantic coverage beyond fixed-vocabulary constraints. Our work establishes a new paradigm for scalable multimodal detection and data generation in open-world scenarios. Data&Code are available at https://github.com/WeChatCV/WeVisionOne.
☆ SDEval: Safety Dynamic Evaluation for Multimodal Large Language Models
In the rapidly evolving landscape of Multimodal Large Language Models (MLLMs), the safety concerns of their outputs have earned significant attention. Although numerous datasets have been proposed, they may become outdated with MLLM advancements and are susceptible to data contamination issues. To address these problems, we propose \textbf{SDEval}, the \textit{first} safety dynamic evaluation framework to controllably adjust the distribution and complexity of safety benchmarks. Specifically, SDEval mainly adopts three dynamic strategies: text, image, and text-image dynamics to generate new samples from original benchmarks. We first explore the individual effects of text and image dynamics on model safety. Then, we find that injecting text dynamics into images can further impact safety, and conversely, injecting image dynamics into text also leads to safety risks. SDEval is general enough to be applied to various existing safety and even capability benchmarks. Experiments across safety benchmarks, MLLMGuard and VLSBench, and capability benchmarks, MMBench and MMVet, show that SDEval significantly influences safety evaluation, mitigates data contamination, and exposes safety limitations of MLLMs. Code is available at https://github.com/hq-King/SDEval
☆ DiffCap: Diffusion-based Real-time Human Motion Capture using Sparse IMUs and a Monocular Camera
Combining sparse IMUs and a monocular camera is a new promising setting to perform real-time human motion capture. This paper proposes a diffusion-based solution to learn human motion priors and fuse the two modalities of signals together seamlessly in a unified framework. By delicately considering the characteristics of the two signals, the sequential visual information is considered as a whole and transformed into a condition embedding, while the inertial measurement is concatenated with the noisy body pose frame by frame to construct a sequential input for the diffusion model. Firstly, we observe that the visual information may be unavailable in some frames due to occlusions or subjects moving out of the camera view. Thus incorporating the sequential visual features as a whole to get a single feature embedding is robust to the occasional degenerations of visual information in those frames. On the other hand, the IMU measurements are robust to occlusions and always stable when signal transmission has no problem. So incorporating them frame-wisely could better explore the temporal information for the system. Experiments have demonstrated the effectiveness of the system design and its state-of-the-art performance in pose estimation compared with the previous works. Our codes are available for research at https://shaohua-pan.github.io/diffcap-page.
Transformer-Based Explainable Deep Learning for Breast Cancer Detection in Mammography: The MammoFormer Framework
Breast cancer detection through mammography interpretation remains difficult because of the minimal nature of abnormalities that experts need to identify alongside the variable interpretations between readers. The potential of CNNs for medical image analysis faces two limitations: they fail to process both local information and wide contextual data adequately, and do not provide explainable AI (XAI) operations that doctors need to accept them in clinics. The researcher developed the MammoFormer framework, which unites transformer-based architecture with multi-feature enhancement components and XAI functionalities within one framework. Seven different architectures consisting of CNNs, Vision Transformer, Swin Transformer, and ConvNext were tested alongside four enhancement techniques, including original images, negative transformation, adaptive histogram equalization, and histogram of oriented gradients. The MammoFormer framework addresses critical clinical adoption barriers of AI mammography systems through: (1) systematic optimization of transformer architectures via architecture-specific feature enhancement, achieving up to 13% performance improvement, (2) comprehensive explainable AI integration providing multi-perspective diagnostic interpretability, and (3) a clinically deployable ensemble system combining CNN reliability with transformer global context modeling. The combination of transformer models with suitable feature enhancements enables them to achieve equal or better results than CNN approaches. ViT achieves 98.3% accuracy alongside AHE while Swin Transformer gains a 13.0% advantage through HOG enhancements
☆ Roll Your Eyes: Gaze Redirection via Explicit 3D Eyeball Rotation
We propose a novel 3D gaze redirection framework that leverages an explicit 3D eyeball structure. Existing gaze redirection methods are typically based on neural radiance fields, which employ implicit neural representations via volume rendering. Unlike these NeRF-based approaches, where the rotation and translation of 3D representations are not explicitly modeled, we introduce a dedicated 3D eyeball structure to represent the eyeballs with 3D Gaussian Splatting (3DGS). Our method generates photorealistic images that faithfully reproduce the desired gaze direction by explicitly rotating and translating the 3D eyeball structure. In addition, we propose an adaptive deformation module that enables the replication of subtle muscle movements around the eyes. Through experiments conducted on the ETH-XGaze dataset, we demonstrate that our framework is capable of generating diverse novel gaze images, achieving superior image quality and gaze estimation accuracy compared to previous state-of-the-art methods.
comment: 9 pages, 5 figures, ACM Multimeida 2025 accepted
☆ SAM Encoder Breach by Adversarial Simplicial Complex Triggers Downstream Model Failures ICCV2025
While the Segment Anything Model (SAM) transforms interactive segmentation with zero-shot abilities, its inherent vulnerabilities present a single-point risk, potentially leading to the failure of numerous downstream applications. Proactively evaluating these transferable vulnerabilities is thus imperative. Prior adversarial attacks on SAM often present limited transferability due to insufficient exploration of common weakness across domains. To address this, we propose Vertex-Refining Simplicial Complex Attack (VeSCA), a novel method that leverages only the encoder of SAM for generating transferable adversarial examples. Specifically, it achieves this by explicitly characterizing the shared vulnerable regions between SAM and downstream models through a parametric simplicial complex. Our goal is to identify such complexes within adversarially potent regions by iterative vertex-wise refinement. A lightweight domain re-adaptation strategy is introduced to bridge domain divergence using minimal reference data during the initialization of simplicial complex. Ultimately, VeSCA generates consistently transferable adversarial examples through random simplicial complex sampling. Extensive experiments demonstrate that VeSCA achieves performance improved by 12.7% compared to state-of-the-art methods across three downstream model categories across five domain-specific datasets. Our findings further highlight the downstream model risks posed by SAM's vulnerabilities and emphasize the urgency of developing more robust foundation models.
comment: 8 pages,recived by ICCV2025
☆ SC-Captioner: Improving Image Captioning with Self-Correction by Reinforcement Learning ICCV 2025
We propose SC-Captioner, a reinforcement learning framework that enables the self-correcting capability of image caption models. Our crucial technique lies in the design of the reward function to incentivize accurate caption corrections. Specifically, the predicted and reference captions are decomposed into object, attribute, and relation sets using scene-graph parsing algorithms. We calculate the set difference between sets of initial and self-corrected captions to identify added and removed elements. These elements are matched against the reference sets to calculate correctness bonuses for accurate refinements and mistake punishments for wrong additions and removals, thereby forming the final reward. For image caption quality assessment, we propose a set of metrics refined from CAPTURE that alleviate its incomplete precision evaluation and inefficient relation matching problems. Furthermore, we collect a fine-grained annotated image caption dataset, RefinedCaps, consisting of 6.5K diverse images from COCO dataset. Experiments show that applying SC-Captioner on large visual-language models can generate better image captions across various scenarios, significantly outperforming the direct preference optimization training strategy.
comment: ICCV 2025
☆ Learning Representations of Satellite Images with Evaluations on Synoptic Weather Events
This study applied representation learning algorithms to satellite images and evaluated the learned latent spaces with classifications of various weather events. The algorithms investigated include the classical linear transformation, i.e., principal component analysis (PCA), state-of-the-art deep learning method, i.e., convolutional autoencoder (CAE), and a residual network pre-trained with large image datasets (PT). The experiment results indicated that the latent space learned by CAE consistently showed higher threat scores for all classification tasks. The classifications with PCA yielded high hit rates but also high false-alarm rates. In addition, the PT performed exceptionally well at recognizing tropical cyclones but was inferior in other tasks. Further experiments suggested that representations learned from higher-resolution datasets are superior in all classification tasks for deep-learning algorithms, i.e., CAE and PT. We also found that smaller latent space sizes had minor impact on the classification task's hit rate. Still, a latent space dimension smaller than 128 caused a significantly higher false alarm rate. Though the CAE can learn latent spaces effectively and efficiently, the interpretation of the learned representation lacks direct connections to physical attributions. Therefore, developing a physics-informed version of CAE can be a promising outlook for the current work.
comment: 37 pages, 6 figures, 3 tables
☆ SynSeg: Feature Synergy for Multi-Category Contrastive Learning in Open-Vocabulary Semantic Segmentation
Semantic segmentation in open-vocabulary scenarios presents significant challenges due to the wide range and granularity of semantic categories. Existing weakly-supervised methods often rely on category-specific supervision and ill-suited feature construction methods for contrastive learning, leading to semantic misalignment and poor performance. In this work, we propose a novel weakly-supervised approach, SynSeg, to address the challenges. SynSeg performs Multi-Category Contrastive Learning (MCCL) as a stronger training signal with a new feature reconstruction framework named Feature Synergy Structure (FSS). Specifically, MCCL strategy robustly combines both intra- and inter-category alignment and separation in order to make the model learn the knowledge of correlations from different categories within the same image. Moreover, FSS reconstructs discriminative features for contrastive learning through prior fusion and semantic-activation-map enhancement, effectively avoiding the foreground bias introduced by the visual encoder. In general, SynSeg effectively improves the abilities in semantic localization and discrimination under weak supervision. Extensive experiments on benchmarks demonstrate that our method outperforms state-of-the-art (SOTA) performance. For instance, SynSeg achieves higher accuracy than SOTA baselines by 4.5\% on VOC, 8.9\% on Context, 2.6\% on Object and 2.0\% on City.
☆ GMF-Drive: Gated Mamba Fusion with Spatial-Aware BEV Representation for End-to-End Autonomous Driving
Diffusion-based models are redefining the state-of-the-art in end-to-end autonomous driving, yet their performance is increasingly hampered by a reliance on transformer-based fusion. These architectures face fundamental limitations: quadratic computational complexity restricts the use of high-resolution features, and a lack of spatial priors prevents them from effectively modeling the inherent structure of Bird's Eye View (BEV) representations. This paper introduces GMF-Drive (Gated Mamba Fusion for Driving), an end-to-end framework that overcomes these challenges through two principled innovations. First, we supersede the information-limited histogram-based LiDAR representation with a geometrically-augmented pillar format encoding shape descriptors and statistical features, preserving critical 3D geometric details. Second, we propose a novel hierarchical gated mamba fusion (GM-Fusion) architecture that substitutes an expensive transformer with a highly efficient, spatially-aware state-space model (SSM). Our core BEV-SSM leverages directional sequencing and adaptive fusion mechanisms to capture long-range dependencies with linear complexity, while explicitly respecting the unique spatial properties of the driving scene. Extensive experiments on the challenging NAVSIM benchmark demonstrate that GMF-Drive achieves a new state-of-the-art performance, significantly outperforming DiffusionDrive. Comprehensive ablation studies validate the efficacy of each component, demonstrating that task-specific SSMs can surpass a general-purpose transformer in both performance and efficiency for autonomous driving.
comment: 7 pages, 4 figures
☆ FMCE-Net++: Feature Map Convergence Evaluation and Training
Deep Neural Networks (DNNs) face interpretability challenges due to their opaque internal representations. While Feature Map Convergence Evaluation (FMCE) quantifies module-level convergence via Feature Map Convergence Scores (FMCS), it lacks experimental validation and closed-loop integration. To address this limitation, we propose FMCE-Net++, a novel training framework that integrates a pretrained, frozen FMCE-Net as an auxiliary head. This module generates FMCS predictions, which, combined with task labels, jointly supervise backbone optimization through a Representation Auxiliary Loss. The RAL dynamically balances the primary classification loss and feature convergence optimization via a tunable \Representation Abstraction Factor. Extensive experiments conducted on MNIST, CIFAR-10, FashionMNIST, and CIFAR-100 demonstrate that FMCE-Net++ consistently enhances model performance without architectural modifications or additional data. Key experimental outcomes include accuracy gains of $+1.16$ pp (ResNet-50/CIFAR-10) and $+1.08$ pp (ShuffleNet v2/CIFAR-100), validating that FMCE-Net++ can effectively elevate state-of-the-art performance ceilings.
☆ Mask & Match: Learning to Recognize Handwritten Math with Self-Supervised Attention
Recognizing handwritten mathematical expressions (HMER) is a challenging task due to the inherent two-dimensional structure, varying symbol scales, and complex spatial relationships among symbols. In this paper, we present a self-supervised learning (SSL) framework for HMER that eliminates the need for expensive labeled data. Our approach begins by pretraining an image encoder using a combination of global and local contrastive loss, enabling the model to learn both holistic and fine-grained representations. A key contribution of this work is a novel self-supervised attention network, which is trained using a progressive spatial masking strategy. This attention mechanism is designed to learn semantically meaningful focus regions, such as operators, exponents, and nested mathematical notation, without requiring any supervision. The progressive masking curriculum encourages the network to become increasingly robust to missing or occluded visual information, ultimately improving structural understanding. Our complete pipeline consists of (1) self-supervised pretraining of the encoder, (2) self-supervised attention learning, and (3) supervised fine-tuning with a transformer decoder to generate LATEX sequences. Extensive experiments on CROHME benchmarks demonstrate that our method outperforms existing SSL and fully supervised baselines, validating the effectiveness of our progressive attention mechanism in enhancing HMER performance. Our codebase can be found here.
☆ MCA: 2D-3D Retrieval with Noisy Labels via Multi-level Adaptive Correction and Alignment ICME
With the increasing availability of 2D and 3D data, significant advancements have been made in the field of cross-modal retrieval. Nevertheless, the existence of imperfect annotations presents considerable challenges, demanding robust solutions for 2D-3D cross-modal retrieval in the presence of noisy label conditions. Existing methods generally address the issue of noise by dividing samples independently within each modality, making them susceptible to overfitting on corrupted labels. To address these issues, we propose a robust 2D-3D \textbf{M}ulti-level cross-modal adaptive \textbf{C}orrection and \textbf{A}lignment framework (MCA). Specifically, we introduce a Multimodal Joint label Correction (MJC) mechanism that leverages multimodal historical self-predictions to jointly model the modality prediction consistency, enabling reliable label refinement. Additionally, we propose a Multi-level Adaptive Alignment (MAA) strategy to effectively enhance cross-modal feature semantics and discrimination across different levels. Extensive experiments demonstrate the superiority of our method, MCA, which achieves state-of-the-art performance on both conventional and realistic noisy 3D benchmarks, highlighting its generality and effectiveness.
comment: ICMEW 2025
☆ UGD-IML: A Unified Generative Diffusion-based Framework for Constrained and Unconstrained Image Manipulation Localization
In the digital age, advanced image editing tools pose a serious threat to the integrity of visual content, making image forgery detection and localization a key research focus. Most existing Image Manipulation Localization (IML) methods rely on discriminative learning and require large, high-quality annotated datasets. However, current datasets lack sufficient scale and diversity, limiting model performance in real-world scenarios. To overcome this, recent studies have explored Constrained IML (CIML), which generates pixel-level annotations through algorithmic supervision. However, existing CIML approaches often depend on complex multi-stage pipelines, making the annotation process inefficient. In this work, we propose a novel generative framework based on diffusion models, named UGD-IML, which for the first time unifies both IML and CIML tasks within a single framework. By learning the underlying data distribution, generative diffusion models inherently reduce the reliance on large-scale labeled datasets, allowing our approach to perform effectively even under limited data conditions. In addition, by leveraging a class embedding mechanism and a parameter-sharing design, our model seamlessly switches between IML and CIML modes without extra components or training overhead. Furthermore, the end-to-end design enables our model to avoid cumbersome steps in the data annotation process. Extensive experimental results on multiple datasets demonstrate that UGD-IML outperforms the SOTA methods by an average of 9.66 and 4.36 in terms of F1 metrics for IML and CIML tasks, respectively. Moreover, the proposed method also excels in uncertainty estimation, visualization and robustness.
☆ E-React: Towards Emotionally Controlled Synthesis of Human Reactions
Emotion serves as an essential component in daily human interactions. Existing human motion generation frameworks do not consider the impact of emotions, which reduces naturalness and limits their application in interactive tasks, such as human reaction synthesis. In this work, we introduce a novel task: generating diverse reaction motions in response to different emotional cues. However, learning emotion representation from limited motion data and incorporating it into a motion generation framework remains a challenging problem. To address the above obstacles, we introduce a semi-supervised emotion prior in an actor-reactor diffusion model to facilitate emotion-driven reaction synthesis. Specifically, based on the observation that motion clips within a short sequence tend to share the same emotion, we first devise a semi-supervised learning framework to train an emotion prior. With this prior, we further train an actor-reactor diffusion model to generate reactions by considering both spatial interaction and emotional response. Finally, given a motion sequence of an actor, our approach can generate realistic reactions under various emotional conditions. Experimental results demonstrate that our model outperforms existing reaction generation methods. The code and data will be made publicly available at https://ereact.github.io/
☆ Q-CLIP: Unleashing the Power of Vision-Language Models for Video Quality Assessment through Unified Cross-Modal Adaptation
Accurate and efficient Video Quality Assessment (VQA) has long been a key research challenge. Current mainstream VQA methods typically improve performance by pretraining on large-scale classification datasets (e.g., ImageNet, Kinetics-400), followed by fine-tuning on VQA datasets. However, this strategy presents two significant challenges: (1) merely transferring semantic knowledge learned from pretraining is insufficient for VQA, as video quality depends on multiple factors (e.g., semantics, distortion, motion, aesthetics); (2) pretraining on large-scale datasets demands enormous computational resources, often dozens or even hundreds of times greater than training directly on VQA datasets. Recently, Vision-Language Models (VLMs) have shown remarkable generalization capabilities across a wide range of visual tasks, and have begun to demonstrate promising potential in quality assessment. In this work, we propose Q-CLIP, the first fully VLMs-based framework for VQA. Q-CLIP enhances both visual and textual representations through a Shared Cross-Modal Adapter (SCMA), which contains only a minimal number of trainable parameters and is the only component that requires training. This design significantly reduces computational cost. In addition, we introduce a set of five learnable quality-level prompts to guide the VLMs in perceiving subtle quality variations, thereby further enhancing the model's sensitivity to video quality. Furthermore, we investigate the impact of different frame sampling strategies on VQA performance, and find that frame-difference-based sampling leads to better generalization performance across datasets. Extensive experiments demonstrate that Q-CLIP exhibits excellent performance on several VQA datasets.
☆ AdaptInfer: Adaptive Token Pruning for Vision-Language Model Inference with Dynamical Text Guidance
Vision-language models (VLMs) have achieved impressive performance on multimodal reasoning tasks such as visual question answering (VQA), but their inference cost remains a significant challenge due to the large number of vision tokens processed during the prefill stage. Existing pruning methods often rely on directly using the attention patterns or static text prompt guidance, failing to exploit the dynamic internal signals generated during inference. To address these issues, we propose AdaptInfer, a plug-and-play framework for adaptive vision token pruning in VLMs. First, we introduce a fine-grained, dynamic text-guided pruning mechanism that reuses layer-wise text-to-text attention maps to construct soft priors over text-token importance, allowing more informed scoring of vision tokens at each stage. Second, we perform an offline analysis of cross-modal attention shifts and identify consistent inflection locations in inference, which inspire us to propose a more principled and efficient pruning schedule. Our method is lightweight and plug-and-play, also generalizable across multi-modal tasks. Experimental results have verified the effectiveness of the proposed method. For example, it reduces CUDA latency by 61.3\% while maintaining an average accuracy of 92.9\% on vanilla LLaVA-1.5-7B. Under the same token budget, AdaptInfer surpasses SOTA in accuracy.
☆ SwiftVideo: A Unified Framework for Few-Step Video Generation through Trajectory-Distribution Alignment
Diffusion-based or flow-based models have achieved significant progress in video synthesis but require multiple iterative sampling steps, which incurs substantial computational overhead. While many distillation methods that are solely based on trajectory-preserving or distribution-matching have been developed to accelerate video generation models, these approaches often suffer from performance breakdown or increased artifacts under few-step settings. To address these limitations, we propose \textbf{\emph{SwiftVideo}}, a unified and stable distillation framework that combines the advantages of trajectory-preserving and distribution-matching strategies. Our approach introduces continuous-time consistency distillation to ensure precise preservation of ODE trajectories. Subsequently, we propose a dual-perspective alignment that includes distribution alignment between synthetic and real data along with trajectory alignment across different inference steps. Our method maintains high-quality video generation while substantially reducing the number of inference steps. Quantitative evaluations on the OpenVid-1M benchmark demonstrate that our method significantly outperforms existing approaches in few-step video generation.
☆ DreamVE: Unified Instruction-based Image and Video Editing
Instruction-based editing holds vast potential due to its simple and efficient interactive editing format. However, instruction-based editing, particularly for video, has been constrained by limited training data, hindering its practical application. To this end, we introduce DreamVE, a unified model for instruction-based image and video editing. Specifically, We propose a two-stage training strategy: first image editing, then video editing. This offers two main benefits: (1) Image data scales more easily, and models are more efficient to train, providing useful priors for faster and better video editing training. (2) Unifying image and video generation is natural and aligns with current trends. Moreover, we present comprehensive training data synthesis pipelines, including collage-based and generative model-based data synthesis. The collage-based data synthesis combines foreground objects and backgrounds to generate diverse editing data, such as object manipulation, background changes, and text modifications. It can easily generate billions of accurate, consistent, realistic, and diverse editing pairs. We pretrain DreamVE on extensive collage-based data to achieve strong performance in key editing types and enhance generalization and transfer capabilities. However, collage-based data lacks some attribute editing cases, leading to a relative drop in performance. In contrast, the generative model-based pipeline, despite being hard to scale up, offers flexibility in handling attribute editing cases. Therefore, we use generative model-based data to further fine-tune DreamVE. Besides, we design an efficient and powerful editing framework for DreamVE. We build on the SOTA T2V model and use a token concatenation with early drop approach to inject source image guidance, ensuring strong consistency and editability. The codes and models will be released.
☆ Towards MR-Based Trochleoplasty Planning MICCAI
To treat Trochlear Dysplasia (TD), current approaches rely mainly on low-resolution clinical Magnetic Resonance (MR) scans and surgical intuition. The surgeries are planned based on surgeons experience, have limited adoption of minimally invasive techniques, and lead to inconsistent outcomes. We propose a pipeline that generates super-resolved, patient-specific 3D pseudo-healthy target morphologies from conventional clinical MR scans. First, we compute an isotropic super-resolved MR volume using an Implicit Neural Representation (INR). Next, we segment femur, tibia, patella, and fibula with a multi-label custom-trained network. Finally, we train a Wavelet Diffusion Model (WDM) to generate pseudo-healthy target morphologies of the trochlear region. In contrast to prior work producing pseudo-healthy low-resolution 3D MR images, our approach enables the generation of sub-millimeter resolved 3D shapes compatible for pre- and intraoperative use. These can serve as preoperative blueprints for reshaping the femoral groove while preserving the native patella articulation. Furthermore, and in contrast to other work, we do not require a CT for our pipeline - reducing the amount of radiation. We evaluated our approach on 25 TD patients and could show that our target morphologies significantly improve the sulcus angle (SA) and trochlear groove depth (TGD). The code and interactive visualization are available at https://wehrlimi.github.io/sr-3d-planning/.
comment: Accepted at MICCAI COLAS Workshop 2025. Code: https://wehrlimi.github.io/sr-3d-planning/
☆ Can Large Models Fool the Eye? A New Turing Test for Biological Animation
Evaluating the abilities of large models and manifesting their gaps are challenging. Current benchmarks adopt either ground-truth-based score-form evaluation on static datasets or indistinct textual chatbot-style human preferences collection, which may not provide users with immediate, intuitive, and perceptible feedback on performance differences. In this paper, we introduce BioMotion Arena, a novel framework for evaluating large language models (LLMs) and multimodal large language models (MLLMs) via visual animation. Our methodology draws inspiration from the inherent visual perception of motion patterns characteristic of living organisms that utilizes point-light source imaging to amplify the performance discrepancies between models. Specifically, we employ a pairwise comparison evaluation and collect more than 45k votes for 53 mainstream LLMs and MLLMs on 90 biological motion variants. Data analyses show that the crowd-sourced human votes are in good agreement with those of expert raters, demonstrating the superiority of our BioMotion Arena in offering discriminative feedback. We also find that over 90\% of evaluated models, including the cutting-edge open-source InternVL3 and proprietary Claude-4 series, fail to produce fundamental humanoid point-light groups, much less smooth and biologically plausible motions. This enables BioMotion Arena to serve as a challenging benchmark for performance visualization and a flexible evaluation framework without restrictions on ground-truth.
comment: 24 pages, 10 figures
☆ ThematicPlane: Bridging Tacit User Intent and Latent Spaces for Image Generation
Generative AI has made image creation more accessible, yet aligning outputs with nuanced creative intent remains challenging, particularly for non-experts. Existing tools often require users to externalize ideas through prompts or references, limiting fluid exploration. We introduce ThematicPlane, a system that enables users to navigate and manipulate high-level semantic concepts (e.g., mood, style, or narrative tone) within an interactive thematic design plane. This interface bridges the gap between tacit creative intent and system control. In our exploratory study (N=6), participants engaged in divergent and convergent creative modes, often embracing unexpected results as inspiration or iteration cues. While they grounded their exploration in familiar themes, differing expectations of how themes mapped to outputs revealed a need for more explainable controls. Overall, ThematicPlane fosters expressive, iterative workflows and highlights new directions for intuitive, semantics-driven interaction in generative design tools.
☆ Distribution-Specific Learning for Joint Salient and Camouflaged Object Detection
Salient object detection (SOD) and camouflaged object detection (COD) are two closely related but distinct computer vision tasks. Although both are class-agnostic segmentation tasks that map from RGB space to binary space, the former aims to identify the most salient objects in the image, while the latter focuses on detecting perfectly camouflaged objects that blend into the background in the image. These two tasks exhibit strong contradictory attributes. Previous works have mostly believed that joint learning of these two tasks would confuse the network, reducing its performance on both tasks. However, here we present an opposite perspective: with the correct approach to learning, the network can simultaneously possess the capability to find both salient and camouflaged objects, allowing both tasks to benefit from joint learning. We propose SCJoint, a joint learning scheme for SOD and COD tasks, assuming that the decoding processes of SOD and COD have different distribution characteristics. The key to our method is to learn the respective means and variances of the decoding processes for both tasks by inserting a minimal amount of task-specific learnable parameters within a fully shared network structure, thereby decoupling the contradictory attributes of the two tasks at a minimal cost. Furthermore, we propose a saliency-based sampling strategy (SBSS) to sample the training set of the SOD task to balance the training set sizes of the two tasks. In addition, SBSS improves the training set quality and shortens the training time. Based on the proposed SCJoint and SBSS, we train a powerful generalist network, named JoNet, which has the ability to simultaneously capture both ``salient" and ``camouflaged". Extensive experiments demonstrate the competitive performance and effectiveness of our proposed method. The code is available at https://github.com/linuxsino/JoNet.
☆ Lightweight Quad Bayer HybridEVS Demosaicing via State Space Augmented Cross-Attention
Event cameras like the Hybrid Event-based Vision Sensor (HybridEVS) camera capture brightness changes as asynchronous "events" instead of frames, offering advanced application on mobile photography. However, challenges arise from combining a Quad Bayer Color Filter Array (CFA) sensor with event pixels lacking color information, resulting in aliasing and artifacts on the demosaicing process before downstream application. Current methods struggle to address these issues, especially on resource-limited mobile devices. In response, we introduce \textbf{TSANet}, a lightweight \textbf{T}wo-stage network via \textbf{S}tate space augmented cross-\textbf{A}ttention, which can handle event pixels inpainting and demosaicing separately, leveraging the benefits of dividing complex tasks into manageable subtasks. Furthermore, we introduce a lightweight Cross-Swin State Block that uniquely utilizes positional prior for demosaicing and enhances global dependencies through the state space model with linear complexity. In summary, TSANet demonstrates excellent demosaicing performance on both simulated and real data of HybridEVS while maintaining a lightweight model, averaging better results than the previous state-of-the-art method DemosaicFormer across seven diverse datasets in both PSNR and SSIM, while respectively reducing parameter and computation costs by $1.86\times$ and $3.29\times$. Our approach presents new possibilities for efficient image demosaicing on mobile devices. Code is available in the supplementary materials.
☆ AGI for the Earth, the path, possibilities and how to evaluate intelligence of models that work with Earth Observation Data?
Artificial General Intelligence (AGI) is closer than ever to becoming a reality, sparking widespread enthusiasm in the research community to collect and work with various modalities, including text, image, video, and audio. Despite recent efforts, satellite spectral imagery, as an additional modality, has yet to receive the attention it deserves. This area presents unique challenges, but also holds great promise in advancing the capabilities of AGI in understanding the natural world. In this paper, we argue why Earth Observation data is useful for an intelligent model, and then we review existing benchmarks and highlight their limitations in evaluating the generalization ability of foundation models in this domain. This paper emphasizes the need for a more comprehensive benchmark to evaluate earth observation models. To facilitate this, we propose a comprehensive set of tasks that a benchmark should encompass to effectively assess a model's ability to understand and interact with Earth observation data.
comment: Accepted in IGARSS 2025!
☆ LV-Net: Anatomy-aware lateral ventricle shape modeling with a case study on Alzheimer's disease, the Australian Imaging Biomarkers and Lifestyle flagship study of ageing
Lateral ventricle (LV) shape analysis holds promise as a biomarker for neurological diseases; however, challenges remain due to substantial shape variability across individuals and segmentation difficulties arising from limited MRI resolution. We introduce LV-Net, a novel framework for producing individualized 3D LV meshes from brain MRI by deforming an anatomy-aware joint LV-hippocampus template mesh. By incorporating anatomical relationships embedded within the joint template, LV-Net reduces boundary segmentation artifacts and improves reconstruction robustness. In addition, by classifying the vertices of the template mesh based on their anatomical adjacency, our method enhances point correspondence across subjects, leading to more accurate LV shape statistics. We demonstrate that LV-Net achieves superior reconstruction accuracy, even in the presence of segmentation imperfections, and delivers more reliable shape descriptors across diverse datasets. Finally, we apply LV-Net to Alzheimer's disease analysis, identifying LV subregions that show significantly associations with the disease relative to cognitively normal controls. The codes for LV shape modeling are available at https://github.com/PWonjung/LV_Shape_Modeling.
☆ VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning
Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: \textit{poor generalization to out-of-distribution (OOD) videos} and \textit{limited explainability}, which restrict their applicability in real-world scenarios. To address these challenges, we propose \textbf{VQAThinker}, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a \textbf{bell-shaped regression reward} that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a \textbf{pairwise ranking reward} that guides the model to correctly determine the relative quality between video pairs; and (3) a \textbf{temporal consistency reward} that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.
☆ NEP: Autoregressive Image Editing via Next Editing Token Prediction
Text-guided image editing involves modifying a source image based on a language instruction and, typically, requires changes to only small local regions. However, existing approaches generate the entire target image rather than selectively regenerate only the intended editing areas. This results in (1) unnecessary computational costs and (2) a bias toward reconstructing non-editing regions, which compromises the quality of the intended edits. To resolve these limitations, we propose to formulate image editing as Next Editing-token Prediction (NEP) based on autoregressive image generation, where only regions that need to be edited are regenerated, thus avoiding unintended modification to the non-editing areas. To enable any-region editing, we propose to pre-train an any-order autoregressive text-to-image (T2I) model. Once trained, it is capable of zero-shot image editing and can be easily adapted to NEP for image editing, which achieves a new state-of-the-art on widely used image editing benchmarks. Moreover, our model naturally supports test-time scaling (TTS) through iteratively refining its generation in a zero-shot manner. The project page is: https://nep-bigai.github.io/
comment: The project page is: https://nep-bigai.github.io/
☆ Fourier-VLM: Compressing Vision Tokens in the Frequency Domain for Large Vision-Language Models
Vision-Language Models (VLMs) typically replace the predefined image placeholder token () in textual instructions with visual features from an image encoder, forming the input to a backbone Large Language Model (LLM). However, the large number of vision tokens significantly increases the context length, leading to high computational overhead and inference latency. While previous efforts mitigate this by selecting only important visual features or leveraging learnable queries to reduce token count, they often compromise performance or introduce substantial extra costs. In response, we propose Fourier-VLM, a simple yet efficient method that compresses visual representations in the frequency domain. Our approach is motivated by the observation that vision features output from the vision encoder exhibit concentrated energy in low-frequency components. Leveraging this, we apply a low-pass filter to the vision features using a two-dimentional Discrete Cosine Transform (DCT). Notably, the DCT is efficiently computed via the Fast Fourier Transform (FFT) operator with a time complexity of $\mathcal{O}(n\log n)$, minimizing the extra computational cost while introducing no additional parameters. Extensive experiments across various image-based benchmarks demonstrate that Fourier-VLM achieves competitive performance with strong generalizability across both LLaVA and Qwen-VL architectures. Crucially, it reduce inference FLOPs by up to 83.8% and boots generation speed by 31.2% compared to LLaVA-v1.5, highlighting the superior efficiency and practicality.
comment: 12 pages, 4 figures
☆ More Is Better: A MoE-Based Emotion Recognition Framework with Human Preference Alignment
In this paper, we present our solution for the semi-supervised learning track (MER-SEMI) in MER2025. We propose a comprehensive framework, grounded in the principle that "more is better," to construct a robust Mixture of Experts (MoE) emotion recognition system. Our approach integrates a diverse range of input modalities as independent experts, including novel signals such as knowledge from large Vision-Language Models (VLMs) and temporal Action Unit (AU) information. To effectively utilize unlabeled data, we introduce a consensus-based pseudo-labeling strategy, generating high-quality labels from the agreement between a baseline model and Gemini, which are then used in a two-stage training paradigm. Finally, we employ a multi-expert voting ensemble combined with a rule-based re-ranking process to correct prediction bias and better align the outputs with human preferences. Evaluated on the MER2025-SEMI challenge dataset, our method achieves an F1-score of 0.8772 on the test set, ranking 2nd in the track. Our code is available at https://github.com/zhuyjan/MER2025-MRAC25.
☆ InstantEdit: Text-Guided Few-Step Image Editing with Piecewise Rectified Flow ICCV 2025
We propose a fast text-guided image editing method called InstantEdit based on the RectifiedFlow framework, which is structured as a few-step editing process that preserves critical content while following closely to textual instructions. Our approach leverages the straight sampling trajectories of RectifiedFlow by introducing a specialized inversion strategy called PerRFI. To maintain consistent while editable results for RectifiedFlow model, we further propose a novel regeneration method, Inversion Latent Injection, which effectively reuses latent information obtained during inversion to facilitate more coherent and detailed regeneration. Additionally, we propose a Disentangled Prompt Guidance technique to balance editability with detail preservation, and integrate a Canny-conditioned ControlNet to incorporate structural cues and suppress artifacts. Evaluation on the PIE image editing dataset demonstrates that InstantEdit is not only fast but also achieves better qualitative and quantitative results compared to state-of-the-art few-step editing methods.
comment: ICCV 2025
☆ Learning 3D Texture-Aware Representations for Parsing Diverse Human Clothing and Body Parts
Existing methods for human parsing into body parts and clothing often use fixed mask categories with broad labels that obscure fine-grained clothing types. Recent open-vocabulary segmentation approaches leverage pretrained text-to-image (T2I) diffusion model features for strong zero-shot transfer, but typically group entire humans into a single person category, failing to distinguish diverse clothing or detailed body parts. To address this, we propose Spectrum, a unified network for part-level pixel parsing (body parts and clothing) and instance-level grouping. While diffusion-based open-vocabulary models generalize well across tasks, their internal representations are not specialized for detailed human parsing. We observe that, unlike diffusion models with broad representations, image-driven 3D texture generators maintain faithful correspondence to input images, enabling stronger representations for parsing diverse clothing and body parts. Spectrum introduces a novel repurposing of an Image-to-Texture (I2Tx) diffusion model -- obtained by fine-tuning a T2I model on 3D human texture maps -- for improved alignment with body parts and clothing. From an input image, we extract human-part internal features via the I2Tx diffusion model and generate semantically valid masks aligned to diverse clothing categories through prompt-guided grounding. Once trained, Spectrum produces semantic segmentation maps for every visible body part and clothing category, ignoring standalone garments or irrelevant objects, for any number of humans in the scene. We conduct extensive cross-dataset experiments -- separately assessing body parts, clothing parts, unseen clothing categories, and full-body masks -- and demonstrate that Spectrum consistently outperforms baseline methods in prompt-based segmentation.
comment: 16 pages, 11 figures
☆ Improved Sub-Visible Particle Classification in Flow Imaging Microscopy via Generative AI-Based Image Synthesis
Sub-visible particle analysis using flow imaging microscopy combined with deep learning has proven effective in identifying particle types, enabling the distinction of harmless components such as silicone oil from protein particles. However, the scarcity of available data and severe imbalance between particle types within datasets remain substantial hurdles when applying multi-class classifiers to such problems, often forcing researchers to rely on less effective methods. The aforementioned issue is particularly challenging for particle types that appear unintentionally and in lower numbers, such as silicone oil and air bubbles, as opposed to protein particles, where obtaining large numbers of images through controlled settings is comparatively straightforward. In this work, we develop a state-of-the-art diffusion model to address data imbalance by generating high-fidelity images that can augment training datasets, enabling the effective training of multi-class deep neural networks. We validate this approach by demonstrating that the generated samples closely resemble real particle images in terms of visual quality and structure. To assess the effectiveness of using diffusion-generated images in training datasets, we conduct large-scale experiments on a validation dataset comprising 500,000 protein particle images and demonstrate that this approach improves classification performance with no negligible downside. Finally, to promote open research and reproducibility, we publicly release both our diffusion models and the trained multi-class deep neural network classifiers, along with a straightforward interface for easy integration into future studies, at https://github.com/utkuozbulak/svp-generative-ai.
☆ ExploreGS: Explorable 3D Scene Reconstruction with Virtual Camera Samplings and Diffusion Priors ICCV 2025
Recent advances in novel view synthesis (NVS) have enabled real-time rendering with 3D Gaussian Splatting (3DGS). However, existing methods struggle with artifacts and missing regions when rendering from viewpoints that deviate from the training trajectory, limiting seamless scene exploration. To address this, we propose a 3DGS-based pipeline that generates additional training views to enhance reconstruction. We introduce an information-gain-driven virtual camera placement strategy to maximize scene coverage, followed by video diffusion priors to refine rendered results. Fine-tuning 3D Gaussians with these enhanced views significantly improves reconstruction quality. To evaluate our method, we present Wild-Explore, a benchmark designed for challenging scene exploration. Experiments demonstrate that our approach outperforms existing 3DGS-based methods, enabling high-quality, artifact-free rendering from arbitrary viewpoints. https://exploregs.github.io
comment: 10 pages, 6 Figures, ICCV 2025
☆ MathReal: We Keep It Real! A Real Scene Benchmark for Evaluating Math Reasoning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K-12) educational users. To address this gap, we introduce MathReal, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MathReal spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements. Data and code: https://github.com/junfeng0288/MathReal.
comment: 29 pages, 16 figures
☆ KnapFormer: An Online Load Balancer for Efficient Diffusion Transformers Training
We present KnapFormer, an efficient and versatile framework to combine workload balancing and sequence parallelism in distributed training of Diffusion Transformers (DiT). KnapFormer builds on the insight that strong synergy exists between sequence parallelism and the need to address the significant token imbalance across ranks. This imbalance arises from variable-length text inputs and varying visual token counts in mixed-resolution and image-video joint training. KnapFormer redistributes tokens by first gathering sequence length metadata across all ranks in a balancing group and solving a global knapsack problem. The solver aims to minimize the variances of total workload per-GPU, while accounting for the effect of sequence parallelism. By integrating DeepSpeed-Ulysees-based sequence parallelism in the load-balancing decision process and utilizing a simple semi-empirical workload model, KnapFormers achieves minimal communication overhead and less than 1% workload discrepancy in real-world training workloads with sequence length varying from a few hundred to tens of thousands. It eliminates straggler effects and achieves 2x to 3x speedup when training state-of-the-art diffusion models like FLUX on mixed-resolution and image-video joint data corpora. We open-source the KnapFormer implementation at https://github.com/Kai-46/KnapFormer/
comment: Code is available at https://github.com/Kai-46/KnapFormer/
☆ EvoMakeup: High-Fidelity and Controllable Makeup Editing with MakeupQuad
Facial makeup editing aims to realistically transfer makeup from a reference to a target face. Existing methods often produce low-quality results with coarse makeup details and struggle to preserve both identity and makeup fidelity, mainly due to the lack of structured paired data -- where source and result share identity, and reference and result share identical makeup. To address this, we introduce MakeupQuad, a large-scale, high-quality dataset with non-makeup faces, references, edited results, and textual makeup descriptions. Building on this, we propose EvoMakeup, a unified training framework that mitigates image degradation during multi-stage distillation, enabling iterative improvement of both data and model quality. Although trained solely on synthetic data, EvoMakeup generalizes well and outperforms prior methods on real-world benchmarks. It supports high-fidelity, controllable, multi-task makeup editing -- including full-face and partial reference-based editing, as well as text-driven makeup editing -- within a single model. Experimental results demonstrate that our method achieves superior makeup fidelity and identity preservation, effectively balancing both aspects. Code and dataset will be released upon acceptance.
☆ ECMF: Enhanced Cross-Modal Fusion for Multimodal Emotion Recognition in MER-SEMI Challenge
Emotion recognition plays a vital role in enhancing human-computer interaction. In this study, we tackle the MER-SEMI challenge of the MER2025 competition by proposing a novel multimodal emotion recognition framework. To address the issue of data scarcity, we leverage large-scale pre-trained models to extract informative features from visual, audio, and textual modalities. Specifically, for the visual modality, we design a dual-branch visual encoder that captures both global frame-level features and localized facial representations. For the textual modality, we introduce a context-enriched method that employs large language models to enrich emotional cues within the input text. To effectively integrate these multimodal features, we propose a fusion strategy comprising two key components, i.e., self-attention mechanisms for dynamic modality weighting, and residual connections to preserve original representations. Beyond architectural design, we further refine noisy labels in the training set by a multi-source labeling strategy. Our approach achieves a substantial performance improvement over the official baseline on the MER2025-SEMI dataset, attaining a weighted F-score of 87.49% compared to 78.63%, thereby validating the effectiveness of the proposed framework.
☆ Fast Motion Estimation and Context-Aware Refinement for Efficient Bayer-Domain Video Vision
The efficiency of video computer vision system remains a challenging task due to the high temporal redundancy inside a video. Existing works have been proposed for efficient vision computer vision. However, they do not fully reduce the temporal redundancy and neglect the front end computation overhead. In this paper, we propose an efficient video computer vision system. First, image signal processor is removed and Bayer-format data is directly fed into video computer vision models, thus saving the front end computation. Second, instead of optical flow models and video codecs, a fast block matching-based motion estimation algorithm is proposed specifically for efficient video computer vision, with a MV refinement module. To correct the error, context-aware block refinement network is introduced to refine regions with large error. To further balance the accuracy and efficiency, a frame selection strategy is employed. Experiments on multiple video computer vision tasks demonstrate that our method achieves significant acceleration with slight performance loss.
☆ ETA: Energy-based Test-time Adaptation for Depth Completion
We propose a method for test-time adaptation of pretrained depth completion models. Depth completion models, trained on some ``source'' data, often predict erroneous outputs when transferred to ``target'' data captured in novel environmental conditions due to a covariate shift. The crux of our method lies in quantifying the likelihood of depth predictions belonging to the source data distribution. The challenge is in the lack of access to out-of-distribution (target) data prior to deployment. Hence, rather than making assumptions regarding the target distribution, we utilize adversarial perturbations as a mechanism to explore the data space. This enables us to train an energy model that scores local regions of depth predictions as in- or out-of-distribution. We update the parameters of pretrained depth completion models at test time to minimize energy, effectively aligning test-time predictions to those of the source distribution. We call our method ``Energy-based Test-time Adaptation'', or ETA for short. We evaluate our method across three indoor and three outdoor datasets, where ETA improve over the previous state-of-the-art method by an average of 6.94% for outdoors and 10.23% for indoors. Project Page: https://fuzzythecat.github.io/eta.
☆ AnimateScene: Camera-controllable Animation in Any Scene
3D scene reconstruction and 4D human animation have seen rapid progress and broad adoption in recent years. However, seamlessly integrating reconstructed scenes with 4D human animation to produce visually engaging results remains challenging. One key difficulty lies in placing the human at the correct location and scale within the scene while avoiding unrealistic interpenetration. Another challenge is that the human and the background may exhibit different lighting and style, leading to unrealistic composites. In addition, appealing character motion videos are often accompanied by camera movements, which means that the viewpoints need to be reconstructed along a specified trajectory. We present AnimateScene, which addresses the above issues in a unified framework. First, we design an accurate placement module that automatically determines a plausible 3D position for the human and prevents any interpenetration within the scene during motion. Second, we propose a training-free style alignment method that adapts the 4D human representation to match the background's lighting and style, achieving coherent visual integration. Finally, we design a joint post-reconstruction method for both the 4D human and the 3D scene that allows camera trajectories to be inserted, enabling the final rendered video to feature visually appealing camera movements. Extensive experiments show that AnimateScene generates dynamic scene videos with high geometric detail and spatiotemporal coherence across various camera and action combinations.
☆ PASG: A Closed-Loop Framework for Automated Geometric Primitive Extraction and Semantic Anchoring in Robotic Manipulation ICCV 2025
The fragmentation between high-level task semantics and low-level geometric features remains a persistent challenge in robotic manipulation. While vision-language models (VLMs) have shown promise in generating affordance-aware visual representations, the lack of semantic grounding in canonical spaces and reliance on manual annotations severely limit their ability to capture dynamic semantic-affordance relationships. To address these, we propose Primitive-Aware Semantic Grounding (PASG), a closed-loop framework that introduces: (1) Automatic primitive extraction through geometric feature aggregation, enabling cross-category detection of keypoints and axes; (2) VLM-driven semantic anchoring that dynamically couples geometric primitives with functional affordances and task-relevant description; (3) A spatial-semantic reasoning benchmark and a fine-tuned VLM (Qwen2.5VL-PA). We demonstrate PASG's effectiveness in practical robotic manipulation tasks across diverse scenarios, achieving performance comparable to manual annotations. PASG achieves a finer-grained semantic-affordance understanding of objects, establishing a unified paradigm for bridging geometric primitives with task semantics in robotic manipulation.
comment: Accepted to ICCV 2025. 8 pages main paper, 8 figures, plus supplementary material
☆ Bifrost-1: Bridging Multimodal LLMs and Diffusion Models with Patch-level CLIP Latents
There is growing interest in integrating high-fidelity visual synthesis capabilities into large language models (LLMs) without compromising their strong reasoning capabilities. Existing methods that directly train LLMs or bridge LLMs and diffusion models usually suffer from costly training since the backbone LLMs have not seen image representations during pretraining. We present Bifrost-1, a unified framework that bridges pretrained multimodal LLMs (MLLMs) and diffusion models using patch-level CLIP image embeddings as latent variables, which are natively aligned with the MLLM's CLIP visual encoder. These patch-level image embeddings are integrated into the diffusion model with a lightweight adaptation of its ControlNet. To retain the original multimodal reasoning capabilities of MLLMs, we equip the MLLM with a visual generation branch initialized from the original MLLM parameters when predicting the patch-level image embeddings. By seamlessly integrating pretrained MLLMs and diffusion models with patch-level CLIP latents, our framework enables high-fidelity controllable image generation with significant training efficiency. Our experiments demonstrate that Bifrost-1 achieves comparable or better performance than previous methods in terms of visual fidelity and multimodal understanding, with substantially lower compute during training. We also provide comprehensive ablation studies showing the effectiveness of our design choices.
comment: Project Page: https://bifrost-1.github.io
☆ A 3DGS-Diffusion Self-Supervised Framework for Normal Estimation from a Single Image
The lack of spatial dimensional information remains a challenge in normal estimation from a single image. Recent diffusion-based methods have demonstrated significant potential in 2D-to-3D implicit mapping, they rely on data-driven statistical priors and miss the explicit modeling of light-surface interaction, leading to multi-view normal direction conflicts. Moreover, the discrete sampling mechanism of diffusion models causes gradient discontinuity in differentiable rendering reconstruction modules, preventing 3D geometric errors from being backpropagated to the normal generation network, thereby forcing existing methods to depend on dense normal annotations. This paper proposes SINGAD, a novel Self-supervised framework from a single Image for Normal estimation via 3D GAussian splatting guided Diffusion. By integrating physics-driven light-interaction modeling and a differentiable rendering-based reprojection strategy, our framework directly converts 3D geometric errors into normal optimization signals, solving the challenges of multi-view geometric inconsistency and data dependency. Specifically, the framework constructs a light-interaction-driven 3DGS reparameterization model to generate multi-scale geometric features consistent with light transport principles, ensuring multi-view normal consistency. A cross-domain feature fusion module is designed within a conditional diffusion model, embedding geometric priors to constrain normal generation while maintaining accurate geometric error propagation. Furthermore, a differentiable 3D reprojection loss strategy is introduced for self-supervised optimization that minimizes geometric error between the reconstructed and input image, eliminating dependence on annotated normal datasets. Quantitative evaluations on the Google Scanned Objects dataset demonstrate that our method outperforms state-of-the-art approaches across multiple metrics.
☆ Enhancing Construction Site Analysis and Understanding with 3D Segmentation
Monitoring construction progress is crucial yet resource-intensive, prompting the exploration of computer-vision-based methodologies for enhanced efficiency and scalability. Traditional data acquisition methods, primarily focusing on indoor environments, falter in construction site's complex, cluttered, and dynamically changing conditions. This paper critically evaluates the application of two advanced 3D segmentation methods, Segment Anything Model (SAM) and Mask3D, in challenging outdoor and indoor conditions. Trained initially on indoor datasets, both models' adaptability and performance are assessed in real-world construction settings, highlighting the gap in current segmentation approaches due to the absence of benchmarks for outdoor scenarios. Through a comparative analysis, this study not only showcases the relative effectiveness of SAM and Mask3D but also addresses the critical need for tailored segmentation workflows capable of extracting actionable insights from construction site data, thereby advancing the field towards more automated and precise monitoring techniques.
☆ Neural Field Representations of Mobile Computational Photography
Over the past two decades, mobile imaging has experienced a profound transformation, with cell phones rapidly eclipsing all other forms of digital photography in popularity. Today's cell phones are equipped with a diverse range of imaging technologies - laser depth ranging, multi-focal camera arrays, and split-pixel sensors - alongside non-visual sensors such as gyroscopes, accelerometers, and magnetometers. This, combined with on-board integrated chips for image and signal processing, makes the cell phone a versatile pocket-sized computational imaging platform. Parallel to this, we have seen in recent years how neural fields - small neural networks trained to map continuous spatial input coordinates to output signals - enable the reconstruction of complex scenes without explicit data representations such as pixel arrays or point clouds. In this thesis, I demonstrate how carefully designed neural field models can compactly represent complex geometry and lighting effects. Enabling applications such as depth estimation, layer separation, and image stitching directly from collected in-the-wild mobile photography data. These methods outperform state-of-the-art approaches without relying on complex pre-processing steps, labeled ground truth data, or machine learning priors. Instead, they leverage well-constructed, self-regularized models that tackle challenging inverse problems through stochastic gradient descent, fitting directly to raw measurements from a smartphone.
comment: PhD thesis
♻ ☆ Can Test-Time Scaling Improve World Foundation Model?
World foundation models, which simulate the physical world by predicting future states from current observations and inputs, have become central to many applications in physical intelligence, including autonomous driving and robotics. However, these models require substantial computational resources for pretraining and are further constrained by available data during post-training. As such, scaling computation at test time emerges as both a critical and practical alternative to traditional model enlargement or re-training. In this work, we introduce SWIFT, a test-time scaling framework tailored for WFMs. SWIFT integrates our extensible WFM evaluation toolkit with process-level inference strategies, including fast tokenization, probability-based Top-K pruning, and efficient beam search. Empirical results on the COSMOS model demonstrate that test-time scaling exists even in a compute-optimal way. Our findings reveal that test-time scaling laws hold for WFMs and that SWIFT provides a scalable and effective pathway for improving WFM inference without retraining or increasing model size. Project page: https://scalingwfm.github.io/.
comment: Accepted by COLM2025
♻ ☆ Generative Video Bi-flow ICCV 2025
We propose a novel generative video model to robustly learn temporal change as a neural Ordinary Differential Equation (ODE) flow with a bilinear objective which combines two aspects: The first is to map from the past into future video frames directly. Previous work has mapped the noise to new frames, a more computationally expensive process. Unfortunately, starting from the previous frame, instead of noise, is more prone to drifting errors. Hence, second, we additionally learn how to remove the accumulated errors as the joint objective by adding noise during training. We demonstrate unconditional video generation in a streaming manner for various video datasets, all at competitive quality compared to a conditional diffusion baseline but with higher speed, i.e., fewer ODE solver steps.
comment: ICCV 2025. Project Page at https://ryushinn.github.io/ode-video
♻ ☆ Crop Pest Classification Using Deep Learning Techniques: A Review
Insect pests continue to bring a serious threat to crop yields around the world, and traditional methods for monitoring them are often slow, manual, and difficult to scale. In recent years, deep learning has emerged as a powerful solution, with techniques like convolutional neural networks (CNNs), vision transformers (ViTs), and hybrid models gaining popularity for automating pest detection. This review looks at 37 carefully selected studies published between 2018 and 2025, all focused on AI-based pest classification. The selected research is organized by crop type, pest species, model architecture, dataset usage, and key technical challenges. The early studies relied heavily on CNNs but latest work is shifting toward hybrid and transformer-based models that deliver higher accuracy and better contextual understanding. Still, challenges like imbalanced datasets, difficulty in detecting small pests, limited generalizability, and deployment on edge devices remain significant hurdles. Overall, this review offers a structured overview of the field, highlights useful datasets, and outlines the key challenges and future directions for AI-based pest monitoring systems.
comment: This version adds co-authors who were unintentionally left out of the prior submission. Additionally, Table 1 has been reformatted for clarity, and several typographical errors have been corrected
♻ ☆ Event2Vec: Processing neuromorphic events directly by representations in vector space
The neuromorphic event cameras have overwhelming advantages in temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, the event cameras output asynchronous, sparse, and irregular events, which are not compatible with mainstream computer vision and deep learning methods. Various methods have been proposed to solve this issue but at the cost of long preprocessing procedures, losing temporal resolutions, or being incompatible with massively parallel computation. Inspired by the great success of the word to vector, we summarize the similarities between words and events, then propose the first event to vector (event2vec) representation. We validate event2vec on classifying the ASL-DVS dataset, showing impressive parameter efficiency, accuracy, and speed than previous graph/image/voxel-based representations. Beyond task performance, the most attractive advantage of event2vec is that it aligns events to the domain of natural language processing, showing the promising prospect of integrating events into large language and multimodal models. Our codes, models, and training logs are available at https://github.com/fangwei123456/event2vec.
♻ ☆ Conditional Diffusion Models are Medical Image Classifiers that Provide Explainability and Uncertainty for Free
Discriminative classifiers have become a foundational tool in deep learning for medical imaging, excelling at learning separable features of complex data distributions. However, these models often need careful design, augmentation, and training techniques to ensure safe and reliable deployment. Recently, diffusion models have become synonymous with generative modeling in 2D. These models showcase robustness across a range of tasks including natural image classification, where classification is performed by comparing reconstruction errors across images generated for each possible conditioning input. This work presents the first exploration of the potential of class conditional diffusion models for 2D medical image classification. First, we develop a novel majority voting scheme shown to improve the performance of medical diffusion classifiers. Next, extensive experiments on the CheXpert and ISIC Melanoma skin cancer datasets demonstrate that foundation and trained-from-scratch diffusion models achieve competitive performance against SOTA discriminative classifiers without the need for explicit supervision. In addition, we show that diffusion classifiers are intrinsically explainable, and can be used to quantify the uncertainty of their predictions, increasing their trustworthiness and reliability in safety-critical, clinical contexts. Further information is available on our project page: https://faverogian.github.io/med-diffusion-classifier.github.io/.
comment: Accepted for publication at MIDL 2025
♻ ☆ ShadowMamba: State-Space Model with Boundary-Region Selective Scan for Shadow Removal
Image shadow removal is a typical low-level vision task. Shadows cause local brightness shifts, which reduce the performance of downstream vision tasks. Currently, Transformer-based shadow removal methods suffer from quadratic computational complexity due to the self-attention mechanism. To improve efficiency, many approaches use local attention, but this limits the ability to model global information and weakens the perception of brightness changes between regions. Recently, Mamba has shown strong performance in vision tasks by enabling global modeling with linear complexity. However, existing scanning strategies are not suitable for shadow removal, as they ignore the semantic continuity of shadow boundaries and internal regions. To address this, this paper proposes a boundary-region selective scanning mechanism that captures local details while enhancing semantic continuity between them, effectively improving shadow removal performance. In addition, a shadow mask denoising method is introduced to support the scanning mechanism and improve data quality. Based on these techniques, this paper presents a model called ShadowMamba, the first Mamba-based model designed for shadow removal. Experimental results show that the proposed method outperforms existing mainstream approaches on the AISTD, ISTD, and SRD datasets, and also offers clear advantages in parameter efficiency and computational complexity. Code is available at: https://github.com/ZHUXIUJINChris/ShadowMamba
♻ ☆ Vision-Language Model-Based Semantic-Guided Imaging Biomarker for Lung Nodule Malignancy Prediction
Machine learning models have utilized semantic features, deep features, or both to assess lung nodule malignancy. However, their reliance on manual annotation during inference, limited interpretability, and sensitivity to imaging variations hinder their application in real-world clinical settings. Thus, this research aims to integrate semantic features derived from radiologists' assessments of nodules, guiding the model to learn clinically relevant, robust, and explainable imaging features for predicting lung cancer. We obtained 938 low-dose CT scans from the National Lung Screening Trial (NLST) with 1,246 nodules and semantic features. Additionally, the Lung Image Database Consortium dataset contains 1,018 CT scans, with 2,625 lesions annotated for nodule characteristics. Three external datasets were obtained from UCLA Health, the LUNGx Challenge, and the Duke Lung Cancer Screening. We fine-tuned a pretrained Contrastive Language-Image Pretraining (CLIP) model with a parameter-efficient fine-tuning approach to align imaging and semantic text features and predict the one-year lung cancer diagnosis. Our model outperformed state-of-the-art (SOTA) models in the NLST test set with an AUROC of 0.901 and AUPRC of 0.776. It also showed robust results in external datasets. Using CLIP, we also obtained predictions on semantic features through zero-shot inference, such as nodule margin (AUROC: 0.812), nodule consistency (0.812), and pleural attachment (0.840). Our approach surpasses the SOTA models in predicting lung cancer across datasets collected from diverse clinical settings, providing explainable outputs, aiding clinicians in comprehending the underlying meaning of model predictions. This approach also prevents the model from learning shortcuts and generalizes across clinical settings. The code is available at https://github.com/luotingzhuang/CLIP_nodule.
♻ ☆ SAR Strikes Back: A New Hope for RSVQA
Remote Sensing Visual Question Answering (RSVQA) is a task that extracts information from satellite images to answer questions in natural language, aiding image interpretation. While several methods exist for optical images with varying spectral bands and resolutions, only recently have high-resolution Synthetic Aperture Radar (SAR) images been explored. SAR's ability to operate in all weather conditions and capture electromagnetic features makes it a promising modality, yet no study has compared SAR and optical imagery in RSVQA or proposed effective fusion strategies. This work investigates how to integrate SAR data into RSVQA and how to best combine it with optical images. We present a dataset that enables SAR-based RSVQA and explore two pipelines for the task. The first is an end-to-end model, while the second is a two-stage framework: SAR information is first extracted and translated into text, which is then processed by a language model to produce the final answer. Our results show that the two-stage model performs better, improving accuracy by nearly 10% over the end-to-end approach. We also evaluate fusion strategies for combining SAR and optical data. A decision-level fusion yields the best results, with an F1-micro score of 75.00%, F1-average of 81.21%, and overall accuracy of 75.49% on the proposed dataset. SAR proves especially beneficial for questions related to specific land cover types, such as water areas, demonstrating its value as a complementary modality to optical imagery.
comment: Accepted at IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 pages, 6 figures
♻ ☆ Building Age Estimation: A New Multi-Modal Benchmark Dataset and Community Challenge
Estimating the construction year of buildings is critical for advancing sustainability, as older structures often lack energy-efficient features. Sustainable urban planning relies on accurate building age data to reduce energy consumption and mitigate climate change. In this work, we introduce MapYourCity, a novel multi-modal benchmark dataset comprising top-view Very High Resolution (VHR) imagery, multi-spectral Earth Observation (EO) data from the Copernicus Sentinel-2 constellation, and co-localized street-view images across various European cities. Each building is labeled with its construction epoch, and the task is formulated as a seven-class classification problem covering periods from 1900 to the present. To advance research in EO generalization and multi-modal learning, we organized a community-driven data challenge in 2024, hosted by ESA $\Phi$-lab, which ran for four months and attracted wide participation. This paper presents the Top-4 performing models from the challenge and their evaluation results. We assess model generalization on cities excluded from training to prevent data leakage, and evaluate performance under missing modality scenarios, particularly when street-view data is unavailable. Results demonstrate that building age estimation is both feasible and effective, even in previously unseen cities and when relying solely on top-view satellite imagery (i.e. with VHR and Sentinel-2 images). The new MapYourCity dataset thus provides a valuable resource for developing scalable, real-world solutions in sustainable urban analytics.
comment: 15 pages, 20 figures, 1 table, Submitted
♻ ☆ WildSAT: Learning Satellite Image Representations from Wildlife Observations
Species distributions encode valuable ecological and environmental information, yet their potential for guiding representation learning in remote sensing remains underexplored. We introduce WildSAT, which pairs satellite images with millions of geo-tagged wildlife observations readily-available on citizen science platforms. WildSAT employs a contrastive learning approach that jointly leverages satellite images, species occurrence maps, and textual habitat descriptions to train or fine-tune models. This approach significantly improves performance on diverse satellite image recognition tasks, outperforming both ImageNet-pretrained models and satellite-specific baselines. Additionally, by aligning visual and textual information, WildSAT enables zero-shot retrieval, allowing users to search geographic locations based on textual descriptions. WildSAT surpasses recent cross-modal learning methods, including approaches that align satellite images with ground imagery or wildlife photos, demonstrating the advantages of our approach. Finally, we analyze the impact of key design choices and highlight the broad applicability of WildSAT to remote sensing and biodiversity monitoring.
♻ ☆ MOR-VIT: Efficient Vision Transformer with Mixture-of-Recursions
Vision Transformers (ViTs) have achieved remarkable success in image recognition, yet standard ViT architectures are hampered by substantial parameter redundancy and high computational cost, limiting their practical deployment. While recent efforts on efficient ViTs primarily focus on static model compression or token-level sparsification, they remain constrained by fixed computational depth for all tokens. In this work, we present MoR-ViT, a novel vision transformer framework that, for the first time, incorporates a token-level dynamic recursion mechanism inspired by the Mixture-of-Recursions (MoR) paradigm. This approach enables each token to adaptively determine its processing depth, yielding a flexible and input-dependent allocation of computational resources. Extensive experiments on ImageNet-1K and transfer benchmarks demonstrate that MoR-ViT not only achieves state-of-the-art accuracy with up to 70% parameter reduction and 2.5x inference acceleration, but also outperforms leading efficient ViT baselines such as DynamicViT and TinyViT under comparable conditions. These results establish dynamic recursion as an effective strategy for efficient vision transformers and open new avenues for scalable and deployable deep learning models in real-world scenarios.
comment: 20 pages,9 figuers
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has emerged as a cost-efficient approximation to multitask learning. Among merging strategies, task arithmetic is notable for its simplicity and effectiveness. In this work, we provide a theoretical motivation for task vectors by highlighting that, under single-epoch full-batch gradient descent, they are equivalent to multitask gradients. This insight leads us to reinterpret model merging as a single step in an iterative procedure that Alternates between Tuning and Merging (ATM). We propose two applications of ATM: (1) as an alternative to multitask learning in scenarios where data sharing is restricted (e.g., federated settings), and (2) as a lightweight refinement step to improve existing model merging methods using a small validation set. Experiments across diverse vision tasks demonstrate the effectiveness of ATM.
comment: Main paper: 9 Pages, 4 figures, 1 table
♻ ☆ M$^2$IV: Towards Efficient and Fine-grained Multimodal In-Context Learning via Representation Engineering
Multimodal in-context learning (ICL) equips Large Vision-language Models (LVLMs) with the ability to adapt to new tasks via multiple user-provided demonstrations, without requiring any model parameter updates. However, its effectiveness is constrained by the token-intensive nature of multimodal inputs and the complexity of cross-modal few-shot reasoning, which together hinder LVLMs from extracting useful patterns from demonstrations. To address these challenges, we propose \textbf{M$^2$IV}, a novel representation engineering approach that replaces explicit token-level demonstrations with a set of learnable Multimodal In-context Vectors directly injected into the residual streams of LVLMs. By analyzing the distinct roles of multi-head attention (MHA) and multi-layer perceptrons (MLP) in the ICL process, we design a training strategy that enables M$^2$IV to perform fine-grained semantic distillation and robust cross-modal representation learning. M$^2$IV not only improves performance across diverse tasks and LVLMs but also significantly reduces token overhead, enabling graceful scaling to many-shot scenarios. To further enhance usability, we introduce \textbf{VLibrary}, a repository that stores trained M$^2$IVs for flexible retrieval and injection. With VLibrary, users can steer pre-trained LVLMs in a customized manner that meets diverse requirements. Extensive experiments demonstrate that M$^2$IV consistently outperforms vanilla ICL and prior representation engineering baselines, achieving an average accuracy gain of 3.74\% with substantial improvements in overall efficiency.
comment: COLM 2025, 30 pages, 10 figures, 16 tables
♻ ☆ ART: Adaptive Relation Tuning for Generalized Relation Prediction ICCV 2025
Visual relation detection (VRD) is the task of identifying the relationships between objects in a scene. VRD models trained solely on relation detection data struggle to generalize beyond the relations on which they are trained. While prompt tuning has been used to adapt vision-language models (VLMs) for VRD, it uses handcrafted prompts and struggles with novel or complex relations. We argue that instruction tuning offers a more effective solution by fine-tuning VLMs on diverse instructional data. We thus introduce ART, an Adaptive Relation Tuning framework that adapts VLMs for VRD through instruction tuning and strategic instance selection. By converting VRD datasets into an instruction tuning format and employing an adaptive sampling algorithm, ART directs the VLM to focus on informative relations while maintaining generalizability. Specifically, we focus on the relation classification, where subject-object boxes are given and the model predicts the predicate between them. We tune on a held-in set and evaluate across multiple held-out datasets of varying complexity. Our approach strongly improves over its baselines and can infer unseen relation concepts, a capability absent in mainstream VRD methods. We demonstrate ART's practical value by using the predicted relations for segmenting complex scenes.
comment: Accepted for publication in ICCV 2025
♻ ☆ MambaEviScrib: Mamba and Evidence-Guided Consistency Enhance CNN Robustness for Scribble-Based Weakly Supervised Ultrasound Image Segmentation
Segmenting anatomical structures and lesions from ultrasound images contributes to disease assessment. Weakly supervised learning (WSL) based on sparse annotation has achieved encouraging performance and demonstrated the potential to reduce annotation costs. This study attempts to introduce scribble-based WSL into ultrasound image segmentation tasks. However, ultrasound images often suffer from poor contrast and unclear edges, coupled with insufficient supervison signals for edges, posing challenges to edge prediction. Uncertainty modeling has been proven to facilitate models in dealing with these issues. Nevertheless, existing uncertainty estimation paradigms are not robust enough and often filter out predictions near decision boundaries, resulting in unstable edge predictions. Therefore, we propose leveraging predictions near decision boundaries effectively. Specifically, we introduce Dempster-Shafer Theory (DST) of evidence to design an Evidence-Guided Consistency strategy. This strategy utilizes high-evidence predictions, which are more likely to occur near high-density regions, to guide the optimization of low-evidence predictions that may appear near decision boundaries. Furthermore, the diverse sizes and locations of lesions in ultrasound images pose a challenge for CNNs with local receptive fields, as they struggle to model global information. Therefore, we introduce Visual Mamba based on structured state space sequence models, which achieves long-range dependency with linear computational complexity, and we construct a novel hybrid CNN-Mamba framework. During training, the collaboration between the CNN branch and the Mamba branch in the proposed framework draws inspiration from each other based on the EGC strategy. Experiments demonstrate the competitiveness of the proposed method. Dataset and code will be available on https://github.com/GtLinyer/MambaEviScrib.
comment: Accepted by Information Fusion
♻ ☆ A Study of Gender Classification Techniques Based on Iris Images: A Deep Survey and Analysis
Gender classification is attractive in a range of applications, including surveillance and monitoring, corporate profiling, and human-computer interaction. Individuals' identities may be gleaned from information about their gender, which is a kind of soft biometric. Over the years, several methods for determining a person's gender have been devised. Some of the most well-known ones are based on physical characteristics like face, fingerprint, palmprint, DNA, ears, gait, and iris. On the other hand, facial features account for the vast majority of gender classification methods. Also, the iris is a significant biometric trait because the iris, according to research, remains basically constant during an individual's life. Besides that, the iris is externally visible and is non-invasive to the user, which is important for practical applications. Furthermore, there are already high-quality methods for segmenting and encoding iris images, and the current methods facilitate selecting and extracting attribute vectors from iris textures. This study discusses several approaches to determining gender. The previous works of literature are briefly reviewed. Additionally, there are a variety of methodologies for different steps of gender classification. This study provides researchers with knowledge and analysis of the existing gender classification approaches. Also, it will assist researchers who are interested in this specific area, as well as highlight the gaps and challenges in the field, and finally provide suggestions and future paths for improvement.
comment: 13 Pages, 8 Figures, 1 Table
♻ ☆ Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation
In semantic segmentation, even state-of-the-art deep learning models fall short of the performance required in certain high-stakes applications such as medical image analysis. In these cases, performance can be improved by allowing a model to abstain from making predictions when confidence is low, an approach known as selective prediction. While well-known in the classification literature, selective prediction has been underexplored in the context of semantic segmentation. This paper tackles the problem by focusing on image-level abstention, which involves producing a single confidence estimate for the entire image, in contrast to previous approaches that focus on pixel-level uncertainty. Assuming the Dice coefficient as the evaluation metric for segmentation, two main contributions are provided in this paper: (i) In the case of known marginal posterior probabilities, we derive the optimal confidence estimator, which is observed to be intractable for typical image sizes. Then, an approximation computable in linear time, named Soft Dice Confidence (SDC), is proposed and proven to be tightly bounded to the optimal estimator. (ii) When only an estimate of the marginal posterior probabilities are known, we propose a plug-in version of the SDC and show it outperforms all previous methods, including those requiring additional tuning data. These findings are supported by experimental results on both synthetic data and real-world data from six medical imaging tasks, including out-of-distribution scenarios, positioning the SDC as a reliable and efficient tool for selective prediction in semantic segmentation.
comment: 42 pages, 9 figures
♻ ☆ Two-stage deep learning framework for the restoration of incomplete-ring PET images
Positron Emission Tomography (PET) is an important molecular imaging tool widely used in medicine. Traditional PET systems rely on complete detector rings for full angular coverage and reliable data collection. However, incomplete-ring PET scanners have emerged due to hardware failures, cost constraints, or specific clinical needs. Standard reconstruction algorithms often suffer from performance degradation with these systems because of reduced data completeness and geometric inconsistencies. We present a two-stage deep-learning framework that, without incorporating any time-of-flight (TOF) information, restores high-quality images from data with about 50% missing coincidences - double the loss levels previously addressed by CNN-based methods. The pipeline operates in two stages: a projection-domain Attention U-Net first predicts the missing sections of the sinogram by leveraging spatial context from neighbouring slices, after which the completed data are reconstructed with OSEM algorithm and passed to a U-Net-diffusion module that removes residual artefacts while reinstating high-frequency detail. Using 206 brain volumes from a public dataset, the result shows that our model successfully preserves most anatomical structures and tracer distribution features with PSNR of 30.92 dB and SSIM of 0.9708. We also achieve higher inference speed, thus providing an effective solution for incomplete-ring PET imaging.
comment: 20 pages, 7 figures
♻ ☆ MoDA: Multi-modal Diffusion Architecture for Talking Head Generation
Talking head generation with arbitrary identities and speech audio remains a crucial problem in the realm of the virtual metaverse. Recently, diffusion models have become a popular generative technique in this field with their strong generation capabilities. However, several challenges remain for diffusion-based methods: 1) inefficient inference and visual artifacts caused by the implicit latent space of Variational Auto-Encoders (VAE), which complicates the diffusion process; 2) a lack of authentic facial expressions and head movements due to inadequate multi-modal information fusion. In this paper, MoDA handles these challenges by: 1) defining a joint parameter space that bridges motion generation and neural rendering, and leveraging flow matching to simplify diffusion learning; 2) introducing a multi-modal diffusion architecture to model the interaction among noisy motion, audio, and auxiliary conditions, enhancing overall facial expressiveness. In addition, a coarse-to-fine fusion strategy is employed to progressively integrate different modalities, ensuring effective feature fusion. Experimental results demonstrate that MoDA improves video diversity, realism, and efficiency, making it suitable for real-world applications. Project Page: https://lixinyyang.github.io/MoDA.github.io/
comment: 12 pages, 7 figures
♻ ☆ Your other Left! Vision-Language Models Fail to Identify Relative Positions in Medical Images MICCAI
Clinical decision-making relies heavily on understanding relative positions of anatomical structures and anomalies. Therefore, for Vision-Language Models (VLMs) to be applicable in clinical practice, the ability to accurately determine relative positions on medical images is a fundamental prerequisite. Despite its importance, this capability remains highly underexplored. To address this gap, we evaluate the ability of state-of-the-art VLMs, GPT-4o, Llama3.2, Pixtral, and JanusPro, and find that all models fail at this fundamental task. Inspired by successful approaches in computer vision, we investigate whether visual prompts, such as alphanumeric or colored markers placed on anatomical structures, can enhance performance. While these markers provide moderate improvements, results remain significantly lower on medical images compared to observations made on natural images. Our evaluations suggest that, in medical imaging, VLMs rely more on prior anatomical knowledge than on actual image content for answering relative position questions, often leading to incorrect conclusions. To facilitate further research in this area, we introduce the MIRP , Medical Imaging Relative Positioning, benchmark dataset, designed to systematically evaluate the capability to identify relative positions in medical images.
comment: Accepted at the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2025
♻ ☆ Advancing Welding Defect Detection in Maritime Operations via Adapt-WeldNet and Defect Detection Interpretability Analysis
Weld defect detection is crucial for ensuring the safety and reliability of piping systems in the oil and gas industry, especially in challenging marine and offshore environments. Traditional non-destructive testing (NDT) methods often fail to detect subtle or internal defects, leading to potential failures and costly downtime. Furthermore, existing neural network-based approaches for defect classification frequently rely on arbitrarily selected pretrained architectures and lack interpretability, raising safety concerns for deployment. To address these challenges, this paper introduces ``Adapt-WeldNet", an adaptive framework for welding defect detection that systematically evaluates various pre-trained architectures, transfer learning strategies, and adaptive optimizers to identify the best-performing model and hyperparameters, optimizing defect detection and providing actionable insights. Additionally, a novel Defect Detection Interpretability Analysis (DDIA) framework is proposed to enhance system transparency. DDIA employs Explainable AI (XAI) techniques, such as Grad-CAM and LIME, alongside domain-specific evaluations validated by certified ASNT NDE Level II professionals. Incorporating a Human-in-the-Loop (HITL) approach and aligning with the principles of Trustworthy AI, DDIA ensures the reliability, fairness, and accountability of the defect detection system, fostering confidence in automated decisions through expert validation. By improving both performance and interpretability, this work enhances trust, safety, and reliability in welding defect detection systems, supporting critical operations in offshore and marine environments.
♻ ☆ Rethinking the Bias of Foundation Model under Long-tailed Distribution ICML 2025
Long-tailed learning has garnered increasing attention due to its practical significance. Among the various approaches, the fine-tuning paradigm has gained considerable interest with the advent of foundation models. However, most existing methods primarily focus on leveraging knowledge from these models, overlooking the inherent biases introduced by the imbalanced training data they rely on. In this paper, we examine how such imbalances from pre-training affect long-tailed downstream tasks. Specifically, we find the imbalance biases inherited in foundation models on downstream task as parameter imbalance and data imbalance. During fine-tuning, we observe that parameter imbalance plays a more critical role, while data imbalance can be mitigated using existing re-balancing strategies. Moreover, we find that parameter imbalance cannot be effectively addressed by current re-balancing techniques, such as adjusting the logits, during training, unlike data imbalance. To tackle both imbalances simultaneously, we build our method on causal learning and view the incomplete semantic factor as the confounder, which brings spurious correlations between input samples and labels. To resolve the negative effects of this, we propose a novel backdoor adjustment method that learns the true causal effect between input samples and labels, rather than merely fitting the correlations in the data. Notably, we achieve an average performance increase of about $1.67\%$ on each dataset. Code is available: https://github.com/JiahaoChen1/Pre-train-Imbalance
comment: Published as a conference paper in ICML 2025
♻ ☆ X-VFL: A New Vertical Federated Learning Framework with Cross Completion and Decision Subspace Alignment
Vertical Federated Learning (VFL) enables collaborative learning by integrating disjoint feature subsets from multiple clients/parties. However, VFL typically faces two key challenges: i) the requirement for perfectly aligned data samples across all clients (missing features are not allowed); ii) the requirement for joint collaborative inference/prediction involving all clients (it does not support locally independent inference on a single client). To address these challenges, we propose X-VFL, a new VFL framework designed to deal with the non-aligned data samples with (partially) missing features and to support locally independent inference of new data samples for each client. In particular, we design two novel modules in X-VFL: Cross Completion (XCom) and Decision Subspace Alignment (DS-Align). XCom can complete/reconstruct missing features for non-aligned data samples by leveraging information from other clients. DS-Align aligns local features with completed and global features across all clients within the decision subspace, thus enabling locally independent inference at each client. Moreover, we provide convergence theorems for different algorithms used in training X-VFL, showing an $O(1/\sqrt{T})$ convergence rate for SGD-type algorithms and an $O(1/T)$ rate for PAGE-type algorithms, where $T$ denotes the number of training update steps. Extensive experiments on real-world datasets demonstrate that X-VFL significantly outperforms existing methods, e.g., achieving a 15% improvement in accuracy on the image CIFAR-10 dataset and a 43% improvement on the medical MIMIC-III dataset. These results validate the practical effectiveness and superiority of X-VFL, particularly in scenarios involving partially missing features and locally independent inference.
comment: 20 pages
♻ ☆ MBA-SLAM: Motion Blur Aware Gaussian Splatting SLAM
Emerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual deblur SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs and enhance image deblurring. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
comment: Accepted to TPAMI; Deblur Gaussian Splatting SLAM
♻ ☆ TD3Net: A Temporal Densely Connected Multi-Dilated Convolutional Network for Lipreading
The word-level lipreading approach typically employs a two-stage framework with separate frontend and backend architectures to model dynamic lip movements. Each component has been extensively studied, and in the backend architecture, temporal convolutional networks (TCNs) have been widely adopted in state-of-the-art methods. Recently, dense skip connections have been introduced in TCNs to mitigate the limited density of the receptive field, thereby improving the modeling of complex temporal representations. However, their performance remains constrained owing to potential information loss regarding the continuous nature of lip movements, caused by blind spots in the receptive field. To address this limitation, we propose TD3Net, a temporal densely connected multi-dilated convolutional network that combines dense skip connections and multi-dilated temporal convolutions as the backend architecture. TD3Net covers a wide and dense receptive field without blind spots by applying different dilation factors to skip-connected features. Experimental results on a word-level lipreading task using two large publicly available datasets, Lip Reading in the Wild (LRW) and LRW-1000, indicate that the proposed method achieves performance comparable to state-of-the-art methods. It achieved higher accuracy with fewer parameters and lower floating-point operations compared to existing TCN-based backend architectures. Moreover, visualization results suggest that our approach effectively utilizes diverse temporal features while preserving temporal continuity, presenting notable advantages in lipreading systems. The code is available at our GitHub repository: https://github.com/Leebh-kor/TD3Net-A-Temporal-Densely-Connected-Multi-dilated-Convolutional-Network-for-Lipreading
comment: Accepted for publication in Journal of Visual Communication and Image Representation. DOI: https://doi.org/10.1016/j.jvcir.2025.104540
♻ ☆ A Calibration Tool for Refractive Underwater Vision ICCV 2025
Many underwater applications rely on vision sensors and require proper camera calibration, i.e. knowing the incoming light ray for each pixel in the image. While for the ideal pinhole camera model all viewing rays intersect in a single 3D point, underwater cameras suffer from - possibly multiple - refractions of light rays at the interfaces of water, glass and air. These changes of direction depend on the position and orientation of the camera inside the water-proof housing, as well as on the shape and properties of the optical window, the port, itself. In recent years explicit models for underwater vision behind common ports such as flat or dome port have been proposed, but the underwater community is still lacking a calibration tool which can determine port parameters through refractive calibration. With this work we provide the first open source implementation of an underwater refractive camera calibration toolbox. It allows end-to-end calibration of underwater vision systems, including camera, stereo and housing calibration for systems with dome or flat ports. The implementation is verified using rendered datasets and real-world experiments.
comment: 9 pages, 5 figures, the paper is accepted to the ICCV 2025 Workshop CVAUI-AAMVEM
♻ ☆ MPG-SAM 2: Adapting SAM 2 with Mask Priors and Global Context for Referring Video Object Segmentation ICCV 2025
Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions, which requires the integration of multimodal information and temporal dynamics perception. The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks. However, its application to offline RVOS is challenged by the translation of the text into effective prompts and a lack of global context awareness. In this paper, we propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges. Specifically, MPG-SAM 2 employs a unified multimodal encoder to jointly encode video and textual features, generating semantically aligned video and text embeddings, along with multimodal class tokens. A mask prior generator utilizes the video embeddings and class tokens to create pseudo masks of target objects and global context. These masks are fed into the prompt encoder as dense prompts along with multimodal class tokens as sparse prompts to generate accurate prompts for SAM 2. To provide the online SAM 2 with a global view, we introduce a hierarchical global-historical aggregator, which allows SAM 2 to aggregate global and historical information of target objects at both pixel and object levels, enhancing the target representation and temporal consistency. Extensive experiments on several RVOS benchmarks demonstrate the superiority of MPG-SAM 2 and the effectiveness of our proposed modules. The code is available at https://github.com/rongfu-dsb/MPG-SAM2.
comment: ICCV 2025
♻ ☆ CPT-Interp: Continuous sPatial and Temporal Motion Modeling for 4D Medical Image Interpolation
Motion information from 4D medical imaging offers critical insights into dynamic changes in patient anatomy for clinical assessments and radiotherapy planning and, thereby, enhances the capabilities of 3D image analysis. However, inherent physical and technical constraints of imaging hardware often necessitate a compromise between temporal resolution and image quality. Frame interpolation emerges as a pivotal solution to this challenge. Previous methods often suffer from discretion when they estimate the intermediate motion and execute the forward warping. In this study, we draw inspiration from fluid mechanics to propose a novel approach for continuously modeling patient anatomic motion using implicit neural representation. It ensures both spatial and temporal continuity, effectively bridging Eulerian and Lagrangian specifications together to naturally facilitate continuous frame interpolation. Our experiments across multiple datasets underscore the method's superior accuracy and speed. Furthermore, as a case-specific optimization (training-free) approach, it circumvents the need for extensive datasets and addresses model generalization issues.
comment: This paper has been merged into the new version of arXiv:2405.00430
♻ ☆ CDI: Blind Image Restoration Fidelity Evaluation based on Consistency with Degraded Image
Recent advancements in Blind Image Restoration (BIR) methods, based on Generative Adversarial Networks and Diffusion Models, have significantly improved visual quality. However, they present significant challenges for Image Quality Assessment (IQA), as the existing Full-Reference IQA methods often rate images with high perceptual quality poorly. In this paper, we reassess the Solution Non-Uniqueness and Degradation Indeterminacy issues of BIR, and propose constructing a specific BIR IQA system. In stead of directly comparing a restored image with a reference image, the BIR IQA evaluates fidelity by calculating the Consistency with Degraded Image (CDI). Specifically, we propose a wavelet domain Reference Guided CDI algorithm, which can acquire the consistency with a degraded image for various types without requiring knowledge of degradation parameters. The supported degradation types include down sampling, blur, noise, JPEG and complex combined degradations etc. In addition, we propose a Reference Agnostic CDI, enabling BIR fidelity evaluation without reference images. Finally, in order to validate the rationality of CDI, we create a new Degraded Images Switch Display Comparison Dataset (DISDCD) for subjective evaluation of BIR fidelity. Experiments conducted on DISDCD verify that CDI is markedly superior to common Full Reference IQA methods for BIR fidelity evaluation. The source code and the DISDCD dataset will be publicly available shortly.
♻ ☆ Can Multimodal Large Language Models Understand Spatial Relations? ACL 2025
Spatial relation reasoning is a crucial task for multimodal large language models (MLLMs) to understand the objective world. However, current benchmarks have issues like relying on bounding boxes, ignoring perspective substitutions, or allowing questions to be answered using only the model's prior knowledge without image understanding. To address these issues, we introduce SpatialMQA, a human-annotated spatial relation reasoning benchmark based on COCO2017, which enables MLLMs to focus more on understanding images in the objective world. To ensure data quality, we design a well-tailored annotation procedure, resulting in SpatialMQA consisting of 5,392 samples. Based on this benchmark, a series of closed- and open-source MLLMs are implemented and the results indicate that the current state-of-the-art MLLM achieves only 48.14% accuracy, far below the human-level accuracy of 98.40%. Extensive experimental analyses are also conducted, suggesting the future research directions. The benchmark and codes are available at https://github.com/ziyan-xiaoyu/SpatialMQA.git.
comment: 13 pages, 7 figures, published to ACL 2025
♻ ☆ Neural-Driven Image Editing
Traditional image editing typically relies on manual prompting, making it labor-intensive and inaccessible to individuals with limited motor control or language abilities. Leveraging recent advances in brain-computer interfaces (BCIs) and generative models, we propose LoongX, a hands-free image editing approach driven by multimodal neurophysiological signals. LoongX utilizes state-of-the-art diffusion models trained on a comprehensive dataset of 23,928 image editing pairs, each paired with synchronized electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), photoplethysmography (PPG), and head motion signals that capture user intent. To effectively address the heterogeneity of these signals, LoongX integrates two key modules. The cross-scale state space (CS3) module encodes informative modality-specific features. The dynamic gated fusion (DGF) module further aggregates these features into a unified latent space, which is then aligned with edit semantics via fine-tuning on a diffusion transformer (DiT). Additionally, we pre-train the encoders using contrastive learning to align cognitive states with semantic intentions from embedded natural language. Extensive experiments demonstrate that LoongX achieves performance comparable to text-driven methods (CLIP-I: 0.6605 vs. 0.6558; DINO: 0.4812 vs. 0.4636) and outperforms them when neural signals are combined with speech (CLIP-T: 0.2588 vs. 0.2549). These results highlight the promise of neural-driven generative models in enabling accessible, intuitive image editing and open new directions for cognitive-driven creative technologies. Datasets and code will be released to support future work and foster progress in this emerging area.
comment: 22 pages, 14 figures
♻ ☆ Fine-Grained Image-Text Correspondence with Cost Aggregation for Open-Vocabulary Part Segmentation CVPR 2025
Open-Vocabulary Part Segmentation (OVPS) is an emerging field for recognizing fine-grained parts in unseen categories. We identify two primary challenges in OVPS: (1) the difficulty in aligning part-level image-text correspondence, and (2) the lack of structural understanding in segmenting object parts. To address these issues, we propose PartCATSeg, a novel framework that integrates object-aware part-level cost aggregation, compositional loss, and structural guidance from DINO. Our approach employs a disentangled cost aggregation strategy that handles object and part-level costs separately, enhancing the precision of part-level segmentation. We also introduce a compositional loss to better capture part-object relationships, compensating for the limited part annotations. Additionally, structural guidance from DINO features improves boundary delineation and inter-part understanding. Extensive experiments on Pascal-Part-116, ADE20K-Part-234, and PartImageNet datasets demonstrate that our method significantly outperforms state-of-the-art approaches, setting a new baseline for robust generalization to unseen part categories.
comment: CVPR 2025
♻ ☆ CMIC: Content-Adaptive Mamba for Learned Image Compression
Recent Learned image compression (LIC) leverages Mamba-style state-space models (SSMs) for global receptive fields with linear complexity. However, vanilla Mamba is content-agnostic, relying on fixed and predefined selective scans, which restricts its ability to dynamically and fully exploit content dependencies. We introduce Content-Adaptive Mamba (CAM), a dynamic SSM that addresses two critical limitations. First, it employs content-aware token reorganization, clustering and reordering tokens based on content similarity to prioritize proximity in feature space over Euclidean space. Second, it integrates global priors into SSM via a prompt dictionary, effectively mitigating the strict causality and long-range decay in the token interactions of Mamba. These innovations enable CAM to better capture global dependencies while preserving computational efficiency. Leveraging CAM, our Content-Adaptive Mamba-based LIC model (CMIC) achieves state-of-the-art rate-distortion performance, surpassing VTM-21.0 by -15.91\%, -21.34\%, and -17.58\% BD-rate on Kodak, Tecnick, and CLIC benchmarks, respectively.
♻ ☆ Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence
Current data-driven methodologies for point cloud matching demand extensive training time and computational resources, presenting significant challenges for model deployment and application. In the point cloud matching task, recent advancements with an encoder-only Transformer architecture have revealed the emergence of semantically meaningful patterns in the attention heads, particularly resembling Gaussian functions centered on each point of the input shape. In this work, we further investigate this phenomenon by integrating these patterns as fixed attention weights within the attention heads of the Transformer architecture. We evaluate two variants: one utilizing predetermined variance values for the Gaussians, and another where the variance values are treated as learnable parameters. Additionally we analyze the performances on noisy data and explore a possible way to improve robustness to noise. Our findings demonstrate that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization. Furthermore, we conducted an ablation study to identify the specific layers where the infused information is most impactful and to understand the reliance of the network on this information.
♻ ☆ MESAHA-Net: Multi-Encoders based Self-Adaptive Hard Attention Network with Maximum Intensity Projections for Lung Nodule Segmentation in CT Scan
Accurate lung nodule segmentation is crucial for early-stage lung cancer diagnosis, as it can substantially enhance patient survival rates. Computed tomography (CT) images are widely employed for early diagnosis in lung nodule analysis. However, the heterogeneity of lung nodules, size diversity, and the complexity of the surrounding environment pose challenges for developing robust nodule segmentation methods. In this study, we propose an efficient end-to-end framework, the multi-encoder-based self-adaptive hard attention network (MESAHA-Net), for precise lung nodule segmentation in CT scans. MESAHA-Net comprises three encoding paths, an attention block, and a decoder block, facilitating the integration of three types of inputs: CT slice patches, forward and backward maximum intensity projection (MIP) images, and region of interest (ROI) masks encompassing the nodule. By employing a novel adaptive hard attention mechanism, MESAHA-Net iteratively performs slice-by-slice 2D segmentation of lung nodules, focusing on the nodule region in each slice to generate 3D volumetric segmentation of lung nodules. The proposed framework has been comprehensively evaluated on the LIDC-IDRI dataset, the largest publicly available dataset for lung nodule segmentation. The results demonstrate that our approach is highly robust for various lung nodule types, outperforming previous state-of-the-art techniques in terms of segmentation accuracy and computational complexity, rendering it suitable for real-time clinical implementation.
♻ ☆ DanceGRPO: Unleashing GRPO on Visual Generation
Recent advances in generative AI have revolutionized visual content creation, yet aligning model outputs with human preferences remains a critical challenge. While Reinforcement Learning (RL) has emerged as a promising approach for fine-tuning generative models, existing methods like DDPO and DPOK face fundamental limitations - particularly their inability to maintain stable optimization when scaling to large and diverse prompt sets, severely restricting their practical utility. This paper presents DanceGRPO, a framework that addresses these limitations through an innovative adaptation of Group Relative Policy Optimization (GRPO) for visual generation tasks. Our key insight is that GRPO's inherent stability mechanisms uniquely position it to overcome the optimization challenges that plague prior RL-based approaches on visual generation. DanceGRPO establishes several significant advances: First, it demonstrates consistent and stable policy optimization across multiple modern generative paradigms, including both diffusion models and rectified flows. Second, it maintains robust performance when scaling to complex, real-world scenarios encompassing three key tasks and four foundation models. Third, it shows remarkable versatility in optimizing for diverse human preferences as captured by five distinct reward models assessing image/video aesthetics, text-image alignment, video motion quality, and binary feedback. Our comprehensive experiments reveal that DanceGRPO outperforms baseline methods by up to 181\% across multiple established benchmarks, including HPS-v2.1, CLIP Score, VideoAlign, and GenEval. Our results establish DanceGRPO as a robust and versatile solution for scaling Reinforcement Learning from Human Feedback (RLHF) tasks in visual generation, offering new insights into harmonizing reinforcement learning and visual synthesis.
comment: Project Page: https://dancegrpo.github.io/
♻ ☆ CARE: Enhancing Safety of Visual Navigation through Collision Avoidance via Repulsive Estimation
We propose CARE (Collision Avoidance via Repulsive Estimation) to improve the robustness of learning-based visual navigation methods. Recently, visual navigation models, particularly foundation models, have demonstrated promising performance by generating viable trajectories using only RGB images. However, these policies can generalize poorly to environments containing out-of-distribution (OOD) scenes characterized by unseen objects or different camera setups (e.g., variations in field of view, camera pose, or focal length). Without fine-tuning, such models could produce trajectories that lead to collisions, necessitating substantial efforts in data collection and additional training. To address this limitation, we introduce CARE, an attachable module that enhances the safety of visual navigation without requiring additional range sensors or fine-tuning of pretrained models. CARE can be integrated seamlessly into any RGB-based navigation model that generates local robot trajectories. It dynamically adjusts trajectories produced by a pretrained model using repulsive force vectors computed from depth images estimated directly from RGB inputs. We evaluate CARE by integrating it with state-of-the-art visual navigation models across diverse robot platforms. Real-world experiments show that CARE significantly reduces collisions (up to 100%) without compromising navigation performance in goal-conditioned navigation, and further improves collision-free travel distance (up to 10.7x) in exploration tasks. Project page: https://airlab-sogang.github.io/CARE/
comment: 16 pages, 6 figures
♻ ☆ DAVSP: Safety Alignment for Large Vision-Language Models via Deep Aligned Visual Safety Prompt
Large Vision-Language Models (LVLMs) have achieved impressive progress across various applications but remain vulnerable to malicious queries that exploit the visual modality. Existing alignment approaches typically fail to resist malicious queries while preserving utility on benign ones effectively. To address these challenges, we propose Deep Aligned Visual Safety Prompt (DAVSP), which is built upon two key innovations. First, we introduce the Visual Safety Prompt, which appends a trainable padding region around the input image. It preserves visual features and expands the optimization space. Second, we propose Deep Alignment, a novel approach to train the visual safety prompt through supervision in the model's activation space. It enhances the inherent ability of LVLMs to perceive malicious queries, achieving deeper alignment than prior works. Extensive experiments across five benchmarks on two representative LVLMs demonstrate that DAVSP effectively resists malicious queries while preserving benign input utility. Furthermore, DAVSP exhibits great cross-model generation ability. Ablation studies further reveal that both the Visual Safety Prompt and Deep Alignment are essential components, jointly contributing to its overall effectiveness. The code is publicly available at https://github.com/zhangyitonggg/DAVSP.
comment: 16 pages
♻ ☆ Embodied Intelligence for 3D Understanding: A Survey on 3D Scene Question Answering
3D Scene Question Answering (3D SQA) represents an interdisciplinary task that integrates 3D visual perception and natural language processing, empowering intelligent agents to comprehend and interact with complex 3D environments. Recent advances in large multimodal modelling have driven the creation of diverse datasets and spurred the development of instruction-tuning and zero-shot methods for 3D SQA. However, this rapid progress introduces challenges, particularly in achieving unified analysis and comparison across datasets and baselines. In this survey, we provide the first comprehensive and systematic review of 3D SQA. We organize existing work from three perspectives: datasets, methodologies, and evaluation metrics. Beyond basic categorization, we identify shared architectural patterns across methods. Our survey further synthesizes core limitations and discusses how current trends, such as instruction tuning, multimodal alignment, and zero-shot, can shape future developments. Finally, we propose a range of promising research directions covering dataset construction, task generalization, interaction modeling, and unified evaluation protocols. This work aims to serve as a foundation for future research and foster progress toward more generalizable and intelligent 3D SQA systems.
comment: This is a submitted version of a paper accepted by Information Fusion
♻ ☆ Survival Modeling from Whole Slide Images via Patch-Level Graph Clustering and Mixture Density Experts
We introduce a modular framework for predicting cancer-specific survival from whole slide pathology images (WSIs) that significantly improves upon the state-of-the-art accuracy. Our method integrating four key components. Firstly, to tackle large size of WSIs, we use dynamic patch selection via quantile-based thresholding for isolating prognostically informative tissue regions. Secondly, we use graph-guided k-means clustering to capture phenotype-level heterogeneity through spatial and morphological coherence. Thirdly, we use attention mechanisms that model both intra- and inter-cluster relationships to contextualize local features within global spatial relations between various types of tissue compartments. Finally, we use an expert-guided mixture density modeling for estimating complex survival distributions using Gaussian mixture models. The proposed model achieves a concordance index of $0.712 \pm 0.028$ and Brier score of $0.254 \pm 0.018$ on TCGA-KIRC (renal cancer), and a concordance index of $0.645 \pm 0.017$ and Brier score of $0.281 \pm 0.031$ on TCGA-LUAD (lung adenocarcinoma). These results are significantly better than the state-of-art and demonstrate predictive potential of the proposed method across diverse cancer types.
♻ ☆ POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction
3D reconstruction in dynamic scenes primarily relies on the combination of geometry estimation and matching modules where the latter task is pivotal for distinguishing dynamic regions which can help to mitigate the interference introduced by camera and object motion. Furthermore, the matching module explicitly models object motion, enabling the tracking of specific targets and advancing motion understanding in complex scenarios. Recently, the proposed representation of pointmap in DUSt3R suggests a potential solution to unify both geometry estimation and matching in 3D space, but it still struggles with ambiguous matching in dynamic regions, which may hamper further improvement. In this work, we present POMATO, a unified framework for dynamic 3D reconstruction by marrying pointmap matching with temporal motion. Specifically, our method first learns an explicit matching relationship by mapping RGB pixels from both dynamic and static regions across different views to 3D pointmaps within a unified coordinate system. Furthermore, we introduce a temporal motion module for dynamic motions that ensures scale consistency across different frames and enhances performance in tasks requiring both precise geometry and reliable matching, most notably 3D point tracking. We show the effectiveness of the proposed pointmap matching and temporal fusion paradigm by demonstrating the remarkable performance across multiple downstream tasks, including video depth estimation, 3D point tracking, and pose estimation. Code and models are publicly available at https://github.com/wyddmw/POMATO.
comment: code: https://github.com/wyddmw/POMATO
♻ ☆ Hybrid-TTA: Continual Test-time Adaptation via Dynamic Domain Shift Detection ICCV 2025
Continual Test Time Adaptation (CTTA) has emerged as a critical approach for bridging the domain gap between the controlled training environments and the real-world scenarios, enhancing model adaptability and robustness. Existing CTTA methods, typically categorized into Full-Tuning (FT) and Efficient-Tuning (ET), struggle with effectively addressing domain shifts. To overcome these challenges, we propose Hybrid-TTA, a holistic approach that dynamically selects instance-wise tuning method for optimal adaptation. Our approach introduces the Dynamic Domain Shift Detection (DDSD) strategy, which identifies domain shifts by leveraging temporal correlations in input sequences and dynamically switches between FT and ET to adapt to varying domain shifts effectively. Additionally, the Masked Image Modeling based Adaptation (MIMA) framework is integrated to ensure domain-agnostic robustness with minimal computational overhead. Our Hybrid-TTA achieves a notable 1.6%p improvement in mIoU on the Cityscapes-to-ACDC benchmark dataset, surpassing previous state-of-the-art methods and offering a robust solution for real-world continual adaptation challenges.
comment: Accepted by ICCV 2025
♻ ☆ InterAct-Video: Reasoning-Rich Video QA for Urban Traffic
Traffic monitoring is crucial for urban mobility, road safety, and intelligent transportation systems (ITS). Deep learning has advanced video-based traffic monitoring through video question answering (VideoQA) models, enabling structured insight extraction from traffic videos. However, existing VideoQA models struggle with the complexity of real-world traffic scenes, where multiple concurrent events unfold across spatiotemporal dimensions. To address these challenges, this paper introduces \textbf{InterAct VideoQA}, a curated dataset designed to benchmark and enhance VideoQA models for traffic monitoring tasks. The InterAct VideoQA dataset comprises 8 hours of real-world traffic footage collected from diverse intersections, segmented into 10-second video clips, with over 25,000 question-answer (QA) pairs covering spatiotemporal dynamics, vehicle interactions, incident detection, and other critical traffic attributes. State-of-the-art VideoQA models are evaluated on InterAct VideoQA, exposing challenges in reasoning over fine-grained spatiotemporal dependencies within complex traffic scenarios. Additionally, fine-tuning these models on InterAct VideoQA yields notable performance improvements, demonstrating the necessity of domain-specific datasets for VideoQA. InterAct VideoQA is publicly available as a benchmark dataset to facilitate future research in real-world deployable VideoQA models for intelligent transportation systems. GitHub Repo: https://github.com/joe-rabbit/InterAct_VideoQA
♻ ☆ AVA-Bench: Atomic Visual Ability Benchmark for Vision Foundation Models
The rise of vision foundation models (VFMs) calls for systematic evaluation. A common approach pairs VFMs with large language models (LLMs) as general-purpose heads, followed by evaluation on broad Visual Question Answering (VQA) benchmarks. However, this protocol has two key blind spots: (i) the instruction tuning data may not align with VQA test distributions, meaning a wrong prediction can stem from such data mismatch rather than a VFM' visual shortcomings; (ii) VQA benchmarks often require multiple visual abilities, making it hard to tell whether errors stem from lacking all required abilities or just a single critical one. To address these gaps, we introduce AVA-Bench, the first benchmark that explicitly disentangles 14 Atomic Visual Abilities (AVAs) -- foundational skills like localization, depth estimation, and spatial understanding that collectively support complex visual reasoning tasks. By decoupling AVAs and matching training and test distributions within each, AVA-Bench pinpoints exactly where a VFM excels or falters. Applying AVA-Bench to leading VFMs thus reveals distinctive "ability fingerprints," turning VFM selection from educated guesswork into principled engineering. Notably, we find that a 0.5B LLM yields similar VFM rankings as a 7B LLM while cutting GPU hours by 8x, enabling more efficient evaluation. By offering a comprehensive and transparent benchmark, we hope AVA-Bench lays the foundation for the next generation of VFMs.
comment: First two authors contribute equally
♻ ☆ A dataset of primary nasopharyngeal carcinoma MRI with multi-modalities segmentation
Multi-modality magnetic resonance imaging(MRI) data facilitate the early diagnosis, tumor segmentation, and disease staging in the management of nasopharyngeal carcinoma (NPC). The lack of publicly available, comprehensive datasets limits advancements in diagnosis, treatment planning, and the development of machine learning algorithms for NPC. Addressing this critical need, we introduce the first comprehensive NPC MRI dataset, encompassing MR axial imaging of 277 primary NPC patients. This dataset includes T1-weighted, T2-weighted, and contrast-enhanced T1-weighted sequences, totaling 831 scans. In addition to the corresponding clinical data, manually annotated and labeled segmentations by experienced radiologists offer high-quality data resources from untreated primary NPC.
comment: This preprint has been submitted to and accepted in principle for publication in Scientific Data without significant changes
♻ ☆ RetinexDual: Retinex-based Dual Nature Approach for Generalized Ultra-High-Definition Image Restoration
Advancements in image sensing have elevated the importance of Ultra-High-Definition Image Restoration (UHD IR). Traditional methods, such as extreme downsampling or transformation from the spatial to the frequency domain, encounter significant drawbacks: downsampling induces irreversible information loss in UHD images, while our frequency analysis reveals that pure frequency-domain approaches are ineffective for spatially confined image artifacts, primarily due to the loss of degradation locality. To overcome these limitations, we present RetinexDual, a novel Retinex theory-based framework designed for generalized UHD IR tasks. RetinexDual leverages two complementary sub-networks: the Scale-Attentive maMBA (SAMBA) and the Frequency Illumination Adaptor (FIA). SAMBA, responsible for correcting the reflectance component, utilizes a coarse-to-fine mechanism to overcome the causal modeling of mamba, which effectively reduces artifacts and restores intricate details. On the other hand, FIA ensures precise correction of color and illumination distortions by operating in the frequency domain and leveraging the global context provided by it. Evaluating RetinexDual on four UHD IR tasks, namely deraining, deblurring, dehazing, and Low-Light Image Enhancement (LLIE), shows that it outperforms recent methods qualitatively and quantitatively. Ablation studies demonstrate the importance of employing distinct designs for each branch in RetinexDual, as well as the effectiveness of its various components.
♻ ☆ CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction ICRA 2025
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
comment: Accepted to ICRA 2025, project page https://worv-ai.github.io/canvas
♻ ☆ Trustworthy Pedestrian Trajectory Prediction via Pattern-Aware Interaction Modeling
Accurate and reliable pedestrian trajectory prediction is critical for the safety and robustness of intelligent applications, yet achieving trustworthy prediction remains highly challenging due to the complexity of interactions among pedestrians. Previous methods often adopt black-box modeling of pedestrian interactions, treating all neighbors uniformly. Despite their strong performance, such opaque modeling limits the reliability of predictions in safety-critical real-world deployments. To address this issue, we propose InSyn (Interaction-Synchronization Network), a novel Transformer-based model that explicitly captures diverse interaction patterns (e.g., walking in sync or conflicting) while effectively modeling direction-sensitive social behaviors. Additionally, we introduce a training strategy, termed Seq-Start of Seq (SSOS), designed to alleviate the common issue of initial-step divergence in numerical time-series prediction. Experiments on the ETH and UCY datasets demonstrate that our model not only outperforms recent black-box baselines in prediction accuracy, especially under high-density scenarios, but also provides stronger interpretability, achieving a favorable trade-off between reliability and accuracy. Furthermore, the SSOS strategy proves to be effective in improving sequential prediction performance, reducing the initial-step prediction error by approximately 6.58%.
♻ ☆ Dome-DETR: DETR with Density-Oriented Feature-Query Manipulation for Efficient Tiny Object Detection
Tiny object detection plays a vital role in drone surveillance, remote sensing, and autonomous systems, enabling the identification of small targets across vast landscapes. However, existing methods suffer from inefficient feature leverage and high computational costs due to redundant feature processing and rigid query allocation. To address these challenges, we propose Dome-DETR, a novel framework with Density-Oriented Feature-Query Manipulation for Efficient Tiny Object Detection. To reduce feature redundancies, we introduce a lightweight Density-Focal Extractor (DeFE) to produce clustered compact foreground masks. Leveraging these masks, we incorporate Masked Window Attention Sparsification (MWAS) to focus computational resources on the most informative regions via sparse attention. Besides, we propose Progressive Adaptive Query Initialization (PAQI), which adaptively modulates query density across spatial areas for better query allocation. Extensive experiments demonstrate that Dome-DETR achieves state-of-the-art performance (+3.3 AP on AI-TOD-V2 and +2.5 AP on VisDrone) while maintaining low computational complexity and a compact model size. Code is available at https://github.com/RicePasteM/Dome-DETR.
comment: Accepted by ACM Multimedia 2025
♻ ☆ CF3: Compact and Fast 3D Feature Fields ICCV 2025
3D Gaussian Splatting (3DGS) has begun incorporating rich information from 2D foundation models. However, most approaches rely on a bottom-up optimization process that treats raw 2D features as ground truth, incurring increased computational costs. We propose a top-down pipeline for constructing compact and fast 3D Gaussian feature fields, namely, CF3. We first perform a fast weighted fusion of multi-view 2D features with pre-trained Gaussians. This approach enables training a per-Gaussian autoencoder directly on the lifted features, instead of training autoencoders in the 2D domain. As a result, the autoencoder better aligns with the feature distribution. More importantly, we introduce an adaptive sparsification method that optimizes the Gaussian attributes of the feature field while pruning and merging the redundant Gaussians, constructing an efficient representation with preserved geometric details. Our approach achieves a competitive 3D feature field using as little as 5% of the Gaussians compared to Feature-3DGS.
comment: ICCV 2025
♻ ☆ FLUX-Text: A Simple and Advanced Diffusion Transformer Baseline for Scene Text Editing
Scene text editing aims to modify or add texts on images while ensuring text fidelity and overall visual quality consistent with the background. Recent methods are primarily built on UNet-based diffusion models, which have improved scene text editing results, but still struggle with complex glyph structures, especially for non-Latin ones (\eg, Chinese, Korean, Japanese). To address these issues, we present \textbf{FLUX-Text}, a simple and advanced multilingual scene text editing DiT method. Specifically, our FLUX-Text enhances glyph understanding and generation through lightweight Visual and Text Embedding Modules, while preserving the original generative capability of FLUX. We further propose a Regional Text Perceptual Loss tailored for text regions, along with a matching two-stage training strategy to better balance text editing and overall image quality. Benefiting from the DiT-based architecture and lightweight feature injection modules, FLUX-Text can be trained with only $0.1$M training examples, a \textbf{97\%} reduction compared to $2.9$M required by popular methods. Extensive experiments on multiple public datasets, including English and Chinese benchmarks, demonstrate that our method surpasses other methods in visual quality and text fidelity. All the code is available at https://github.com/AMAP-ML/FluxText.
comment: 10 pages, 5 figures
♻ ☆ Direct Robot Configuration Space Construction using Convolutional Encoder-Decoders ICML 2025
Intelligent robots must be able to perform safe and efficient motion planning in their environments. Central to modern motion planning is the configuration space. Configuration spaces define the set of configurations of a robot that result in collisions with obstacles in the workspace, $\text{C}_{\text{clsn}}$, and the set of configurations that do not, $\text{C}_{\text{free}}$. Modern approaches to motion planning first compute the configuration space and then perform motion planning using the calculated configuration space. Real-time motion planning requires accurate and efficient construction of configuration spaces. We are the first to apply a convolutional encoder-decoder framework for calculating highly accurate approximations to configuration spaces, essentially learning how the robot and physical world interact. Our model achieves an average 97.5% F1-score for predicting $\text{C}_{\text{free}}$ and $\text{C}_{\text{clsn}}$ for 2-D robotic workspaces with a dual-arm robot. Our method limits undetected collisions to less than 2.5% on robotic workspaces that involve translation, rotation, and removal of obstacles. Our model learns highly transferable features between robotic workspaces, requiring little to no fine-tuning to adapt to new transformations of obstacles in the workspace.
comment: 8 pages, 7 figures, 4 tables; Appeared at the ICML 2025 Workshop on Building Physically Plausible World Models
♻ ☆ Extending Foundational Monocular Depth Estimators to Fisheye Cameras with Calibration Tokens
We propose a method to extend foundational monocular depth estimators (FMDEs), trained on perspective images, to fisheye images. Despite being trained on tens of millions of images, FMDEs are susceptible to the covariate shift introduced by changes in camera calibration (intrinsic, distortion) parameters, leading to erroneous depth estimates. Our method aligns the distribution of latent embeddings encoding fisheye images to those of perspective images, enabling the reuse of FMDEs for fisheye cameras without retraining or finetuning. To this end, we introduce a set of Calibration Tokens as a light-weight adaptation mechanism that modulates the latent embeddings for alignment. By exploiting the already expressive latent space of FMDEs, we posit that modulating their embeddings avoids the negative impact of artifacts and loss introduced in conventional recalibration or map projection to a canonical reference frame in the image space. Our method is self-supervised and does not require fisheye images but leverages publicly available large-scale perspective image datasets. This is done by recalibrating perspective images to fisheye images, and enforcing consistency between their estimates during training. We evaluate our approach with several FMDEs, on both indoors and outdoors, where we consistently improve over state-of-the-art methods using a single set of tokens for both. Code available at: https://github.com/JungHeeKim29/calibration-token.
♻ ☆ MetaOcc: Spatio-Temporal Fusion of Surround-View 4D Radar and Camera for 3D Occupancy Prediction with Dual Training Strategies
Robust 3D occupancy prediction is essential for autonomous driving, particularly under adverse weather conditions where traditional vision-only systems struggle. While the fusion of surround-view 4D radar and cameras offers a promising low-cost solution, effectively extracting and integrating features from these heterogeneous sensors remains challenging. This paper introduces MetaOcc, a novel multi-modal framework for omnidirectional 3D occupancy prediction that leverages both multi-view 4D radar and images. To address the limitations of directly applying LiDAR-oriented encoders to sparse radar data, we propose a Radar Height Self-Attention module that enhances vertical spatial reasoning and feature extraction. Additionally, a Hierarchical Multi-scale Multi-modal Fusion strategy is developed to perform adaptive local-global fusion across modalities and time, mitigating spatio-temporal misalignments and enriching fused feature representations. To reduce reliance on expensive point cloud annotations, we further propose a pseudo-label generation pipeline based on an open-set segmentor. This enables a semi-supervised strategy that achieves 90% of the fully supervised performance using only 50% of the ground truth labels, offering an effective trade-off between annotation cost and accuracy. Extensive experiments demonstrate that MetaOcc under full supervision achieves state-of-the-art performance, outperforming previous methods by +0.47 SC IoU and +4.02 mIoU on the OmniHD-Scenes dataset, and by +1.16 SC IoU and +1.24 mIoU on the SurroundOcc-nuScenes dataset. These results demonstrate the scalability and robustness of MetaOcc across sensor domains and training conditions, paving the way for practical deployment in real-world autonomous systems. Code and data are available at https://github.com/LucasYang567/MetaOcc.
♻ ☆ COIN: Confidence Score-Guided Distillation for Annotation-Free Cell Segmentation ICCV 2025
Cell instance segmentation (CIS) is crucial for identifying individual cell morphologies in histopathological images, providing valuable insights for biological and medical research. While unsupervised CIS (UCIS) models aim to reduce the heavy reliance on labor-intensive image annotations, they fail to accurately capture cell boundaries, causing missed detections and poor performance. Recognizing the absence of error-free instances as a key limitation, we present COIN (COnfidence score-guided INstance distillation), a novel annotation-free framework with three key steps: (1) Increasing the sensitivity for the presence of error-free instances via unsupervised semantic segmentation with optimal transport, leveraging its ability to discriminate spatially minor instances, (2) Instance-level confidence scoring to measure the consistency between model prediction and refined mask and identify highly confident instances, offering an alternative to ground truth annotations, and (3) Progressive expansion of confidence with recursive self-distillation. Extensive experiments across six datasets show COIN outperforming existing UCIS methods, even surpassing semi- and weakly-supervised approaches across all metrics on the MoNuSeg and TNBC datasets. The code is available at https://github.com/shjo-april/COIN.
comment: Accepted at ICCV 2025
♻ ☆ Can Large Pretrained Depth Estimation Models Help With Image Dehazing?
Image dehazing remains a challenging problem due to the spatially varying nature of haze in real-world scenes. While existing methods have demonstrated the promise of large-scale pretrained models for image dehazing, their architecture-specific designs hinder adaptability across diverse scenarios with different accuracy and efficiency requirements. In this work, we systematically investigate the generalization capability of pretrained depth representations-learned from millions of diverse images-for image dehazing. Our empirical analysis reveals that the learned deep depth features maintain remarkable consistency across varying haze levels. Building on this insight, we propose a plug-and-play RGB-D fusion module that seamlessly integrates with diverse dehazing architectures. Extensive experiments across multiple benchmarks validate both the effectiveness and broad applicability of our approach.
♻ ☆ SPA++: Generalized Graph Spectral Alignment for Versatile Domain Adaptation
Domain Adaptation (DA) aims to transfer knowledge from a labeled source domain to an unlabeled or sparsely labeled target domain under domain shifts. Most prior works focus on capturing the inter-domain transferability but largely overlook rich intra-domain structures, which empirically results in even worse discriminability. To tackle this tradeoff, we propose a generalized graph SPectral Alignment framework, SPA++. Its core is briefly condensed as follows: (1)-by casting the DA problem to graph primitives, it composes a coarse graph alignment mechanism with a novel spectral regularizer toward aligning the domain graphs in eigenspaces; (2)-we further develop a fine-grained neighbor-aware propagation mechanism for enhanced discriminability in the target domain; (3)-by incorporating data augmentation and consistency regularization, SPA++ can adapt to complex scenarios including most DA settings and even challenging distribution scenarios. Furthermore, we also provide theoretical analysis to support our method, including the generalization bound of graph-based DA and the role of spectral alignment and smoothing consistency. Extensive experiments on benchmark datasets demonstrate that SPA++ consistently outperforms existing cutting-edge methods, achieving superior robustness and adaptability across various challenging adaptation scenarios.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-025-50328-w}. It is an extended journal version of the conference paper arXiv:2310.17594
Information Retrieval 18
☆ Maximum Impact with Fewer Features: Efficient Feature Selection for Cold-Start Recommenders through Collaborative Importance Weighting
Cold-start challenges in recommender systems necessitate leveraging auxiliary features beyond user-item interactions. However, the presence of irrelevant or noisy features can degrade predictive performance, whereas an excessive number of features increases computational demands, leading to higher memory consumption and prolonged training times. To address this, we propose a feature selection strategy that prioritizes the user behavioral information. Our method enhances the feature representation by incorporating correlations from collaborative behavior data using a hybrid matrix factorization technique and then ranks features using a mechanism based on the maximum volume algorithm. This approach identifies the most influential features, striking a balance between recommendation accuracy and computational efficiency. We conduct an extensive evaluation across various datasets and hybrid recommendation models, demonstrating that our method excels in cold-start scenarios by selecting minimal yet highly effective feature subsets. Even under strict feature reduction, our approach surpasses existing feature selection techniques while maintaining superior efficiency.
☆ eSASRec: Enhancing Transformer-based Recommendations in a Modular Fashion RecSys 2025
Since their introduction, Transformer-based models, such as SASRec and BERT4Rec, have become common baselines for sequential recommendations, surpassing earlier neural and non-neural methods. A number of following publications have shown that the effectiveness of these models can be improved by, for example, slightly updating the architecture of the Transformer layers, using better training objectives, and employing improved loss functions. However, the additivity of these modular improvements has not been systematically benchmarked - this is the gap we aim to close in this paper. Through our experiments, we identify a very strong model that uses SASRec's training objective, LiGR Transformer layers, and Sampled Softmax Loss. We call this combination eSASRec (Enhanced SASRec). While we primarily focus on realistic, production-like evaluation, in our preliminarily study we find that common academic benchmarks show eSASRec to be 23% more effective compared to the most recent state-of-the-art models, such as ActionPiece. In our main production-like benchmark, eSASRec resides on the Pareto frontier in terms of the accuracy-coverage tradeoff (alongside the recent industrial models HSTU and FuXi. As the modifications compared to the original SASRec are relatively straightforward and no extra features are needed (such as timestamps in HSTU), we believe that eSASRec can be easily integrated into existing recommendation pipelines and can can serve as a strong yet very simple baseline for emerging complicated algorithms. To facilitate this, we provide the open-source implementations for our models and benchmarks in repository https://github.com/blondered/transformer_benchmark
comment: Accepted at ACM RecSys 2025
☆ A Systematic Literature Review of Retrieval-Augmented Generation: Techniques, Metrics, and Challenges
This systematic review of the research literature on retrieval-augmented generation (RAG) provides a focused analysis of the most highly cited studies published between 2020 and May 2025. A total of 128 articles met our inclusion criteria. The records were retrieved from ACM Digital Library, IEEE Xplore, Scopus, ScienceDirect, and the Digital Bibliography and Library Project (DBLP). RAG couples a neural retriever with a generative language model, grounding output in up-to-date, non-parametric memory while retaining the semantic generalisation stored in model weights. Guided by the PRISMA 2020 framework, we (i) specify explicit inclusion and exclusion criteria based on citation count and research questions, (ii) catalogue datasets, architectures, and evaluation practices, and (iii) synthesise empirical evidence on the effectiveness and limitations of RAG. To mitigate citation-lag bias, we applied a lower citation-count threshold to papers published in 2025 so that emerging breakthroughs with naturally fewer citations were still captured. This review clarifies the current research landscape, highlights methodological gaps, and charts priority directions for future research.
comment: 58 pages
☆ M2IO-R1: An Efficient RL-Enhanced Reasoning Framework for Multimodal Retrieval Augmented Multimodal Generation
Current research on Multimodal Retrieval-Augmented Generation (MRAG) enables diverse multimodal inputs but remains limited to single-modality outputs, restricting expressive capacity and practical utility. In contrast, real-world applications often demand both multimodal inputs and multimodal outputs for effective communication and grounded reasoning. Motivated by the recent success of Reinforcement Learning (RL) in complex reasoning tasks for Large Language Models (LLMs), we adopt RL as a principled and effective paradigm to address the multi-step, outcome-driven challenges inherent in multimodal output generation. Here, we introduce M2IO-R1, a novel framework for Multimodal Retrieval-Augmented Multimodal Generation (MRAMG) that supports both multimodal inputs and outputs. Central to our framework is an RL-based inserter, Inserter-R1-3B, trained with Group Relative Policy Optimization to guide image selection and placement in a controllable and semantically aligned manner. Empirical results show that our lightweight 3B inserter achieves strong reasoning capabilities with significantly reduced latency, outperforming baselines in both quality and efficiency.
☆ Improving Table Retrieval with Question Generation from Partial Tables ACL2025
Recent advances in open-domain question answering over tables have widely adopted large language models (LLMs) under the Retriever-Reader architecture. Prior works have effectively leveraged LLMs to tackle the complex reasoning demands of the Reader component, such as text-to-text, text-to-SQL, and multi hop reasoning. In contrast, the Retriever component has primarily focused on optimizing the query representation-training retrievers to retrieve relevant tables based on questions, or to select keywords from questions for matching table segments. However, little attention has been given to enhancing how tables themselves are represented in embedding space to better align with questions. To address this, we propose QGpT (Question Generation from Partial Tables), a simple yet effective method that uses an LLM to generate synthetic questions based on small portions of a table. These questions are generated to simulate how a user might query the content of the table currently under consideration. The generated questions are then jointly embedded with the partial table segments used for generation, enhancing semantic alignment with user queries. Without the need to embed entire tables, our method significantly improves retrieval performance across multiple benchmarks for both dense and late-interaction retrievers.
comment: TRL@ACL2025
☆ Semantic Item Graph Enhancement for Multimodal Recommendation
Multimodal recommendation systems have attracted increasing attention for their improved performance by leveraging items' multimodal information. Prior methods often build modality-specific item-item semantic graphs from raw modality features and use them as supplementary structures alongside the user-item interaction graph to enhance user preference learning. However, these semantic graphs suffer from semantic deficiencies, including (1) insufficient modeling of collaborative signals among items and (2) structural distortions introduced by noise in raw modality features, ultimately compromising performance. To address these issues, we first extract collaborative signals from the interaction graph and infuse them into each modality-specific item semantic graph to enhance semantic modeling. Then, we design a modulus-based personalized embedding perturbation mechanism that injects perturbations with modulus-guided personalized intensity into embeddings to generate contrastive views. This enables the model to learn noise-robust representations through contrastive learning, thereby reducing the effect of structural noise in semantic graphs. Besides, we propose a dual representation alignment mechanism that first aligns multiple semantic representations via a designed Anchor-based InfoNCE loss using behavior representations as anchors, and then aligns behavior representations with the fused semantics by standard InfoNCE, to ensure representation consistency. Extensive experiments on four benchmark datasets validate the effectiveness of our framework.
☆ Few-Shot Prompting for Extractive Quranic QA with Instruction-Tuned LLMs
This paper presents two effective approaches for Extractive Question Answering (QA) on the Quran. It addresses challenges related to complex language, unique terminology, and deep meaning in the text. The second uses few-shot prompting with instruction-tuned large language models such as Gemini and DeepSeek. A specialized Arabic prompt framework is developed for span extraction. A strong post-processing system integrates subword alignment, overlap suppression, and semantic filtering. This improves precision and reduces hallucinations. Evaluations show that large language models with Arabic instructions outperform traditional fine-tuned models. The best configuration achieves a pAP10 score of 0.637. The results confirm that prompt-based instruction tuning is effective for low-resource, semantically rich QA tasks.
comment: 6 pages , 2 figures , Accepted in IMSA 2025,Egypt , https://imsa.msa.edu.eg/
☆ When a Paper Has 1000 Authors: Rethinking Citation Metrics in the Era of LLMs
Author-level citation metrics provide a practical, interpretable, and scalable signal of scholarly influence in a complex research ecosystem. It has been widely used as a proxy in hiring decisions. However, the past five years have seen the rapid emergence of large-scale publications in the field of large language models and foundation models, with papers featuring hundreds to thousands of co-authors and receiving tens of thousands of citations within months. For example, Gemini has 1361 authors and has been cited around 4600 times in 19 months. In such cases, traditional metrics, such as total citation count and the $h$-index, fail to meaningfully distinguish individual contributions. Therefore, we propose the following research question: How can one identify standout researchers among thousands of co-authors in large-scale LLM papers? This question is particularly important in scenarios such as academic hiring and funding decisions. In this paper, we introduce a novel citation metric designed to address this challenge by balancing contributions across large-scale and small-scale publications. We propose the SBCI index, analyze its theoretical properties, and evaluate its behavior on synthetic publication datasets. Our results demonstrate that the proposed metric provides a more robust and discriminative assessment of individual scholarly impact in the era of large-scale collaborations.
☆ Efficient Multimodal Streaming Recommendation via Expandable Side Mixture-of-Experts CIKM 2025
Streaming recommender systems (SRSs) are widely deployed in real-world applications, where user interests shift and new items arrive over time. As a result, effectively capturing users' latest preferences is challenging, as interactions reflecting recent interests are limited and new items often lack sufficient feedback. A common solution is to enrich item representations using multimodal encoders (e.g., BERT or ViT) to extract visual and textual features. However, these encoders are pretrained on general-purpose tasks: they are not tailored to user preference modeling, and they overlook the fact that user tastes toward modality-specific features such as visual styles and textual tones can also drift over time. This presents two key challenges in streaming scenarios: the high cost of fine-tuning large multimodal encoders, and the risk of forgetting long-term user preferences due to continuous model updates. To tackle these challenges, we propose Expandable Side Mixture-of-Experts (XSMoE), a memory-efficient framework for multimodal streaming recommendation. XSMoE attaches lightweight side-tuning modules consisting of expandable expert networks to frozen pretrained encoders and incrementally expands them in response to evolving user feedback. A gating router dynamically combines expert and backbone outputs, while a utilization-based pruning strategy maintains model compactness. By learning new patterns through expandable experts without overwriting previously acquired knowledge, XSMoE effectively captures both cold start and shifting preferences in multimodal features. Experiments on three real-world datasets demonstrate that XSMoE outperforms state-of-the-art baselines in both recommendation quality and computational efficiency.
comment: Accepted to CIKM 2025
☆ Dual prototype attentive graph network for cross-market recommendation ICONIP 2025
Cross-market recommender systems (CMRS) aim to utilize historical data from mature markets to promote multinational products in emerging markets. However, existing CMRS approaches often overlook the potential for shared preferences among users in different markets, focusing primarily on modeling specific preferences within each market. In this paper, we argue that incorporating both market-specific and market-shared insights can enhance the generalizability and robustness of CMRS. We propose a novel approach called Dual Prototype Attentive Graph Network for Cross-Market Recommendation (DGRE) to address this. DGRE leverages prototypes based on graph representation learning from both items and users to capture market-specific and market-shared insights. Specifically, DGRE incorporates market-shared prototypes by clustering users from various markets to identify behavioural similarities and create market-shared user profiles. Additionally, it constructs item-side prototypes by aggregating item features within each market, providing valuable market-specific insights. We conduct extensive experiments to validate the effectiveness of DGRE on a real-world cross-market dataset, and the results show that considering both market-specific and market-sharing aspects in modelling can improve the generalization and robustness of CMRS.
comment: Accepted by ICONIP 2025 (Oral)
♻ ☆ Rank1: Test-Time Compute for Reranking in Information Retrieval
We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
comment: Published at CoLM 2025
♻ ☆ Budgeted Embedding Table For Recommender Systems WSDM 2024
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024
♻ ☆ Decompositional Reasoning for Graph Retrieval with Large Language Models
Large Language Models (LLMs) excel at many NLP tasks, but struggle with multi-hop reasoning and factual consistency, limiting their effectiveness on knowledge-intensive tasks like complex question answering (QA). Linking Knowledge Graphs (KG) and LLMs has shown promising results, but LLMs generally lack the ability to reason efficiently over graph-structured information. To tackle this problem, we propose a novel retrieval approach that integrates textual knowledge graphs into the LLM reasoning process via query decomposition. Our method decomposes complex questions into sub-questions, retrieves relevant textual subgraphs, and composes a question-specific knowledge graph to guide answer generation. For that, we use a weighted similarity function that focuses on both the complex question and the generated subquestions to extract a relevant subgraph, which allows efficient and precise retrieval for complex questions and improves the performance of LLMs on multi-hop QA tasks. This structured reasoning pipeline enhances factual grounding and interpretability while leveraging the generative strengths of LLMs. We evaluate our method on standard multi-hop QA benchmarks and show that it achieves comparable or superior performance to competitive existing methods, using smaller models and fewer LLM calls.
♻ ☆ Nyay-Darpan: Enhancing Decision Making Through Summarization and Case Retrieval for Consumer Law in India
AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
♻ ☆ Federated Continual Recommendation CIKM 2025
The increasing emphasis on privacy in recommendation systems has led to the adoption of Federated Learning (FL) as a privacy-preserving solution, enabling collaborative training without sharing user data. While Federated Recommendation (FedRec) effectively protects privacy, existing methods struggle with non-stationary data streams, failing to maintain consistent recommendation quality over time. On the other hand, Continual Learning Recommendation (CLRec) methods address evolving user preferences but typically assume centralized data access, making them incompatible with FL constraints. To bridge this gap, we introduce Federated Continual Recommendation (FCRec), a novel task that integrates FedRec and CLRec, requiring models to learn from streaming data while preserving privacy. As a solution, we propose F3CRec, a framework designed to balance knowledge retention and adaptation under the strict constraints of FCRec. F3CRec introduces two key components: Adaptive Replay Memory on the client side, which selectively retains past preferences based on user-specific shifts, and Item-wise Temporal Mean on the server side, which integrates new knowledge while preserving prior information. Extensive experiments demonstrate that F3CRec outperforms existing approaches in maintaining recommendation quality over time in a federated environment.
comment: Accepted to CIKM 2025
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements KDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Harnessing Light for Cold-Start Recommendations: Leveraging Epistemic Uncertainty to Enhance Performance in User-Item Interactions CIKM 2025
Most recent paradigms of generative model-based recommendation still face challenges related to the cold-start problem. Existing models addressing cold item recommendations mainly focus on acquiring more knowledge to enrich embeddings or model inputs. However, many models do not assess the efficiency with which they utilize the available training knowledge, leading to the extraction of significant knowledge that is not fully used, thus limiting improvements in cold-start performance. To address this, we introduce the concept of epistemic uncertainty to indirectly define how efficiently a model uses the training knowledge. Since epistemic uncertainty represents the reducible part of the total uncertainty, we can optimize the recommendation model further based on epistemic uncertainty to improve its performance. To this end, we propose a Cold-Start Recommendation based on Epistemic Uncertainty (CREU) framework. Additionally, CREU is inspired by Pairwise-Distance Estimators (PaiDEs) to efficiently and accurately measure epistemic uncertainty by evaluating the mutual information between model outputs and weights in high-dimensional spaces. The proposed method is evaluated through extensive offline experiments on public datasets, which further demonstrate the advantages and robustness of CREU. The source code is available at https://github.com/EsiksonX/CREU.
comment: Accepted by CIKM 2025
♻ ☆ ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for solving question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in both accuracy and token cost.
Robotics 60
☆ Safety of Embodied Navigation: A Survey
As large language models (LLMs) continue to advance and gain influence, the development of embodied AI has accelerated, drawing significant attention, particularly in navigation scenarios. Embodied navigation requires an agent to perceive, interact with, and adapt to its environment while moving toward a specified target in unfamiliar settings. However, the integration of embodied navigation into critical applications raises substantial safety concerns. Given their deployment in dynamic, real-world environments, ensuring the safety of such systems is critical. This survey provides a comprehensive analysis of safety in embodied navigation from multiple perspectives, encompassing attack strategies, defense mechanisms, and evaluation methodologies. Beyond conducting a comprehensive examination of existing safety challenges, mitigation technologies, and various datasets and metrics that assess effectiveness and robustness, we explore unresolved issues and future research directions in embodied navigation safety. These include potential attack methods, mitigation strategies, more reliable evaluation techniques, and the implementation of verification frameworks. By addressing these critical gaps, this survey aims to provide valuable insights that can guide future research toward the development of safer and more reliable embodied navigation systems. Furthermore, the findings of this study have broader implications for enhancing societal safety and increasing industrial efficiency.
☆ Towards Transparent Ethical AI: A Roadmap for Trustworthy Robotic Systems
As artificial intelligence (AI) and robotics increasingly permeate society, ensuring the ethical behavior of these systems has become paramount. This paper contends that transparency in AI decision-making processes is fundamental to developing trustworthy and ethically aligned robotic systems. We explore how transparency facilitates accountability, enables informed consent, and supports the debugging of ethical algorithms. The paper outlines technical, ethical, and practical challenges in implementing transparency and proposes novel approaches to enhance it, including standardized metrics, explainable AI techniques, and user-friendly interfaces. This paper introduces a framework that connects technical implementation with ethical considerations in robotic systems, focusing on the specific challenges of achieving transparency in dynamic, real-world contexts. We analyze how prioritizing transparency can impact public trust, regulatory policies, and avenues for future research. By positioning transparency as a fundamental element in ethical AI system design, we aim to add to the ongoing discussion on responsible AI and robotics, providing direction for future advancements in this vital field.
comment: Published in the Proceedings of the 2025 3rd International Conference on Robotics, Control and Vision Engineering (RCVE'25). 6 pages, 3 tables
☆ Integrating Vision Foundation Models with Reinforcement Learning for Enhanced Object Interaction
This paper presents a novel approach that integrates vision foundation models with reinforcement learning to enhance object interaction capabilities in simulated environments. By combining the Segment Anything Model (SAM) and YOLOv5 with a Proximal Policy Optimization (PPO) agent operating in the AI2-THOR simulation environment, we enable the agent to perceive and interact with objects more effectively. Our comprehensive experiments, conducted across four diverse indoor kitchen settings, demonstrate significant improvements in object interaction success rates and navigation efficiency compared to a baseline agent without advanced perception. The results show a 68% increase in average cumulative reward, a 52.5% improvement in object interaction success rate, and a 33% increase in navigation efficiency. These findings highlight the potential of integrating foundation models with reinforcement learning for complex robotic tasks, paving the way for more sophisticated and capable autonomous agents.
comment: Published in the Proceedings of the 2025 3rd International Conference on Robotics, Control and Vision Engineering (RCVE'25). 6 pages, 3 figures, 1 table
☆ GPU-Accelerated Barrier-Rate Guided MPPI Control for Tractor-Trailer Systems SC 2025
Articulated vehicles such as tractor-trailers, yard trucks, and similar platforms must often reverse and maneuver in cluttered spaces where pedestrians are present. We present how Barrier-Rate guided Model Predictive Path Integral (BR-MPPI) control can solve navigation in such challenging environments. BR-MPPI embeds Control Barrier Function (CBF) constraints directly into the path-integral update. By steering the importance-sampling distribution toward collision-free, dynamically feasible trajectories, BR-MPPI enhances the exploration strength of MPPI and improves robustness of resulting trajectories. The method is evaluated in the high-fidelity CarMaker simulator on a 12 [m] tractor-trailer tasked with reverse and forward parking in a parking lot. BR-MPPI computes control inputs in above 100 [Hz] on a single GPU (for scenarios with eight obstacles) and maintains better parking clearance than a standard MPPI baseline and an MPPI with collision cost baseline.
comment: Accepted to IEEE ITSC 2025
☆ Genie Envisioner: A Unified World Foundation Platform for Robotic Manipulation
We introduce Genie Envisioner (GE), a unified world foundation platform for robotic manipulation that integrates policy learning, evaluation, and simulation within a single video-generative framework. At its core, GE-Base is a large-scale, instruction-conditioned video diffusion model that captures the spatial, temporal, and semantic dynamics of real-world robotic interactions in a structured latent space. Built upon this foundation, GE-Act maps latent representations to executable action trajectories through a lightweight, flow-matching decoder, enabling precise and generalizable policy inference across diverse embodiments with minimal supervision. To support scalable evaluation and training, GE-Sim serves as an action-conditioned neural simulator, producing high-fidelity rollouts for closed-loop policy development. The platform is further equipped with EWMBench, a standardized benchmark suite measuring visual fidelity, physical consistency, and instruction-action alignment. Together, these components establish Genie Envisioner as a scalable and practical foundation for instruction-driven, general-purpose embodied intelligence. All code, models, and benchmarks will be released publicly.
comment: https://genie-envisioner.github.io/
☆ Towards Generalizable Safety in Crowd Navigation via Conformal Uncertainty Handling
Mobile robots navigating in crowds trained using reinforcement learning are known to suffer performance degradation when faced with out-of-distribution scenarios. We propose that by properly accounting for the uncertainties of pedestrians, a robot can learn safe navigation policies that are robust to distribution shifts. Our method augments agent observations with prediction uncertainty estimates generated by adaptive conformal inference, and it uses these estimates to guide the agent's behavior through constrained reinforcement learning. The system helps regulate the agent's actions and enables it to adapt to distribution shifts. In the in-distribution setting, our approach achieves a 96.93% success rate, which is over 8.80% higher than the previous state-of-the-art baselines with over 3.72 times fewer collisions and 2.43 times fewer intrusions into ground-truth human future trajectories. In three out-of-distribution scenarios, our method shows much stronger robustness when facing distribution shifts in velocity variations, policy changes, and transitions from individual to group dynamics. We deploy our method on a real robot, and experiments show that the robot makes safe and robust decisions when interacting with both sparse and dense crowds. Our code and videos are available on https://gen-safe-nav.github.io/.
comment: 9th Conference on Robot Learning (CoRL 2025); Project website: https://gen-safe-nav.github.io/. arXiv admin note: text overlap with arXiv:2407.17460
☆ TrajEvo: Trajectory Prediction Heuristics Design via LLM-driven Evolution
Trajectory prediction is a critical task in modeling human behavior, especially in safety-critical domains such as social robotics and autonomous vehicle navigation. Traditional heuristics based on handcrafted rules often lack accuracy and generalizability. Although deep learning approaches offer improved performance, they typically suffer from high computational cost, limited explainability, and, importantly, poor generalization to out-of-distribution (OOD) scenarios. In this paper, we introduce TrajEvo, a framework that leverages Large Language Models (LLMs) to automatically design trajectory prediction heuristics. TrajEvo employs an evolutionary algorithm to generate and refine prediction heuristics from past trajectory data. We propose two key innovations: Cross-Generation Elite Sampling to encourage population diversity, and a Statistics Feedback Loop that enables the LLM to analyze and improve alternative predictions. Our evaluations demonstrate that TrajEvo outperforms existing heuristic methods across multiple real-world datasets, and notably surpasses both heuristic and deep learning methods in generalizing to an unseen OOD real-world dataset. TrajEvo marks a promising step toward the automated design of fast, explainable, and generalizable trajectory prediction heuristics. We release our source code to facilitate future research at https://github.com/ai4co/trajevo.
comment: arXiv admin note: substantial text overlap with arXiv:2505.04480
☆ Robust adaptive fuzzy sliding mode control for trajectory tracking for of cylindrical manipulator
This research proposes a robust adaptive fuzzy sliding mode control (AFSMC) approach to enhance the trajectory tracking performance of cylindrical robotic manipulators, extensively utilized in applications such as CNC and 3D printing. The proposed approach integrates fuzzy logic with sliding mode control (SMC) to bolster adaptability and robustness, with fuzzy logic approximating the uncertain dynamics of the system, while SMC ensures strong performance. Simulation results in MATLAB/Simulink demonstrate that AFSMC significantly improves trajectory tracking accuracy, stability, and disturbance rejection compared to traditional methods. This research underscores the effectiveness of AFSMC in controlling robotic manipulators, contributing to enhanced precision in industrial robotic applications.
☆ CleanUpBench: Embodied Sweeping and Grasping Benchmark
Embodied AI benchmarks have advanced navigation, manipulation, and reasoning, but most target complex humanoid agents or large-scale simulations that are far from real-world deployment. In contrast, mobile cleaning robots with dual mode capabilities, such as sweeping and grasping, are rapidly emerging as realistic and commercially viable platforms. However, no benchmark currently exists that systematically evaluates these agents in structured, multi-target cleaning tasks, revealing a critical gap between academic research and real-world applications. We introduce CleanUpBench, a reproducible and extensible benchmark for evaluating embodied agents in realistic indoor cleaning scenarios. Built on NVIDIA Isaac Sim, CleanUpBench simulates a mobile service robot equipped with a sweeping mechanism and a six-degree-of-freedom robotic arm, enabling interaction with heterogeneous objects. The benchmark includes manually designed environments and one procedurally generated layout to assess generalization, along with a comprehensive evaluation suite covering task completion, spatial efficiency, motion quality, and control performance. To support comparative studies, we provide baseline agents based on heuristic strategies and map-based planning. CleanUpBench bridges the gap between low-level skill evaluation and full-scene testing, offering a scalable testbed for grounded, embodied intelligence in everyday settings.
☆ Mixed-Initiative Dialog for Human-Robot Collaborative Manipulation
Effective robotic systems for long-horizon human-robot collaboration must adapt to a wide range of human partners, whose physical behavior, willingness to assist, and understanding of the robot's capabilities may change over time. This demands a tightly coupled communication loop that grants both agents the flexibility to propose, accept, or decline requests as they coordinate toward completing the task effectively. We apply a Mixed-Initiative dialog paradigm to Collaborative human-roBot teaming and propose MICoBot, a system that handles the common scenario where both agents, using natural language, take initiative in formulating, accepting, or rejecting proposals on who can best complete different steps of a task. To handle diverse, task-directed dialog, and find successful collaborative strategies that minimize human effort, MICoBot makes decisions at three levels: (1) a meta-planner considers human dialog to formulate and code a high-level collaboration strategy, (2) a planner optimally allocates the remaining steps to either agent based on the robot's capabilities (measured by a simulation-pretrained affordance model) and the human's estimated availability to help, and (3) an action executor decides the low-level actions to perform or words to say to the human. Our extensive evaluations in simulation and real-world -- on a physical robot with 18 unique human participants over 27 hours -- demonstrate the ability of our method to effectively collaborate with diverse human users, yielding significantly improved task success and user experience than a pure LLM baseline and other agent allocation models. See additional videos and materials at https://robin-lab.cs.utexas.edu/MicoBot/.
comment: Project website at https://robin-lab.cs.utexas.edu/MicoBot/
☆ Towards Human-Centric Evaluation of Interaction-Aware Automated Vehicle Controllers: A Framework and Case Study
As automated vehicles (AVs) increasingly integrate into mixed-traffic environments, evaluating their interaction with human-driven vehicles (HDVs) becomes critical. In most research focused on developing new AV control algorithms (controllers), the performance of these algorithms is assessed solely based on performance metrics such as collision avoidance or lane-keeping efficiency, while largely overlooking the human-centred dimensions of interaction with HDVs. This paper proposes a structured evaluation framework that addresses this gap by incorporating metrics grounded in the human-robot interaction literature. The framework spans four key domains: a) interaction effect, b) interaction perception, c) interaction effort, and d) interaction ability. These domains capture both the performance of the AV and its impact on human drivers around it. To demonstrate the utility of the framework, we apply it to a case study evaluating how a state-of-the-art AV controller interacts with human drivers in a merging scenario in a driving simulator. Measuring HDV-HDV interactions as a baseline, this study included one representative metric per domain: a) perceived safety, b) subjective ratings, specifically how participants perceived the other vehicle's driving behaviour (e.g., aggressiveness or predictability) , c) driver workload, and d) merging success. The results showed that incorporating metrics covering all four domains in the evaluation of AV controllers can illuminate critical differences in driver experience when interacting with AVs. This highlights the need for a more comprehensive evaluation approach. Our framework offers researchers, developers, and policymakers a systematic method for assessing AV behaviour beyond technical performance, fostering the development of AVs that are not only functionally capable but also understandable, acceptable, and safe from a human perspective.
☆ Do Robots Really Need Anthropomorphic Hands?
Human manipulation skills represent a pinnacle of their voluntary motor functions, requiring the coordination of many degrees of freedom and processing of high-dimensional sensor input to achieve such a high level of dexterity. Thus, we set out to answer whether the human hand, with its associated biomechanical properties, sensors, and control mechanisms, is an ideal that we should strive for in robotics-do we really need anthropomorphic robotic hands? This survey can help practitioners to make the trade-off between hand complexity and potential manipulation skills. We provide an overview of the human hand, a comparison of commercially available robotic and prosthetic hands, and a systematic review of hand mechanisms and skills that they are capable of. This leads to follow-up questions. What is the minimum requirement for mechanisms and sensors to implement most skills that a robot needs? What is missing to reach human-level dexterity? Can we improve upon human dexterity? Although complex five-fingered hands are often used as the ultimate goal for robotic manipulators, they are not necessary for all tasks. We found that wrist flexibility and finger abduction/adduction are important for manipulation capabilities. On the contrary, increasing the number of fingers, actuators, or degrees of freedom is often not necessary. Three fingers are a good compromise between simplicity and dexterity. Non-anthropomorphic hand designs with two opposing pairs of fingers or human hands with six fingers can further increase dexterity, suggesting that the human hand may not be the optimum.
☆ Computational Design and Fabrication of Modular Robots with Untethered Control
Natural organisms use distributed actuation via their musculoskeletal systems to adapt their gait for traversing diverse terrains or to morph their bodies to perform varied tasks. A longstanding challenge in the field of robotics is to mimic this extensive adaptability and range of motion. This has led humans to develop various soft robotic systems that emulate natural organisms. However, such systems are generally optimized for a single functionality, lack the ability to change form or function on demand, or are often tethered to bulky control systems. To address these challenges, we present our framework for designing and controlling robots that mimic nature's blueprint by utilizing distributed actuation. We propose a novel building block that combines 3D-printed bones with liquid crystal elastomer (LCE) muscles as lightweight actuators and enables the modular assembly of musculoskeletal robots. We developed LCE rods that contract in response to infrared radiation, thereby achieving local and untethered control over the distributed network of bones, which in turn results in global deformation of the robot. Furthermore, to capitalize on the extensive design space, we develop two computational tools: one to optimize the robot's skeletal graph, enabling multiple target deformations, and another to co-optimize the skeletal designs and control gaits to achieve target locomotion. We validate our system by building several robots that show complex shape morphing, varying control schemes, and adaptability to their environment. Our system integrates advances in modular material building, untethered and distributed control, and computational design to introduce a new generation of robots that brings us closer to the capabilities of living organisms.
☆ DistillDrive: End-to-End Multi-Mode Autonomous Driving Distillation by Isomorphic Hetero-Source Planning Model
End-to-end autonomous driving has been recently seen rapid development, exerting a profound influence on both industry and academia. However, the existing work places excessive focus on ego-vehicle status as their sole learning objectives and lacks of planning-oriented understanding, which limits the robustness of the overall decision-making prcocess. In this work, we introduce DistillDrive, an end-to-end knowledge distillation-based autonomous driving model that leverages diversified instance imitation to enhance multi-mode motion feature learning. Specifically, we employ a planning model based on structured scene representations as the teacher model, leveraging its diversified planning instances as multi-objective learning targets for the end-to-end model. Moreover, we incorporate reinforcement learning to enhance the optimization of state-to-decision mappings, while utilizing generative modeling to construct planning-oriented instances, fostering intricate interactions within the latent space. We validate our model on the nuScenes and NAVSIM datasets, achieving a 50\% reduction in collision rate and a 3-point improvement in closed-loop performance compared to the baseline model. Code and model are publicly available at https://github.com/YuruiAI/DistillDrive
☆ Real-Time Iteration Scheme for Diffusion Policy
Diffusion Policies have demonstrated impressive performance in robotic manipulation tasks. However, their long inference time, resulting from an extensive iterative denoising process, and the need to execute an action chunk before the next prediction to maintain consistent actions limit their applicability to latency-critical tasks or simple tasks with a short cycle time. While recent methods explored distillation or alternative policy structures to accelerate inference, these often demand additional training, which can be resource-intensive for large robotic models. In this paper, we introduce a novel approach inspired by the Real-Time Iteration (RTI) Scheme, a method from optimal control that accelerates optimization by leveraging solutions from previous time steps as initial guesses for subsequent iterations. We explore the application of this scheme in diffusion inference and propose a scaling-based method to effectively handle discrete actions, such as grasping, in robotic manipulation. The proposed scheme significantly reduces runtime computational costs without the need for distillation or policy redesign. This enables a seamless integration into many pre-trained diffusion-based models, in particular, to resource-demanding large models. We also provide theoretical conditions for the contractivity which could be useful for estimating the initial denoising step. Quantitative results from extensive simulation experiments show a substantial reduction in inference time, with comparable overall performance compared with Diffusion Policy using full-step denoising. Our project page with additional resources is available at: https://rti-dp.github.io/.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Robots can defuse high-intensity conflict situations IROS
This paper investigates the specific scenario of high-intensity confrontations between humans and robots, to understand how robots can defuse the conflict. It focuses on the effectiveness of using five different affective expression modalities as main drivers for defusing the conflict. The aim is to discover any strengths or weaknesses in using each modality to mitigate the hostility that people feel towards a poorly performing robot. The defusing of the situation is accomplished by making the robot better at acknowledging the conflict and by letting it express remorse. To facilitate the tests, we used a custom affective robot in a simulated conflict situation with 105 test participants. The results show that all tested expression modalities can successfully be used to defuse the situation and convey an acknowledgment of the confrontation. The ratings were remarkably similar, but the movement modality was different (ANON p$<$.05) than the other modalities. The test participants also had similar affective interpretations on how impacted the robot was of the confrontation across all expression modalities. This indicates that defusing a high-intensity interaction may not demand special attention to the expression abilities of the robot, but rather require attention to the abilities of being socially aware of the situation and reacting in accordance with it.
comment: 7 pages, 6 figures, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) October 25-29, 2020, Las Vegas, NV, USA
☆ A Multi-view Landmark Representation Approach with Application to GNSS-Visual-Inertial Odometry
Invariant Extended Kalman Filter (IEKF) has been a significant technique in vision-aided sensor fusion. However, it usually suffers from high computational burden when jointly optimizing camera poses and the landmarks. To improve its efficiency and applicability for multi-sensor fusion, we present a multi-view pose-only estimation approach with its application to GNSS-Visual-Inertial Odometry (GVIO) in this paper. Our main contribution is deriving a visual measurement model which directly associates landmark representation with multiple camera poses and observations. Such a pose-only measurement is proven to be tightly-coupled between landmarks and poses, and maintain a perfect null space that is independent of estimated poses. Finally, we apply the proposed approach to a filter based GVIO with a novel feature management strategy. Both simulation tests and real-world experiments are conducted to demonstrate the superiority of the proposed method in terms of efficiency and accuracy.
☆ Affecta-Context: The Context-Guided Behavior Adaptation Framework
This paper presents Affecta-context, a general framework to facilitate behavior adaptation for social robots. The framework uses information about the physical context to guide its behaviors in human-robot interactions. It consists of two parts: one that represents encountered contexts and one that learns to prioritize between behaviors through human-robot interactions. As physical contexts are encountered the framework clusters them by their measured physical properties. In each context, the framework learns to prioritize between behaviors to optimize the physical attributes of the robot's behavior in line with its current environment and the preferences of the users it interacts with. This paper illlustrates the abilities of the Affecta-context framework by enabling a robot to autonomously learn the prioritization of discrete behaviors. This was achieved by training across 72 interactions in two different physical contexts with 6 different human test participants. The paper demonstrates the trained Affecta-context framework by verifying the robot's ability to generalize over the input and to match its behaviors to a previously unvisited physical context.
comment: 6 pages, Intelligent Autonomous Systems 18. IAS 2023
☆ Information-Theoretic Graph Fusion with Vision-Language-Action Model for Policy Reasoning and Dual Robotic Control
Teaching robots dexterous skills from human videos remains challenging due to the reliance on low-level trajectory imitation, which fails to generalize across object types, spatial layouts, and manipulator configurations. We propose Graph-Fused Vision-Language-Action (GF-VLA), a framework that enables dual-arm robotic systems to perform task-level reasoning and execution directly from RGB and Depth human demonstrations. GF-VLA first extracts Shannon-information-based cues to identify hands and objects with the highest task relevance, then encodes these cues into temporally ordered scene graphs that capture both hand-object and object-object interactions. These graphs are fused with a language-conditioned transformer that generates hierarchical behavior trees and interpretable Cartesian motion commands. To improve execution efficiency in bimanual settings, we further introduce a cross-hand selection policy that infers optimal gripper assignment without explicit geometric reasoning. We evaluate GF-VLA on four structured dual-arm block assembly tasks involving symbolic shape construction and spatial generalization. Experimental results show that the information-theoretic scene representation achieves over 95 percent graph accuracy and 93 percent subtask segmentation, supporting the LLM planner in generating reliable and human-readable task policies. When executed by the dual-arm robot, these policies yield 94 percent grasp success, 89 percent placement accuracy, and 90 percent overall task success across stacking, letter-building, and geometric reconfiguration scenarios, demonstrating strong generalization and robustness across diverse spatial and semantic variations.
comment: Journal under review
☆ ASkDAgger: Active Skill-level Data Aggregation for Interactive Imitation Learning
Human teaching effort is a significant bottleneck for the broader applicability of interactive imitation learning. To reduce the number of required queries, existing methods employ active learning to query the human teacher only in uncertain, risky, or novel situations. However, during these queries, the novice's planned actions are not utilized despite containing valuable information, such as the novice's capabilities, as well as corresponding uncertainty levels. To this end, we allow the novice to say: "I plan to do this, but I am uncertain." We introduce the Active Skill-level Data Aggregation (ASkDAgger) framework, which leverages teacher feedback on the novice plan in three key ways: (1) S-Aware Gating (SAG): Adjusts the gating threshold to track sensitivity, specificity, or a minimum success rate; (2) Foresight Interactive Experience Replay (FIER), which recasts valid and relabeled novice action plans into demonstrations; and (3) Prioritized Interactive Experience Replay (PIER), which prioritizes replay based on uncertainty, novice success, and demonstration age. Together, these components balance query frequency with failure incidence, reduce the number of required demonstration annotations, improve generalization, and speed up adaptation to changing domains. We validate the effectiveness of ASkDAgger through language-conditioned manipulation tasks in both simulation and real-world environments. Code, data, and videos are available at https://askdagger.github.io.
comment: Accepted for publication in Transactions on Machine Learning Research (TMLR, 2025)
☆ Towards Embodied Agentic AI: Review and Classification of LLM- and VLM-Driven Robot Autonomy and Interaction
Foundation models, including large language models (LLMs) and vision-language models (VLMs), have recently enabled novel approaches to robot autonomy and human-robot interfaces. In parallel, vision-language-action models (VLAs) or large behavior models (BLMs) are increasing the dexterity and capabilities of robotic systems. This survey paper focuses on those words advancing towards agentic applications and architectures. This includes initial efforts exploring GPT-style interfaces to tooling, as well as more complex system where AI agents are coordinators, planners, perception actors, or generalist interfaces. Such agentic architectures allow robots to reason over natural language instructions, invoke APIs, plan task sequences, or assist in operations and diagnostics. In addition to peer-reviewed research, due to the fast-evolving nature of the field, we highlight and include community-driven projects, ROS packages, and industrial frameworks that show emerging trends. We propose a taxonomy for classifying model integration approaches and present a comparative analysis of the role that agents play in different solutions in today's literature.
☆ Dancing with a Robot: An Experimental Study of Child-Robot Interaction in a Performative Art Setting
This paper presents an evaluation of 18 children's in-the-wild experiences with the autonomous robot arm performer NED (Never-Ending Dancer) within the Thingamabobas installation, showcased across the UK. We detail NED's design, including costume, behaviour, and human interactions, all integral to the installation. Our observational analysis revealed three key challenges in child-robot interactions: 1) Initiating and maintaining engagement, 2) Lack of robot expressivity and reciprocity, and 3) Unmet expectations. Our findings show that children are naturally curious, and adept at interacting with a robotic art performer. However, our observations emphasise the critical need to optimise human-robot interaction (HRI) systems through careful consideration of audience's capabilities, perceptions, and expectations, within the performative arts context, to enable engaging and meaningful experiences, especially for young audiences.
comment: published by Springer
☆ Learning to See and Act: Task-Aware View Planning for Robotic Manipulation
Recent vision-language-action (VLA) models for multi-task robotic manipulation commonly rely on static viewpoints and shared visual encoders, which limit 3D perception and cause task interference, hindering robustness and generalization. In this work, we propose Task-Aware View Planning (TAVP), a framework designed to overcome these challenges by integrating active view planning with task-specific representation learning. TAVP employs an efficient exploration policy, accelerated by a novel pseudo-environment, to actively acquire informative views. Furthermore, we introduce a Mixture-of-Experts (MoE) visual encoder to disentangle features across different tasks, boosting both representation fidelity and task generalization. By learning to see the world in a task-aware way, TAVP generates more complete and discriminative visual representations, demonstrating significantly enhanced action prediction across a wide array of manipulation challenges. Extensive experiments on RLBench tasks show that our proposed TAVP model achieves superior performance over state-of-the-art fixed-view approaches. Visual results and code are provided at: https://hcplab-sysu.github.io/TAVP.
comment: 7 pages, 9 figures, project page: https://hcplab-sysu.github.io/TAVP
☆ FCBV-Net: Category-Level Robotic Garment Smoothing via Feature-Conditioned Bimanual Value Prediction
Category-level generalization for robotic garment manipulation, such as bimanual smoothing, remains a significant hurdle due to high dimensionality, complex dynamics, and intra-category variations. Current approaches often struggle, either overfitting with concurrently learned visual features for a specific instance or, despite category-level perceptual generalization, failing to predict the value of synergistic bimanual actions. We propose the Feature-Conditioned Bimanual Value Network (FCBV-Net), operating on 3D point clouds to specifically enhance category-level policy generalization for garment smoothing. FCBV-Net conditions bimanual action value prediction on pre-trained, frozen dense geometric features, ensuring robustness to intra-category garment variations. Trainable downstream components then learn a task-specific policy using these static features. In simulated GarmentLab experiments with the CLOTH3D dataset, FCBV-Net demonstrated superior category-level generalization. It exhibited only an 11.5% efficiency drop (Steps80) on unseen garments compared to 96.2% for a 2D image-based baseline, and achieved 89% final coverage, outperforming an 83% coverage from a 3D correspondence-based baseline that uses identical per-point geometric features but a fixed primitive. These results highlight that the decoupling of geometric understanding from bimanual action value learning enables better category-level generalization.
comment: 7 pages, 3 figures, 1 table. Submitted to IEEE Robotics and Automation Letters
☆ Chemist Eye: A Visual Language Model-Powered System for Safety Monitoring and Robot Decision-Making in Self-Driving Laboratories
The integration of robotics and automation into self-driving laboratories (SDLs) can introduce additional safety complexities, in addition to those that already apply to conventional research laboratories. Personal protective equipment (PPE) is an essential requirement for ensuring the safety and well-being of workers in laboratories, self-driving or otherwise. Fires are another important risk factor in chemical laboratories. In SDLs, fires that occur close to mobile robots, which use flammable lithium batteries, could have increased severity. Here, we present Chemist Eye, a distributed safety monitoring system designed to enhance situational awareness in SDLs. The system integrates multiple stations equipped with RGB, depth, and infrared cameras, designed to monitor incidents in SDLs. Chemist Eye is also designed to spot workers who have suffered a potential accident or medical emergency, PPE compliance and fire hazards. To do this, Chemist Eye uses decision-making driven by a vision-language model (VLM). Chemist Eye is designed for seamless integration, enabling real-time communication with robots. Based on the VLM recommendations, the system attempts to drive mobile robots away from potential fire locations, exits, or individuals not wearing PPE, and issues audible warnings where necessary. It also integrates with third-party messaging platforms to provide instant notifications to lab personnel. We tested Chemist Eye with real-world data from an SDL equipped with three mobile robots and found that the spotting of possible safety hazards and decision-making performances reached 97 % and 95 %, respectively.
☆ From Canada to Japan: How 10,000 km Affect User Perception in Robot Teleoperation
Robot teleoperation (RTo) has emerged as a viable alternative to local control, particularly when human intervention is still necessary. This research aims to study the distance effect on user perception in RTo, exploring the potential of teleoperated robots for older adult care. We propose an evaluation of non-expert users' perception of long-distance RTo, examining how their perception changes before and after interaction, as well as comparing it to that of locally operated robots. We have designed a specific protocol consisting of multiple questionnaires, along with a dedicated software architecture using the Robotics Operating System (ROS) and Unity. The results revealed no statistically significant differences between the local and remote robot conditions, suggesting that robots may be a viable alternative to traditional local control.
comment: Author preprint - Accepted for Humanoids 2025
☆ Examining the legibility of humanoid robot arm movements in a pointing task
Human--robot interaction requires robots whose actions are legible, allowing humans to interpret, predict, and feel safe around them. This study investigates the legibility of humanoid robot arm movements in a pointing task, aiming to understand how humans predict robot intentions from truncated movements and bodily cues. We designed an experiment using the NICO humanoid robot, where participants observed its arm movements towards targets on a touchscreen. Robot cues varied across conditions: gaze, pointing, and pointing with congruent or incongruent gaze. Arm trajectories were stopped at 60\% or 80\% of their full length, and participants predicted the final target. We tested the multimodal superiority and ocular primacy hypotheses, both of which were supported by the experiment.
comment: Published at ICSR 2025
☆ Analyzing the Impact of Multimodal Perception on Sample Complexity and Optimization Landscapes in Imitation Learning
This paper examines the theoretical foundations of multimodal imitation learning through the lens of statistical learning theory. We analyze how multimodal perception (RGB-D, proprioception, language) affects sample complexity and optimization landscapes in imitation policies. Building on recent advances in multimodal learning theory, we show that properly integrated multimodal policies can achieve tighter generalization bounds and more favorable optimization landscapes than their unimodal counterparts. We provide a comprehensive review of theoretical frameworks that explain why multimodal architectures like PerAct and CLIPort achieve superior performance, connecting these empirical results to fundamental concepts in Rademacher complexity, PAC learning, and information theory.
comment: 9 pages, 1 figure, 1 table, theoretical analysis with empirical validation on PerAct implementation in MuJoCo simulation environment
☆ A Vision-Based Collision Sensing Method for Stable Circular Object Grasping with A Soft Gripper System
External collisions to robot actuators typically pose risks to grasping circular objects. This work presents a vision-based sensing module capable of detecting collisions to maintain stable grasping with a soft gripper system. The system employs an eye-in-palm camera with a broad field of view to simultaneously monitor the motion of fingers and the grasped object. Furthermore, we have developed a collision-rich grasping strategy to ensure the stability and security of the entire dynamic grasping process. A physical soft gripper was manufactured and affixed to a collaborative robotic arm to evaluate the performance of the collision detection mechanism. An experiment regarding testing the response time of the mechanism confirmed the system has the capability to react to the collision instantaneously. A dodging test was conducted to demonstrate the gripper can detect the direction and scale of external collisions precisely.
☆ Benchmarking Shortcutting Techniques for Multi-Robot-Arm Motion Planning IROS 2025
Generating high-quality motion plans for multiple robot arms is challenging due to the high dimensionality of the system and the potential for inter-arm collisions. Traditional motion planning methods often produce motions that are suboptimal in terms of smoothness and execution time for multi-arm systems. Post-processing via shortcutting is a common approach to improve motion quality for efficient and smooth execution. However, in multi-arm scenarios, optimizing one arm's motion must not introduce collisions with other arms. Although existing multi-arm planning works often use some form of shortcutting techniques, their exact methodology and impact on performance are often vaguely described. In this work, we present a comprehensive study quantitatively comparing existing shortcutting methods for multi-arm trajectories across diverse simulated scenarios. We carefully analyze the pros and cons of each shortcutting method and propose two simple strategies for combining these methods to achieve the best performance-runtime tradeoff. Video, code, and dataset are available at https://philip-huang.github.io/mr-shortcut/.
comment: 9 pages, 6 figures, accepted for publication at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ MAG-Nav: Language-Driven Object Navigation Leveraging Memory-Reserved Active Grounding
Visual navigation in unknown environments based solely on natural language descriptions is a key capability for intelligent robots. In this work, we propose a navigation framework built upon off-the-shelf Visual Language Models (VLMs), enhanced with two human-inspired mechanisms: perspective-based active grounding, which dynamically adjusts the robot's viewpoint for improved visual inspection, and historical memory backtracking, which enables the system to retain and re-evaluate uncertain observations over time. Unlike existing approaches that passively rely on incidental visual inputs, our method actively optimizes perception and leverages memory to resolve ambiguity, significantly improving vision-language grounding in complex, unseen environments. Our framework operates in a zero-shot manner, achieving strong generalization to diverse and open-ended language descriptions without requiring labeled data or model fine-tuning. Experimental results on Habitat-Matterport 3D (HM3D) show that our method outperforms state-of-the-art approaches in language-driven object navigation. We further demonstrate its practicality through real-world deployment on a quadruped robot, achieving robust and effective navigation performance.
☆ Hierarchical Deep Deterministic Policy Gradient for Autonomous Maze Navigation of Mobile Robots
Maze navigation is a fundamental challenge in robotics, requiring agents to traverse complex environments efficiently. While the Deep Deterministic Policy Gradient (DDPG) algorithm excels in control tasks, its performance in maze navigation suffers from sparse rewards, inefficient exploration, and long-horizon planning difficulties, often leading to low success rates and average rewards, sometimes even failing to achieve effective navigation. To address these limitations, this paper proposes an efficient Hierarchical DDPG (HDDPG) algorithm, which includes high-level and low-level policies. The high-level policy employs an advanced DDPG framework to generate intermediate subgoals from a long-term perspective and on a higher temporal scale. The low-level policy, also powered by the improved DDPG algorithm, generates primitive actions by observing current states and following the subgoal assigned by the high-level policy. The proposed method enhances stability with off-policy correction, refining subgoal assignments by relabeling historical experiences. Additionally, adaptive parameter space noise is utilized to improve exploration, and a reshaped intrinsic-extrinsic reward function is employed to boost learning efficiency. Further optimizations, including gradient clipping and Xavier initialization, are employed to improve robustness. The proposed algorithm is rigorously evaluated through numerical simulation experiments executed using the Robot Operating System (ROS) and Gazebo. Regarding the three distinct final targets in autonomous maze navigation tasks, HDDPG significantly overcomes the limitations of standard DDPG and its variants, improving the success rate by at least 56.59% and boosting the average reward by a minimum of 519.03 compared to baseline algorithms.
☆ Optimal Planning for Multi-Robot Simultaneous Area and Line Coverage Using Hierarchical Cyclic Merging Regulation
The double coverage problem focuses on determining efficient, collision-free routes for multiple robots to simultaneously cover linear features (e.g., surface cracks or road routes) and survey areas (e.g., parking lots or local regions) in known environments. In these problems, each robot carries two functional roles: service (linear feature footprint coverage) and exploration (complete area coverage). Service has a smaller operational footprint but incurs higher costs (e.g., time) compared to exploration. We present optimal planning algorithms for the double coverage problems using hierarchical cyclic merging regulation (HCMR). To reduce the complexity for optimal planning solutions, we analyze the manifold attachment process during graph traversal from a Morse theory perspective. We show that solutions satisfying minimum path length and collision-free constraints must belong to a Morse-bounded collection. To identify this collection, we introduce the HCMR algorithm. In HCMR, cyclic merging search regulates traversal behavior, while edge sequence back propagation converts these regulations into graph edge traversal sequences. Incorporating balanced partitioning, the optimal sequence is selected to generate routes for each robot. We prove the optimality of the HCMR algorithm under a fixed sweep direction. The multi-robot simulation results demonstrate that the HCMR algorithm significantly improves planned path length by at least 10.0%, reduces task time by at least 16.9% in average, and ensures conflict-free operation compared to other state-of-the-art planning methods.
♻ ☆ Uncertainty-aware Accurate Elevation Modeling for Off-road Navigation via Neural Processes
Terrain elevation modeling for off-road navigation aims to accurately estimate changes in terrain geometry in real-time and quantify the corresponding uncertainties. Having precise estimations and uncertainties plays a crucial role in planning and control algorithms to explore safe and reliable maneuver strategies. However, existing approaches, such as Gaussian Processes (GPs) and neural network-based methods, often fail to meet these needs. They are either unable to perform in real-time due to high computational demands, underestimating sharp geometry changes, or harming elevation accuracy when learned with uncertainties. Recently, Neural Processes (NPs) have emerged as a promising approach that integrates the Bayesian uncertainty estimation of GPs with the efficiency and flexibility of neural networks. Inspired by NPs, we propose an effective NP-based method that precisely estimates sharp elevation changes and quantifies the corresponding predictive uncertainty without losing elevation accuracy. Our method leverages semantic features from LiDAR and camera sensors to improve interpolation and extrapolation accuracy in unobserved regions. Also, we introduce a local ball-query attention mechanism to effectively reduce the computational complexity of global attention by 17\% while preserving crucial local and spatial information. We evaluate our method on off-road datasets having interesting geometric features, collected from trails, deserts, and hills. Our results demonstrate superior performance over baselines and showcase the potential of neural processes for effective and expressive terrain modeling in complex off-road environments.
comment: CoRL 2025
♻ ☆ Hand-Eye Autonomous Delivery: Learning Humanoid Navigation, Locomotion and Reaching
We propose Hand-Eye Autonomous Delivery (HEAD), a framework that learns navigation, locomotion, and reaching skills for humanoids, directly from human motion and vision perception data. We take a modular approach where the high-level planner commands the target position and orientation of the hands and eyes of the humanoid, delivered by the low-level policy that controls the whole-body movements. Specifically, the low-level whole-body controller learns to track the three points (eyes, left hand, and right hand) from existing large-scale human motion capture data while high-level policy learns from human data collected by Aria glasses. Our modular approach decouples the ego-centric vision perception from physical actions, promoting efficient learning and scalability to novel scenes. We evaluate our method both in simulation and in the real-world, demonstrating humanoid's capabilities to navigate and reach in complex environments designed for humans.
♻ ☆ Observability-Aware Control for Quadrotor Formation Flight with Range-only Measurement
Cooperative Localization (CL) is a promising approach to achieve safe quadrotor formation flight through precise positioning via low-cost inter-drone sensors. This paper develops an observability-aware control principle tailored to quadrotor formation flight with range-only inter-drone measurement. The control principle is based on a novel approximation of the local observability Gramian (LOG), which we name the Short-Term Local Observability Gramian (STLOG). The validity of STLOG is established by a proof of the link between local observability and estimation precision. We propose the Observability Predictive Controller (OPC), an implementation of our control principle under a receding-horizon framework, which optimizes a metric of the STLOG to maximize the minimum precision improvement along a trajectory. Monte Carlo simulations and experimental flight tests are conducted on a pair of quadrotors performing formation flight. The results show that the OPC improves positioning precision and estimator confidence, confirming the practical utility of the proposed approach.
comment: 36 pages, 5 figures
♻ ☆ From Autonomy to Agency: Agentic Vehicles for Human-Centered Mobility Systems
Autonomy, from the Greek autos (self) and nomos (law), refers to the capacity to operate according to internal rules without external control. Accordingly, autonomous vehicles (AuVs) are defined as systems capable of perceiving their environment and executing preprogrammed tasks independently of external input. However, both research and real-world deployments increasingly showcase vehicles that demonstrate behaviors beyond this definition (including the SAE levels 1 to 6), such as interaction with humans and machines, goal adaptation, contextual reasoning, external tool use, and long-term planning, particularly with the integration of large language models (LLMs) and agentic AI systems. These developments reveal a conceptual gap between technical autonomy and the broader cognitive and social capabilities needed for future human-centered mobility systems. To address this, we introduce the concept of agentic vehicles (AgVs), referring to vehicles that integrate agentic AI to reason, adapt, and interact within complex environments. This paper presents a systems-level framework to characterize AgVs, focusing on their cognitive and communicative layers and differentiating them from conventional AuVs. It synthesizes relevant advances in agentic AI, robotics, multi-agent systems, and human-machine interaction, and highlights how agentic AI, through high-level reasoning and tool use, can function not merely as computational tools but as interactive agents embedded in mobility ecosystems. The paper concludes by identifying key challenges in the development and governance of AgVs, including safety, real-time control, public acceptance, ethical alignment, and regulatory frameworks.
♻ ☆ Code-as-Symbolic-Planner: Foundation Model-Based Robot Planning via Symbolic Code Generation
Recent works have shown great potentials of Large Language Models (LLMs) in robot task and motion planning (TAMP). Current LLM approaches generate text- or code-based reasoning chains with sub-goals and action plans. However, they do not fully leverage LLMs' symbolic computing and code generation capabilities. Many robot TAMP tasks involve complex optimization under multiple constraints, where pure textual reasoning is insufficient. While augmenting LLMs with predefined solvers and planners improves performance, it lacks generalization across tasks. Given LLMs' growing coding proficiency, we enhance their TAMP capabilities by steering them to generate code as symbolic planners for optimization and constraint verification. Unlike prior work that uses code to interface with robot action modules, we steer LLMs to generate code as solvers, planners, and checkers for TAMP tasks requiring symbolic computing, while still leveraging textual reasoning to incorporate common sense. With a multi-round guidance and answer evolution framework, the proposed Code-as-Symbolic-Planner improves success rates by average 24.1\% over best baseline methods across seven typical TAMP tasks and three popular LLMs. Code-as-Symbolic-Planner shows strong effectiveness and generalizability across discrete and continuous environments, 2D/3D simulations and real-world settings, as well as single- and multi-robot tasks with diverse requirements. See our project website https://yongchao98.github.io/Code-Symbol-Planner/ for prompts, videos, and code.
comment: 7 pages, 7 figures, 3 tables
♻ ☆ Diffusion Beats Autoregressive in Data-Constrained Settings
Autoregressive (AR) models have long dominated the landscape of large language models, driving progress across a wide range of tasks. Recently, diffusion-based language models have emerged as a promising alternative, though their advantages over AR models remain underexplored. In this paper, we systematically study masked diffusion models in data-constrained settings-where training involves repeated passes over limited data-and find that they significantly outperform AR models when compute is abundant but data is scarce. Diffusion models make better use of repeated data, achieving lower validation loss and superior downstream performance. We interpret this advantage as implicit data augmentation: masked diffusion exposes the model to a diverse distribution of token orderings and prediction tasks, unlike AR's fixed left-to-right factorization. We find new scaling laws for diffusion models and derive a closed-form expression for the critical compute threshold at which diffusion begins to outperform AR. These results suggest that when data, not compute, is the bottleneck, diffusion models offer a compelling alternative to the standard AR paradigm. Our code is available at: https://diffusion-scaling.github.io.
comment: Project Webpage: https://diffusion-scaling.github.io
♻ ☆ Bayesian Optimization applied for accelerated Virtual Validation of the Autonomous Driving Function
Rigorous Verification and Validation (V&V) of Autonomous Driving Functions (ADFs) is paramount for ensuring the safety and public acceptance of Autonomous Vehicles (AVs). Current validation relies heavily on simulation to achieve sufficient test coverage within the Operational Design Domain (ODD) of a vehicle, but exhaustively exploring the vast parameter space of possible scenarios is computationally expensive and time-consuming. This work introduces a framework based on Bayesian Optimization (BO) to accelerate the discovery of critical scenarios. We demonstrate the effectiveness of the framework on an Model Predictive Controller (MPC)-based motion planner, showing that it identifies hazardous situations, such as off-road events, using orders of magnitude fewer simulations than brute-force Design of Experiments (DoE) methods. Furthermore, this study investigates the scalability of the framework in higher-dimensional parameter spaces and its ability to identify multiple, distinct critical regions within the ODD of the motion planner used as the case study .
comment: 12 pages, corrected author list of references 27 and 38, removed duplicate reference of reference 6
♻ ☆ Di-NeRF: Distributed NeRF for Collaborative Learning with Relative Pose Refinement
Collaborative mapping of unknown environments can be done faster and more robustly than a single robot. However, a collaborative approach requires a distributed paradigm to be scalable and deal with communication issues. This work presents a fully distributed algorithm enabling a group of robots to collectively optimize the parameters of a Neural Radiance Field (NeRF). The algorithm involves the communication of each robot's trained NeRF parameters over a mesh network, where each robot trains its NeRF and has access to its own visual data only. Additionally, the relative poses of all robots are jointly optimized alongside the model parameters, enabling mapping with less accurate relative camera poses. We show that multi-robot systems can benefit from differentiable and robust 3D reconstruction optimized from multiple NeRFs. Experiments on real-world and synthetic data demonstrate the efficiency of the proposed algorithm. See the website of the project for videos of the experiments and supplementary material (https://sites.google.com/view/di-nerf/home).
comment: 9 pages, 11 figures, Accepted in IEEE-RA-L
♻ ☆ Fast and Robust Visuomotor Riemannian Flow Matching Policy
Diffusion-based visuomotor policies excel at learning complex robotic tasks by effectively combining visual data with high-dimensional, multi-modal action distributions. However, diffusion models often suffer from slow inference due to costly denoising processes or require complex sequential training arising from recent distilling approaches. This paper introduces Riemannian Flow Matching Policy (RFMP), a model that inherits the easy training and fast inference capabilities of flow matching (FM). Moreover, RFMP inherently incorporates geometric constraints commonly found in realistic robotic applications, as the robot state resides on a Riemannian manifold. To enhance the robustness of RFMP, we propose Stable RFMP (SRFMP), which leverages LaSalle's invariance principle to equip the dynamics of FM with stability to the support of a target Riemannian distribution. Rigorous evaluation on ten simulated and real-world tasks show that RFMP successfully learns and synthesizes complex sensorimotor policies on Euclidean and Riemannian spaces with efficient training and inference phases, outperforming Diffusion Policies and Consistency Policies.
comment: Accepted for publication in IEEE T-RO. Project website: https://sites.google.com/view/rfmp 17 pages, 12 figures, 12 tables
♻ ☆ Reality Fusion: Robust Real-time Immersive Mobile Robot Teleoperation with Volumetric Visual Data Fusion IROS 2024
We introduce Reality Fusion, a novel robot teleoperation system that localizes, streams, projects, and merges a typical onboard depth sensor with a photorealistic, high resolution, high framerate, and wide field of view (FoV) rendering of the complex remote environment represented as 3D Gaussian splats (3DGS). Our framework enables robust egocentric and exocentric robot teleoperation in immersive VR, with the 3DGS effectively extending spatial information of a depth sensor with limited FoV and balancing the trade-off between data streaming costs and data visual quality. We evaluated our framework through a user study with 24 participants, which revealed that Reality Fusion leads to significantly better user performance, situation awareness, and user preferences. To support further research and development, we provide an open-source implementation with an easy-to-replicate custom-made telepresence robot, a high-performance virtual reality 3DGS renderer, and an immersive robot control package. (Source code: https://github.com/uhhhci/RealityFusion)
comment: Accepted at IROS 2024
♻ ☆ Motion Planning Diffusion: Learning and Adapting Robot Motion Planning with Diffusion Models
The performance of optimization-based robot motion planning algorithms is highly dependent on the initial solutions, commonly obtained by running a sampling-based planner to obtain a collision-free path. However, these methods can be slow in high-dimensional and complex scenes and produce non-smooth solutions. Given previously solved path-planning problems, it is highly desirable to learn their distribution and use it as a prior for new similar problems. Several works propose utilizing this prior to bootstrap the motion planning problem, either by sampling initial solutions from it, or using its distribution in a maximum-a-posterior formulation for trajectory optimization. In this work, we introduce Motion Planning Diffusion (MPD), an algorithm that learns trajectory distribution priors with diffusion models. These generative models have shown increasing success in encoding multimodal data and have desirable properties for gradient-based motion planning, such as cost guidance. Given a motion planning problem, we construct a cost function and sample from the posterior distribution using the learned prior combined with the cost function gradients during the denoising process. Instead of learning the prior on all trajectory waypoints, we propose learning a lower-dimensional representation of a trajectory using linear motion primitives, particularly B-spline curves. This parametrization guarantees that the generated trajectory is smooth, can be interpolated at higher frequencies, and needs fewer parameters than a dense waypoint representation. We demonstrate the results of our method ranging from simple 2D to more complex tasks using a 7-dof robot arm manipulator. In addition to learning from simulated data, we also use human demonstrations on a real-world pick-and-place task.
♻ ☆ Quaternion-Based Sliding Mode Control for Six Degrees of Freedom Flight Control of Quadrotors
Despite extensive research on sliding mode control (SMC) design for quadrotors, the existing approaches suffer from certain limitations. Euler angle-based SMC formulations suffer from poor performance in high-pitch or -roll maneuvers. Quaternion-based SMC approaches have unwinding issues and complex architecture. Coordinate-free methods are slow and only almost globally stable. This paper presents a new six degrees of freedom SMC flight controller to address the above limitations. We use a cascaded architecture with a position controller in the outer loop and a quaternion-based attitude controller in the inner loop. The position controller generates the desired trajectory for the attitude controller using a coordinate-free approach. The quaternion-based attitude controller uses the natural characteristics of the quaternion hypersphere, featuring a simple structure while providing global stability and avoiding unwinding issues. We compare our controller with three other common control methods conducting challenging maneuvers like flip-over and high-speed trajectory tracking in the presence of model uncertainties and disturbances. Our controller consistently outperforms the benchmark approaches with less control effort and actuator saturation, offering highly effective and efficient flight control.
♻ ☆ WeatherEdit: Controllable Weather Editing with 4D Gaussian Field
In this work, we present WeatherEdit, a novel weather editing pipeline for generating realistic weather effects with controllable types and severity in 3D scenes. Our approach is structured into two key components: weather background editing and weather particle construction. For weather background editing, we introduce an all-in-one adapter that integrates multiple weather styles into a single pretrained diffusion model, enabling the generation of diverse weather effects in 2D image backgrounds. During inference, we design a Temporal-View (TV-) attention mechanism that follows a specific order to aggregate temporal and spatial information, ensuring consistent editing across multi-frame and multi-view images. To construct the weather particles, we first reconstruct a 3D scene using the edited images and then introduce a dynamic 4D Gaussian field to generate snowflakes, raindrops and fog in the scene. The attributes and dynamics of these particles are precisely controlled through physical-based modelling and simulation, ensuring realistic weather representation and flexible severity adjustments. Finally, we integrate the 4D Gaussian field with the 3D scene to render consistent and highly realistic weather effects. Experiments on multiple driving datasets demonstrate that WeatherEdit can generate diverse weather effects with controllable condition severity, highlighting its potential for autonomous driving simulation in adverse weather. See project page: https://jumponthemoon.github.io/w-edit
♻ ☆ Vector Quantized-Elites: Unsupervised and Problem-Agnostic Quality-Diversity Optimization
Quality-Diversity algorithms have transformed optimization by prioritizing the discovery of diverse, high-performing solutions over a single optimal result. However, traditional Quality-Diversity methods, such as MAP-Elites, rely heavily on predefined behavior descriptors and complete prior knowledge of the task to define the behavior space grid, limiting their flexibility and applicability. In this work, we introduce Vector Quantized-Elites (VQ-Elites), a novel Quality-Diversity algorithm that autonomously constructs a structured behavior space grid using unsupervised learning, eliminating the need for prior task-specific knowledge. At the core of VQ-Elites is the integration of Vector Quantized Variational Autoencoders, which enables the dynamic learning of behavior descriptors and the generation of a structured, rather than unstructured, behavior space grid -- a significant advancement over existing unsupervised Quality-Diversity approaches. This design establishes VQ-Elites as a flexible, robust, and task-agnostic optimization framework. To further enhance the performance of unsupervised Quality-Diversity algorithms, we introduce behavior space bounding and cooperation mechanisms, which significantly improve convergence and performance, as well as the Effective Diversity Ratio and Coverage Diversity Score, two novel metrics that quantify the actual diversity in the unsupervised setting. We validate VQ-Elites on robotic arm pose-reaching, mobile robot space-covering, and MiniGrid exploration tasks. The results demonstrate its ability to efficiently generate diverse, high-quality solutions, emphasizing its adaptability, scalability, robustness to hyperparameters, and potential to extend Quality-Diversity optimization to complex, previously inaccessible domains.
comment: 15 pages, 13 figures, 1 algorithm, 1 table
♻ ☆ "Set It Up": Functional Object Arrangement with Compositional Generative Models (Journal Version)
Functional object arrangement (FORM) is the task of arranging objects to fulfill a function, e.g., "set up a dining table for two". One key challenge here is that the instructions for FORM are often under-specified and do not explicitly specify the desired object goal poses. This paper presents SetItUp, a neuro-symbolic framework that learns to specify the goal poses of objects from a few training examples and a structured natural-language task specification. SetItUp uses a grounding graph, which is composed of abstract spatial relations among objects (e.g., left-of), as its intermediate representation. This decomposes the FORM problem into two stages: (i) predicting this graph among objects and (ii) predicting object poses given the grounding graph. For (i), SetItUp leverages large language models (LLMs) to induce Python programs from a task specification and a few training examples. This program can be executed to generate grounding graphs in novel scenarios. For (ii), SetItUp pre-trains a collection of diffusion models to capture primitive spatial relations and online composes these models to predict object poses based on the grounding graph. We evaluated SetItUp on a dataset spanning three distinct task families: arranging tableware on a dining table, organizing items on a bookshelf, and laying out furniture in a bedroom. Experiments show that SetItUp outperforms existing models in generating functional, physically feasible, and aesthetically pleasing object arrangements. This article extends our conference paper published at Robotics: Science and Systems (RSS) 2024.
comment: This is the journal version accepted to the International Journal of Robotics Research (IJRR). It extends our prior work presented at Robotics: Science and Systems (RSS) 2024, with a new compositional program induction pipeline from natural language, and expanded evaluations on personalized bookshelf and bedroom furniture layout tasks
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Lifelong Learning in Physical Embodied Systems
We present RoboMemory, a brain-inspired multi-memory framework for lifelong learning in physical embodied systems, addressing critical challenges in real-world environments: continuous learning, multi-module memory latency, task correlation capture, and infinite-loop mitigation in closed-loop planning. Grounded in cognitive neuroscience, it integrates four core modules: the Information Preprocessor (thalamus-like), the Lifelong Embodied Memory System (hippocampus-like), the Closed-Loop Planning Module (prefrontal lobe-like), and the Low-Level Executer (cerebellum-like) to enable long-term planning and cumulative learning. The Lifelong Embodied Memory System, central to the framework, alleviates inference speed issues in complex memory frameworks via parallelized updates/retrieval across Spatial, Temporal, Episodic, and Semantic submodules. It incorporates a dynamic Knowledge Graph (KG) and consistent architectural design to enhance memory consistency and scalability. Evaluations on EmbodiedBench show RoboMemory outperforms the open-source baseline (Qwen2.5-VL-72B-Ins) by 25% in average success rate and surpasses the closed-source State-of-the-Art (SOTA) (Claude3.5-Sonnet) by 5%, establishing new SOTA. Ablation studies validate key components (critic, spatial memory, long-term memory), while real-world deployment confirms its lifelong learning capability with significantly improved success rates across repeated tasks. RoboMemory alleviates high latency challenges with scalability, serving as a foundational reference for integrating multi-modal memory systems in physical robots.
♻ ☆ Unified Linear Parametric Map Modeling and Perception-aware Trajectory Planning for Mobile Robotics
Autonomous navigation in mobile robots, reliant on perception and planning, faces major hurdles in large-scale, complex environments. These include heavy computational burdens for mapping, sensor occlusion failures for UAVs, and traversal challenges on irregular terrain for UGVs, all compounded by a lack of perception-aware strategies. To address these challenges, we introduce Random Mapping and Random Projection (RMRP). This method constructs a lightweight linear parametric map by first mapping data to a high-dimensional space, followed by a sparse random projection for dimensionality reduction. Our novel Residual Energy Preservation Theorem provides theoretical guarantees for this process, ensuring critical geometric properties are preserved. Based on this map, we propose the RPATR (Robust Perception-Aware Trajectory Planner) framework. For UAVs, our method unifies grid and Euclidean Signed Distance Field (ESDF) maps. The front-end uses an analytical occupancy gradient to refine initial paths for safety and smoothness, while the back-end uses a closed-form ESDF for trajectory optimization. Leveraging the trained RMRP model's generalization, the planner predicts unobserved areas for proactive navigation. For UGVs, the model characterizes terrain and provides closed-form gradients, enabling online planning to circumvent large holes. Validated in diverse scenarios, our framework demonstrates superior mapping performance in time, memory, and accuracy, and enables computationally efficient, safe navigation for high-speed UAVs and UGVs. The code will be released to foster community collaboration.
♻ ☆ Optimizing Mesh to Improve the Triangular Expansion Algorithm for Computing Visibility Regions
This paper addresses the problem of improving the query performance of the triangular expansion algorithm (TEA) for computing visibility regions by finding the most advantageous instance of the triangular mesh, the preprocessing structure. The TEA recursively traverses the mesh while keeping track of the visible region, the set of all points visible from a query point in a polygonal world. We show that the measured query time is approximately proportional to the number of triangle edge expansions during the mesh traversal. We propose a new type of triangular mesh that minimizes the expected number of expansions assuming the query points are drawn from a known probability distribution. We design a heuristic method to approximate the mesh and evaluate the approach on many challenging instances that resemble real-world environments. The proposed mesh improves the mean query times by 12-16% compared to the reference constrained Delaunay triangulation. The approach is suitable to boost offline applications that require computing millions of queries without addressing the preprocessing time. The implementation is publicly available to replicate our experiments and serve the community.
comment: 30 pages, 43 figures (including subfigures), accepted version
♻ ☆ Position-Based Flocking for Robust Alignment
This paper presents a position-based flocking model for interacting agents, balancing cohesion-separation and alignment to achieve stable collective motion. The model modifies a position-velocity-based approach by approximating velocity differences using initial and current positions, introducing a threshold weight to ensure sustained alignment. Simulations with 50 agents in 2D demonstrate that the position-based model produces stronger alignment and more rigid and compact formations compared to the position-velocity-based model. The alignment metric and separation distances highlight the efficacy of the proposed model in achieving robust flocking behavior. The model's use of positions ensures robust alignment, with applications in robotics and collective dynamics.
comment: Accepted for "The 9th International Symposium on Swarm Behavior and Bio-Inspired Robotics 2025" Simulation video for Fig. 1 at https://youtu.be/yID0taa7X7o Simulation video for Fig. 3 at https://youtu.be/8I_yBhY2imo Simulation video for Fig. 5 at https://youtu.be/fTG7pgBPMZg
♻ ☆ Extracting Visual Plans from Unlabeled Videos via Symbolic Guidance
Visual planning, by offering a sequence of intermediate visual subgoals to a goal-conditioned low-level policy, achieves promising performance on long-horizon manipulation tasks. To obtain the subgoals, existing methods typically resort to video generation models but suffer from model hallucination and computational cost. We present Vis2Plan, an efficient, explainable and white-box visual planning framework powered by symbolic guidance. From raw, unlabeled play data, Vis2Plan harnesses vision foundation models to automatically extract a compact set of task symbols, which allows building a high-level symbolic transition graph for multi-goal, multi-stage planning. At test time, given a desired task goal, our planner conducts planning at the symbolic level and assembles a sequence of physically consistent intermediate sub-goal images grounded by the underlying symbolic representation. Our Vis2Plan outperforms strong diffusion video generation-based visual planners by delivering 53\% higher aggregate success rate in real robot settings while generating visual plans 35$\times$ faster. The results indicate that Vis2Plan is able to generate physically consistent image goals while offering fully inspectable reasoning steps.
♻ ☆ RoboTron-Drive: All-in-One Large Multimodal Model for Autonomous Driving ICCV 2025
Large Multimodal Models (LMMs) have demonstrated exceptional comprehension and interpretation capabilities in Autonomous Driving (AD) by incorporating large language models. Despite the advancements, current data-driven AD approaches tend to concentrate on a single dataset and specific tasks, neglecting their overall capabilities and ability to generalize. To bridge these gaps, we propose RoboTron-Drive, a general large multimodal model designed to process diverse data inputs, such as images and multi-view videos, while performing a broad spectrum of AD tasks, including perception, prediction, and planning. Initially, the model undergoes curriculum pre-training to process varied visual signals and perform basic visual comprehension and perception tasks. Subsequently, we augment and standardize various AD datasets to finetune the model, resulting in an all-in-one LMM for autonomous driving. To assess the general capabilities and generalization ability, we conduct evaluations on six public benchmarks and undertake zero-shot transfer on three unseen datasets, where RoboTron-Drive achieves state-of-the-art performance across all tasks. We hope RoboTron-Drive as a promising solution for AD in the real world. Project page with code: https://github.com/zhijian11/RoboTron-Drive.
comment: ICCV 2025
♻ ☆ APEX-MR: Multi-Robot Asynchronous Planning and Execution for Cooperative Assembly
Compared to a single-robot workstation, a multi-robot system offers several advantages: 1) it expands the system's workspace, 2) improves task efficiency, and, more importantly, 3) enables robots to achieve significantly more complex and dexterous tasks, such as cooperative assembly. However, coordinating the tasks and motions of multiple robots is challenging due to issues, e.g., system uncertainty, task efficiency, algorithm scalability, and safety concerns. To address these challenges, this paper studies multi-robot coordination and proposes APEX-MR, an asynchronous planning and execution framework designed to safely and efficiently coordinate multiple robots to achieve cooperative assembly, e.g., LEGO assembly. In particular, APEX-MR provides a systematic approach to post-process multi-robot tasks and motion plans to enable robust asynchronous execution under uncertainty. Experimental results demonstrate that APEX-MR can significantly speed up the execution time of many long-horizon LEGO assembly tasks by 48% compared to sequential planning and 36% compared to synchronous planning on average. To further demonstrate performance, we deploy APEX-MR in a dual-arm system to perform physical LEGO assembly. To our knowledge, this is the first robotic system capable of performing customized LEGO assembly using commercial LEGO bricks. The experimental results demonstrate that the dual-arm system, with APEX-MR, can safely coordinate robot motions, efficiently collaborate, and construct complex LEGO structures. Our project website is available at https://intelligent-control-lab.github.io/APEX-MR/.
comment: 17 pages, 11 figures. To appear in the proceedings of RSS 2025
♻ ☆ Task-driven SLAM Benchmarking For Robot Navigation IROS 2025
A critical use case of SLAM for mobile assistive robots is to support localization during a navigation-based task. Current SLAM benchmarks overlook the significance of repeatability (precision), despite its importance in real-world deployments. To address this gap, we propose a task-driven approach to SLAM benchmarking, TaskSLAM-Bench. It employs precision as a key metric, accounts for SLAM's mapping capabilities, and has easy-to-meet implementation requirements. Simulated and real-world testing scenarios of SLAM methods provide insights into the navigation performance properties of modern visual and LiDAR SLAM solutions. The outcomes show that passive stereo SLAM operates at a level of precision comparable to LiDAR SLAM in typical indoor environments. TaskSLAM-Bench complements existing benchmarks and offers richer assessment of SLAM performance in navigation-focused scenarios. Publicly available code permits in-situ SLAM testing in custom environments with properly equipped robots.
comment: 7 pages, 8 figures, 1 table. Accepted to IROS 2025
♻ ☆ Tunable Leg Stiffness in a Monopedal Hopper for Energy-Efficient Vertical Hopping Across Varying Ground Profiles ICRA
We present the design and implementation of HASTA (Hopper with Adjustable Stiffness for Terrain Adaptation), a vertical hopping robot with real-time tunable leg stiffness, aimed at optimizing energy efficiency across various ground profiles (a pair of ground stiffness and damping conditions). By adjusting leg stiffness, we aim to maximize apex hopping height, a key metric for energy-efficient vertical hopping. We hypothesize that softer legs perform better on soft, damped ground by minimizing penetration and energy loss, while stiffer legs excel on hard, less damped ground by reducing limb deformation and energy dissipation. Through experimental tests and simulations, we find the best leg stiffness within our selection for each combination of ground stiffness and damping, enabling the robot to achieve maximum steady-state hopping height with a constant energy input. These results support our hypothesis that tunable stiffness improves energy-efficient locomotion in controlled experimental conditions. In addition, the simulation provides insights that could aid in the future development of controllers for selecting leg stiffness.
comment: 2025 IEEE International Conference on Robotics & Automation (ICRA)
♻ ☆ Following Is All You Need: Robot Crowd Navigation Using People As Planners
Navigating in crowded environments requires the robot to be equipped with high-level reasoning and planning techniques. Existing works focus on developing complex and heavyweight planners while ignoring the role of human intelligence. Since humans are highly capable agents who are also widely available in a crowd navigation setting, we propose an alternative scheme where the robot utilises people as planners to benefit from their effective planning decisions and social behaviours. Through a set of rule-based evaluations, we identify suitable human leaders who exhibit the potential to guide the robot towards its goal. Using a simple base planner, the robot follows the selected leader through shorthorizon subgoals that are designed to be straightforward to achieve. We demonstrate through both simulated and real-world experiments that our novel framework generates safe and efficient robot plans compared to existing planners, even without predictive or data-driven modules. Our method also brings human-like robot behaviours without explicitly defining traffic rules and social norms. Code will be available at https://github.com/centiLinda/PeopleAsPlanner.git.
comment: RAL 2025
♻ ☆ Multi-Fidelity Reinforcement Learning for Time-Optimal Quadrotor Re-planning
High-speed online trajectory planning for UAVs poses a significant challenge due to the need for precise modeling of complex dynamics while also being constrained by computational limitations. This paper presents a multi-fidelity reinforcement learning method (MFRL) that aims to effectively create a realistic dynamics model and simultaneously train a planning policy that can be readily deployed in real-time applications. The proposed method involves the co-training of a planning policy and a reward estimator; the latter predicts the performance of the policy's output and is trained efficiently through multi-fidelity Bayesian optimization. This optimization approach models the correlation between different fidelity levels, thereby constructing a high-fidelity model based on a low-fidelity foundation, which enables the accurate development of the reward model with limited high-fidelity experiments. The framework is further extended to include real-world flight experiments in reinforcement learning training, allowing the reward model to precisely reflect real-world constraints and broadening the policy's applicability to real-world scenarios. We present rigorous evaluations by training and testing the planning policy in both simulated and real-world environments. The resulting trained policy not only generates faster and more reliable trajectories compared to the baseline snap minimization method, but it also achieves trajectory updates in 2 ms on average, while the baseline method takes several minutes.
comment: Accepted for publication in the International Journal of Robotics Research
♻ ☆ BUFFER-X: Towards Zero-Shot Point Cloud Registration in Diverse Scenes ICCV 2025
Recent advances in deep learning-based point cloud registration have improved generalization, yet most methods still require retraining or manual parameter tuning for each new environment. In this paper, we identify three key factors limiting generalization: (a) reliance on environment-specific voxel size and search radius, (b) poor out-of-domain robustness of learning-based keypoint detectors, and (c) raw coordinate usage, which exacerbates scale discrepancies. To address these issues, we present a zero-shot registration pipeline called BUFFER-X by (a) adaptively determining voxel size/search radii, (b) using farthest point sampling to bypass learned detectors, and (c) leveraging patch-wise scale normalization for consistent coordinate bounds. In particular, we present a multi-scale patch-based descriptor generation and a hierarchical inlier search across scales to improve robustness in diverse scenes. We also propose a novel generalizability benchmark using 11 datasets that cover various indoor/outdoor scenarios and sensor modalities, demonstrating that BUFFER-X achieves substantial generalization without prior information or manual parameter tuning for the test datasets. Our code is available at https://github.com/MIT-SPARK/BUFFER-X.
comment: 20 pages, 14 figures. Accepted as a highlight paper at ICCV 2025
Information Retrieval 31
☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and too retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average Complete Recall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information in the KG provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
☆ WebWatcher: Breaking New Frontiers of Vision-Language Deep Research Agent
Web agents such as Deep Research have demonstrated superhuman cognitive abilities, capable of solving highly challenging information-seeking problems. However, most research remains primarily text-centric, overlooking visual information in the real world. This makes multimodal Deep Research highly challenging, as such agents require much stronger reasoning abilities in perception, logic, knowledge, and the use of more sophisticated tools compared to text-based agents. To address this limitation, we introduce WebWatcher, a multi-modal Agent for Deep Research equipped with enhanced visual-language reasoning capabilities. It leverages high-quality synthetic multimodal trajectories for efficient cold start training, utilizes various tools for deep reasoning, and further enhances generalization through reinforcement learning. To better evaluate the capabilities of multimodal agents, we propose BrowseComp-VL, a benchmark with BrowseComp-style that requires complex information retrieval involving both visual and textual information. Experimental results show that WebWatcher significantly outperforms proprietary baseline, RAG workflow and open-source agents in four challenging VQA benchmarks, which paves the way for solving complex multimodal information-seeking tasks.
☆ KuaiLive: A Real-time Interactive Dataset for Live Streaming Recommendation
Live streaming platforms have become a dominant form of online content consumption, offering dynamically evolving content, real-time interactions, and highly engaging user experiences. These unique characteristics introduce new challenges that differentiate live streaming recommendation from traditional recommendation settings and have garnered increasing attention from industry in recent years. However, research progress in academia has been hindered by the lack of publicly available datasets that accurately reflect the dynamic nature of live streaming environments. To address this gap, we introduce KuaiLive, the first real-time, interactive dataset collected from Kuaishou, a leading live streaming platform in China with over 400 million daily active users. The dataset records the interaction logs of 23,772 users and 452,621 streamers over a 21-day period. Compared to existing datasets, KuaiLive offers several advantages: it includes precise live room start and end timestamps, multiple types of real-time user interactions (click, comment, like, gift), and rich side information features for both users and streamers. These features enable more realistic simulation of dynamic candidate items and better modeling of user and streamer behaviors. We conduct a thorough analysis of KuaiLive from multiple perspectives and evaluate several representative recommendation methods on it, establishing a strong benchmark for future research. KuaiLive can support a wide range of tasks in the live streaming domain, such as top-K recommendation, click-through rate prediction, watch time prediction, and gift price prediction. Moreover, its fine-grained behavioral data also enables research on multi-behavior modeling, multi-task learning, and fairness-aware recommendation. The dataset and related resources are publicly available at https://imgkkk574.github.io/KuaiLive.
☆ RankArena: A Unified Platform for Evaluating Retrieval, Reranking and RAG with Human and LLM Feedback CIKM 2025
Evaluating the quality of retrieval-augmented generation (RAG) and document reranking systems remains challenging due to the lack of scalable, user-centric, and multi-perspective evaluation tools. We introduce RankArena, a unified platform for comparing and analysing the performance of retrieval pipelines, rerankers, and RAG systems using structured human and LLM-based feedback as well as for collecting such feedback. RankArena supports multiple evaluation modes: direct reranking visualisation, blind pairwise comparisons with human or LLM voting, supervised manual document annotation, and end-to-end RAG answer quality assessment. It captures fine-grained relevance feedback through both pairwise preferences and full-list annotations, along with auxiliary metadata such as movement metrics, annotation time, and quality ratings. The platform also integrates LLM-as-a-judge evaluation, enabling comparison between model-generated rankings and human ground truth annotations. All interactions are stored as structured evaluation datasets that can be used to train rerankers, reward models, judgment agents, or retrieval strategy selectors. Our platform is publicly available at https://rankarena.ngrok.io/, and the Demo video is provided https://youtu.be/jIYAP4PaSSI.
comment: Accept at CIKM 2025
☆ On the Reliability of Sampling Strategies in Offline Recommender Evaluation RecSys 2025
Offline evaluation plays a central role in benchmarking recommender systems when online testing is impractical or risky. However, it is susceptible to two key sources of bias: exposure bias, where users only interact with items they are shown, and sampling bias, introduced when evaluation is performed on a subset of logged items rather than the full catalog. While prior work has proposed methods to mitigate sampling bias, these are typically assessed on fixed logged datasets rather than for their ability to support reliable model comparisons under varying exposure conditions or relative to true user preferences. In this paper, we investigate how different combinations of logging and sampling choices affect the reliability of offline evaluation. Using a fully observed dataset as ground truth, we systematically simulate diverse exposure biases and assess the reliability of common sampling strategies along four dimensions: sampling resolution (recommender model separability), fidelity (agreement with full evaluation), robustness (stability under exposure bias), and predictive power (alignment with ground truth). Our findings highlight when and how sampling distorts evaluation outcomes and offer practical guidance for selecting strategies that yield faithful and robust offline comparisons.
comment: Accepted to RecSys 2025
☆ Does Multimodality Improve Recommender Systems as Expected? A Critical Analysis and Future Directions
Multimodal recommendation systems are increasingly popular for their potential to improve performance by integrating diverse data types. However, the actual benefits of this integration remain unclear, raising questions about when and how it truly enhances recommendations. In this paper, we propose a structured evaluation framework to systematically assess multimodal recommendations across four dimensions: Comparative Efficiency, Recommendation Tasks, Recommendation Stages, and Multimodal Data Integration. We benchmark a set of reproducible multimodal models against strong traditional baselines and evaluate their performance on different platforms. Our findings show that multimodal data is particularly beneficial in sparse interaction scenarios and during the recall stage of recommendation pipelines. We also observe that the importance of each modality is task-specific, where text features are more useful in e-commerce and visual features are more effective in short-video recommendations. Additionally, we explore different integration strategies and model sizes, finding that Ensemble-Based Learning outperforms Fusion-Based Learning, and that larger models do not necessarily deliver better results. To deepen our understanding, we include case studies and review findings from other recommendation domains. Our work provides practical insights for building efficient and effective multimodal recommendation systems, emphasizing the need for thoughtful modality selection, integration strategies, and model design.
☆ Multi-Modal Multi-Behavior Sequential Recommendation with Conditional Diffusion-Based Feature Denoising SIGIR 2025
The sequential recommendation system utilizes historical user interactions to predict preferences. Effectively integrating diverse user behavior patterns with rich multimodal information of items to enhance the accuracy of sequential recommendations is an emerging and challenging research direction. This paper focuses on the problem of multi-modal multi-behavior sequential recommendation, aiming to address the following challenges: (1) the lack of effective characterization of modal preferences across different behaviors, as user attention to different item modalities varies depending on the behavior; (2) the difficulty of effectively mitigating implicit noise in user behavior, such as unintended actions like accidental clicks; (3) the inability to handle modality noise in multi-modal representations, which further impacts the accurate modeling of user preferences. To tackle these issues, we propose a novel Multi-Modal Multi-Behavior Sequential Recommendation model (M$^3$BSR). This model first removes noise in multi-modal representations using a Conditional Diffusion Modality Denoising Layer. Subsequently, it utilizes deep behavioral information to guide the denoising of shallow behavioral data, thereby alleviating the impact of noise in implicit feedback through Conditional Diffusion Behavior Denoising. Finally, by introducing a Multi-Expert Interest Extraction Layer, M$^3$BSR explicitly models the common and specific interests across behaviors and modalities to enhance recommendation performance. Experimental results indicate that M$^3$BSR significantly outperforms existing state-of-the-art methods on benchmark datasets.
comment: SIGIR 2025
☆ Difference Views for Visual Graph Query Building
Knowledge Graphs (KGs) contain vast amounts of linked resources that encode knowledge in various domains, which can be queried and searched for using specialized languages like SPARQL, a query language developed to query KGs. Existing visual query builders enable non-expert users to construct SPARQL queries and utilize the knowledge contained in these graphs. Query building is, however, an iterative and, often, visual process where the question of the user can change and differ throughout the process, especially for explorative search. Our visual querying interface communicates these change between iterative steps in the query building process using graph differences to contrast the changes and the evolution in the graph query. We also enable users to formulate their evolving information needs using a natural language interface directly integrated into the difference query view. We, furthermore, communicate the change in results in the result view by contrasting the differences in both result distribution and individual instances of the prototype graph and demonstrate the system's applicability through case studies on different ontologies and usage scenarios, illustrating how our system fosters, both, data exploration and analysis of domain-specific graphs.
comment: 5 pages, 6 figures, preparing for submission to Semantic Web Conferences
☆ FIRE: Faithful Interpretable Recommendation Explanations
Natural language explanations in recommender systems are often framed as a review generation task, leveraging user reviews as ground-truth supervision. While convenient, this approach conflates a user's opinion with the system's reasoning, leading to explanations that may be fluent but fail to reflect the true logic behind recommendations. In this work, we revisit the core objective of explainable recommendation: to transparently communicate why an item is recommended by linking user needs to relevant item features. Through a comprehensive analysis of existing methods across multiple benchmark datasets, we identify common limitations-explanations that are weakly aligned with model predictions, vague or inaccurate in identifying user intents, and overly repetitive or generic. To overcome these challenges, we propose FIRE, a lightweight and interpretable framework that combines SHAP-based feature attribution with structured, prompt-driven language generation. FIRE produces faithful, diverse, and user-aligned explanations, grounded in the actual decision-making process of the model. Our results demonstrate that FIRE not only achieves competitive recommendation accuracy but also significantly improves explanation quality along critical dimensions such as alignment, structure, and faithfulness. This work highlights the need to move beyond the review-as-explanation paradigm and toward explanation methods that are both accountable and interpretable.
☆ Bidding-Aware Retrieval for Multi-Stage Consistency in Online Advertising
Online advertising systems typically use a cascaded architecture to manage massive requests and candidate volumes, where the ranking stages allocate traffic based on eCPM (predicted CTR $\times$ Bid). With the increasing popularity of auto-bidding strategies, the inconsistency between the computationally sensitive retrieval stage and the ranking stages becomes more pronounced, as the former cannot access precise, real-time bids for the vast ad corpus. This discrepancy leads to sub-optimal platform revenue and advertiser outcomes. To tackle this problem, we propose Bidding-Aware Retrieval (BAR), a model-based retrieval framework that addresses multi-stage inconsistency by incorporating ad bid value into the retrieval scoring function. The core innovation is Bidding-Aware Modeling, incorporating bid signals through monotonicity-constrained learning and multi-task distillation to ensure economically coherent representations, while Asynchronous Near-Line Inference enables real-time updates to the embedding for market responsiveness. Furthermore, the Task-Attentive Refinement module selectively enhances feature interactions to disentangle user interest and commercial value signals. Extensive offline experiments and full-scale deployment across Alibaba's display advertising platform validated BAR's efficacy: 4.32% platform revenue increase with 22.2% impression lift for positively-operated advertisements.
☆ Balancing Accuracy and Novelty with Sub-Item Popularity
In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
☆ Tool Graph Retriever: Exploring Dependency Graph-based Tool Retrieval for Large Language Models
With the remarkable advancement of AI agents, the number of their equipped tools is increasing rapidly. However, integrating all tool information into the limited model context becomes impractical, highlighting the need for efficient tool retrieval methods. In this regard, dominant methods primarily rely on semantic similarities between tool descriptions and user queries to retrieve relevant tools. However, they often consider each tool independently, overlooking dependencies between tools, which may lead to the omission of prerequisite tools for successful task execution. To deal with this defect, in this paper, we propose Tool Graph Retriever (TGR), which exploits the dependencies among tools to learn better tool representations for retrieval. First, we construct a dataset termed TDI300K to train a discriminator for identifying tool dependencies. Then, we represent all candidate tools as a tool dependency graph and use graph convolution to integrate the dependencies into their representations. Finally, these updated tool representations are employed for online retrieval. Experimental results on several commonly used datasets show that our TGR can bring a performance improvement to existing dominant methods, achieving SOTA performance. Moreover, in-depth analyses also verify the importance of tool dependencies and the effectiveness of our TGR.
☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
☆ Community-Aware Social Community Recommendation CIKM 2025
Social recommendation, which seeks to leverage social ties among users to alleviate the sparsity issue of user-item interactions, has emerged as a popular technique for elevating personalized services in recommender systems. Despite being effective, existing social recommendation models are mainly devised for recommending regular items such as blogs, images, and products, and largely fail for community recommendations due to overlooking the unique characteristics of communities. Distinctly, communities are constituted by individuals, who present high dynamicity and relate to rich structural patterns in social networks. To our knowledge, limited research has been devoted to comprehensively exploiting this information for recommending communities. To bridge this gap, this paper presents CASO, a novel and effective model specially designed for social community recommendation. Under the hood, CASO harnesses three carefully-crafted encoders for user embedding, wherein two of them extract community-related global and local structures from the social network via social modularity maximization and social closeness aggregation, while the third one captures user preferences using collaborative filtering with observed user-community affiliations. To further eliminate feature redundancy therein, we introduce a mutual exclusion between social and collaborative signals. Finally, CASO includes a community detection loss in the model optimization, thereby producing community-aware embeddings for communities. Our extensive experiments evaluating CASO against nine strong baselines on six real-world social networks demonstrate its consistent and remarkable superiority over the state of the art in terms of community recommendation performance.
comment: This is the technical report of the paper "Community-Aware Social Community Recommendation" accepted by CIKM 2025
☆ G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
☆ An End-to-End Multi-objective Ensemble Ranking Framework for Video Recommendation
We propose a novel End-to-end Multi-objective Ensemble Ranking framework (EMER) for the multi-objective ensemble ranking module, which is the most critical component of the short video recommendation system. EMER enhances personalization by replacing manually-designed heuristic formulas with an end-to-end modeling paradigm. EMER introduces a meticulously designed loss function to address the fundamental challenge of defining effective supervision for ensemble ranking, where no single ground-truth signal can fully capture user satisfaction. Moreover, EMER introduces novel sample organization method and transformer-based network architecture to capture the comparative relationships among candidates, which are critical for effective ranking. Additionally, we have proposed an offline-online consistent evaluation system to enhance the efficiency of offline model optimization, which is an established yet persistent challenge within the multi-objective ranking domain in industry. Abundant empirical tests are conducted on a real industrial dataset, and the results well demonstrate the effectiveness of our proposed framework. In addition, our framework has been deployed in the primary scenarios of Kuaishou, a short video recommendation platform with hundreds of millions of daily active users, achieving a 1.39% increase in overall App Stay Time and a 0.196% increase in 7-day user Lifetime(LT7), which are substantial improvements.
☆ Align-for-Fusion: Harmonizing Triple Preferences via Dual-oriented Diffusion for Cross-domain Sequential Recommendation
Personalized sequential recommendation aims to predict appropriate items for users based on their behavioral sequences. To alleviate data sparsity and interest drift issues, conventional approaches typically incorporate auxiliary behaviors from other domains via cross-domain transition. However, existing cross-domain sequential recommendation (CDSR) methods often follow an align-then-fusion paradigm that performs representation-level alignment across multiple domains and combines them mechanically for recommendation, overlooking the fine-grained fusion of domain-specific preferences. Inspired by recent advances in diffusion models (DMs) for distribution matching, we propose an align-for-fusion framework for CDSR to harmonize triple preferences via dual-oriented DMs, termed HorizonRec. Specifically, we investigate the uncertainty injection of DMs and identify stochastic noise as a key source of instability in existing DM-based recommenders. To address this, we introduce a mixed-conditioned distribution retrieval strategy that leverages distributions retrieved from users' authentic behavioral logic as semantic bridges across domains, enabling consistent multi-domain preference modeling. Furthermore, we propose a dual-oriented preference diffusion method to suppress potential noise and emphasize target-relevant interests during multi-domain user representation fusion. Extensive experiments on four CDSR datasets from two distinct platforms demonstrate the effectiveness and robustness of HorizonRec in fine-grained triple-domain preference fusion.
☆ Data-Aware Socratic Query Refinement in Database Systems
In this paper, we propose Data-Aware Socratic Guidance (DASG), a dialogue-based query enhancement framework that embeds \linebreak interactive clarification as a first-class operator within database systems to resolve ambiguity in natural language queries. DASG treats dialogue as an optimization decision, asking clarifying questions only when the expected execution cost reduction exceeds the interaction overhead. The system quantifies ambiguity through linguistic fuzziness, schema grounding confidence, and projected costs across relational and vector backends. Our algorithm selects the optimal clarifications by combining semantic relevance, catalog-based information gain, and potential cost reduction. We evaluate our proposed framework on three datasets. The results show that DASG demonstrates improved query precision while maintaining efficiency, establishing a cooperative analytics paradigm where systems actively participate in query formulation rather than passively translating user requests.
☆ A Metric for MLLM Alignment in Large-scale Recommendation
Multimodal recommendation has emerged as a critical technique in modern recommender systems, leveraging content representations from advanced multimodal large language models (MLLMs). To ensure these representations are well-adapted, alignment with the recommender system is essential. However, evaluating the alignment of MLLMs for recommendation presents significant challenges due to three key issues: (1) static benchmarks are inaccurate because of the dynamism in real-world applications, (2) evaluations with online system, while accurate, are prohibitively expensive at scale, and (3) conventional metrics fail to provide actionable insights when learned representations underperform. To address these challenges, we propose the Leakage Impact Score (LIS), a novel metric for multimodal recommendation. Rather than directly assessing MLLMs, LIS efficiently measures the upper bound of preference data. We also share practical insights on deploying MLLMs with LIS in real-world scenarios. Online A/B tests on both Content Feed and Display Ads of Xiaohongshu's Explore Feed production demonstrate the effectiveness of our proposed method, showing significant improvements in user spent time and advertiser value.
comment: Pre-print.Under Review
☆ Multi-Faceted Large Embedding Tables for Pinterest Ads Ranking
Large embedding tables are indispensable in modern recommendation systems, thanks to their ability to effectively capture and memorize intricate details of interactions among diverse entities. As we explore integrating large embedding tables into Pinterest's ads ranking models, we encountered not only common challenges such as sparsity and scalability, but also several obstacles unique to our context. Notably, our initial attempts to train large embedding tables from scratch resulted in neutral metrics. To tackle this, we introduced a novel multi-faceted pretraining scheme that incorporates multiple pretraining algorithms. This approach greatly enriched the embedding tables and resulted in significant performance improvements. As a result, the multi-faceted large embedding tables bring great performance gain on both the Click-Through Rate (CTR) and Conversion Rate (CVR) domains. Moreover, we designed a CPU-GPU hybrid serving infrastructure to overcome GPU memory limits and elevate the scalability. This framework has been deployed in the Pinterest Ads system and achieved 1.34% online CPC reduction and 2.60% CTR increase with neutral end-to-end latency change.
♻ ☆ Towards Personalized Conversational Sales Agents: Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs)aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To capture this complexity, we introduce Conversational Sales (CSALES), a novel task that integrates preference elicitation, recommendation, and persuasion within a unified conversational framework. To support realistic and systematic evaluation, we present CSUSER, an evaluation protocol with LLM-based user simulator grounded in real-world behavioral data by modeling fine-grained user profiles for personalized interaction. We also propose CSI, a conversational sales agent that proactively infers contextual user profiles and strategically selects actions through conversation. Comprehensive experiments show that CSI significantly improves both recommendation success and persuasive effectiveness across diverse user profiles.
♻ ☆ QuMAB: Query-based Multi-Annotator Behavior Modeling with Reliability under Sparse Labels
Multi-annotator learning traditionally aggregates diverse annotations to approximate a single ground truth, treating disagreements as noise. However, this paradigm faces fundamental challenges: subjective tasks often lack absolute ground truth, and sparse annotation coverage makes aggregation statistically unreliable. We introduce a paradigm shift from sample-wise aggregation to annotator-wise behavior modeling. By treating annotator disagreements as valuable information rather than noise, modeling annotator-specific behavior patterns can reconstruct unlabeled data to reduce annotation cost, enhance aggregation reliability, and explain annotator decision behavior. To this end, we propose QuMAB (Query-based Multi-Annotator Behavior Pattern Learning), which uses light-weight queries to model individual annotators while capturing inter-annotator correlations as implicit regularization, preventing overfitting to sparse individual data while maintaining individualization and improving generalization, with a visualization of annotator focus regions offering an explainable analysis of behavior understanding. We contribute two large-scale datasets with dense per-annotator labels: STREET (4,300 labels/annotator) and AMER (average 3,118 labels/annotator), the first multimodal multi-annotator dataset. Extensive experiments demonstrate the superiority of our QuMAB in modeling individual annotators' behavior patterns, their utility for consensus prediction, and applicability under sparse annotations.
comment: 12 pages. arXiv admin note: substantial text overlap with arXiv:2503.15237
♻ ☆ From Generation to Consumption: Personalized List Value Estimation for Re-ranking
Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.
♻ ☆ Generative Multi-Target Cross-Domain Recommendation
Recently, there has been a surge of interest in Multi-Target Cross-Domain Recommendation (MTCDR), which aims to enhance recommendation performance across multiple domains simultaneously. Existing MTCDR methods primarily rely on domain-shared entities (\eg users or items) to fuse and transfer cross-domain knowledge, which may be unavailable in non-overlapped recommendation scenarios. Some studies model user preferences and item features as domain-sharable semantic representations, which can be utilized to tackle the MTCDR task. Nevertheless, they often require extensive auxiliary data for pre-training. Developing more effective solutions for MTCDR remains an important area for further exploration. Inspired by recent advancements in generative recommendation, this paper introduces GMC, a generative paradigm-based approach for multi-target cross-domain recommendation. The core idea of GMC is to leverage semantically quantized discrete item identifiers as a medium for integrating multi-domain knowledge within a unified generative model. GMC first employs an item tokenizer to generate domain-shared semantic identifiers for each item, and then formulates item recommendation as a next-token generation task by training a domain-unified sequence-to-sequence model. To further leverage the domain information to enhance performance, we incorporate a domain-aware contrastive loss into the semantic identifier learning, and perform domain-specific fine-tuning on the unified recommender. Extensive experiments on five public datasets demonstrate the effectiveness of GMC compared to a range of baseline methods.
comment: fix some information by request
♻ ☆ ArXivBench: When You Should Avoid Using ChatGPT for Academic Writing
Large language models (LLMs) demonstrate strong capabilities in reasoning and question answering, yet their tendency to generate factually incorrect content remains a critical challenge. This study evaluates proprietary and open-source LLMs on generating relevant research papers with accurate arXiv links. Our evaluation reveals critical academic risks: LLMs frequently generate incorrect arXiv links or references to non-existent papers, fundamentally undermining their ability to properly attribute research contributions to the actual authors. We introduce arXivBench, a benchmark specifically designed to assess LLM performance across eight major subject categories on arXiv and five subfields within computer science, one of the most popular categories among them. Our findings show concerning accuracy variations across subjects, with Claude-3.5-Sonnet exhibiting a substantial advantage in generating both relevant and accurate responses. Notably, most LLMs perform significantly better in Artificial Intelligence than other subfields. This benchmark provides a standardized tool for evaluating LLM reliability in scientific contexts, promoting more dependable academic use in research environments. Our code and dataset are available at https://github.com/liningresearch/arXivBench and https://huggingface.co/datasets/arXivBenchLLM/arXivBench.
♻ ☆ CB-cPIR: Code-Based Computational Private Information Retrieval
A private information retrieval (PIR) scheme is a protocol that allows a user to retrieve a file from a database without revealing the identity of the desired file to a curious database. Given a distributed data storage system, efficient PIR can be achieved by making assumptions about the colluding capabilities of the storage servers holding the database. If these assumptions turn out to be incorrect, privacy is lost. In this work, we focus on the worst-case assumption: full collusion or, equivalently, viewing the storage system virtually as a single honest-but-curious server. We present CB-cPIR, a single-server code-based computational private information retrieval (cPIR) scheme that derives security from code-based cryptography. Specifically, the queries are protected by the hardness of decoding a random linear code. The scheme is heavily inspired by the pioneering code-based cPIR scheme proposed by Holzbaur, Hollanti, and Wachter-Zeh in [Holzbaur et al., "Computational Code-Based Single-Server Private Information Retrieval", 2020 IEEE ISIT] and fixes the vulnerabilities of the original scheme arising from highly probable rank differences in submatrices of the user's query. Recently, a new vulnerability was observed in [Lage, Bartz, "On the Security of a Code-Based PIR Scheme"], a simple modification to the scheme now fixes this vulnerability. For further validation of our scheme, we draw comparisons to the state-of-the-art lattice-based cPIR schemes.
comment: This paper builds on the work done in arXiv: 2402.02871v1 (IEEE ISIT24) and arXiv: 2001.07049 (IEEE ISIT20) Remark 6. briefly outlines a fix to a new attack, this paper will soon be updated to reflect the changes to the scheme
♻ ☆ JEPA4Rec: Learning Effective Language Representations for Sequential Recommendation via Joint Embedding Predictive Architecture
Language representation learning has emerged as a promising approach for sequential recommendation, thanks to its ability to learn generalizable representations. However, despite its advantages, this approach still struggles with data sparsity and a limited understanding of common-sense user preferences. To address these limitations, we propose $\textbf{JEPA4Rec}$, a framework that combines $\textbf{J}$oint $\textbf{E}$mbedding $\textbf{P}$redictive $\textbf{A}$rchitecture with language modeling of item textual descriptions. JEPA4Rec captures semantically rich and transferable representations, improving recommendation performance and reducing reliance on large-scale pre-training data. Specifically, JEPA4Rec represents items as text sentences by flattening descriptive information such as $\textit{title, category}$, and other attributes. To encode these sentences, we employ a bidirectional Transformer encoder with modified embedding layers tailored for capturing item information in recommendation datasets. We apply masking to text sentences and use them to predict the representations of the unmasked sentences, helping the model learn generalizable item embeddings. To further improve recommendation performance and language understanding, we employ a two-stage training strategy incorporating self-supervised learning losses. Experiments on six real-world datasets demonstrate that JEPA4Rec consistently outperforms state-of-the-art methods, particularly in cross-domain, cross-platform, and low-resource scenarios.
♻ ☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
♻ ☆ SSEmb: A Joint Structural and Semantic Embedding Framework for Mathematical Formula Retrieval
Formula retrieval is an important topic in Mathematical Information Retrieval. We propose SSEmb, a novel embedding framework capable of capturing both structural and semantic features of mathematical formulas. Structurally, we employ Graph Contrastive Learning to encode formulas represented as Operator Graphs. To enhance structural diversity while preserving mathematical validity of these formula graphs, we introduce a novel graph data augmentation approach through a substitution strategy. Semantically, we utilize Sentence-BERT to encode the surrounding text of formulas. Finally, for each query and its candidates, structural and semantic similarities are calculated separately and then fused through a weighted scheme. In the ARQMath-3 formula retrieval task, SSEmb outperforms existing embedding-based methods by over 5 percentage points on P'@10 and nDCG'@10. Furthermore, SSEmb enhances the performance of all runs of other methods and achieves state-of-the-art results when combined with Approach0.
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services onto online platforms, yet stock investment recommender systems have received limited attention compared to other industries. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios based on the modern portfolio theory, often neglecting user preferences. On the other hand, collaborative filtering (CF) methods also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend users preference with the portfolio theory. However, research on stock recommendations within the recommender system domain remains comparatively limited, and no existing model considers both the preference of users and the risk-return characteristics of stocks. In this regard, we propose a mean-variance efficient collaborative filtering (MVECF) model for stock recommendations that consider both aspects. Our model is specifically designed to improve the pareto optimality (mean-variance efficiency) in a trade-off between the risk (variance of return) and return (mean return) by systemically handling uncertainties in stock prices. Such improvements are incorporated into the MVECF model using regularization, and the model is restructured to fit into the ordinary matrix factorization scheme to boost computational efficiency. Experiments on real-world fund holdings data show that our model can increase the mean-variance efficiency of suggested portfolios while sacrificing just a small amount of mean average precision and recall. Finally, we further show MVECF is easily applicable to the state-of-the-art graph-based ranking models.
comment: 12 pages, 4 figures, preprint, under review
♻ ☆ Explainable Recommendation with Simulated Human Feedback
Recent advancements in explainable recommendation have greatly bolstered user experience by elucidating the decision-making rationale. However, the existing methods actually fail to provide effective feedback signals for potentially better or worse generated explanations due to their reliance on traditional supervised learning paradigms in sparse interaction data. To address these issues, we propose a novel human-like feedback-driven optimization framework. This framework employs a dynamic interactive optimization mechanism for achieving human-centered explainable requirements without incurring high labor costs. Specifically, we propose to utilize large language models (LLMs) as human simulators to predict human-like feedback for guiding the learning process. To enable the LLMs to deeply understand the task essence and meet user's diverse personalized requirements, we introduce a human-induced customized reward scoring method, which helps stimulate the language understanding and logical reasoning capabilities of LLMs. Furthermore, considering the potential conflicts between different perspectives of explanation quality, we introduce a principled Pareto optimization that transforms the multi-perspective quality enhancement task into a multi-objective optimization problem for improving explanation performance. At last, to achieve efficient model training, we design an off-policy optimization pipeline. By incorporating a replay buffer and addressing the data distribution biases, we can effectively improve data utilization and enhance model generality. Extensive experiments on four datasets demonstrate the superiority of our approach.
Robotics 34
☆ INTENTION: Inferring Tendencies of Humanoid Robot Motion Through Interactive Intuition and Grounded VLM
Traditional control and planning for robotic manipulation heavily rely on precise physical models and predefined action sequences. While effective in structured environments, such approaches often fail in real-world scenarios due to modeling inaccuracies and struggle to generalize to novel tasks. In contrast, humans intuitively interact with their surroundings, demonstrating remarkable adaptability, making efficient decisions through implicit physical understanding. In this work, we propose INTENTION, a novel framework enabling robots with learned interactive intuition and autonomous manipulation in diverse scenarios, by integrating Vision-Language Models (VLMs) based scene reasoning with interaction-driven memory. We introduce Memory Graph to record scenes from previous task interactions which embodies human-like understanding and decision-making about different tasks in real world. Meanwhile, we design an Intuitive Perceptor that extracts physical relations and affordances from visual scenes. Together, these components empower robots to infer appropriate interaction behaviors in new scenes without relying on repetitive instructions. Videos: https://robo-intention.github.io
comment: Project Web: https://robo-intention.github.io
☆ BTPG-max: Achieving Local Maximal Bidirectional Pairs for Bidirectional Temporal Plan Graphs
Multi-Agent Path Finding (MAPF) requires computing collision-free paths for multiple agents in shared environment. Most MAPF planners assume that each agent reaches a specific location at a specific timestep, but this is infeasible to directly follow on real systems where delays often occur. To address collisions caused by agents deviating due to delays, the Temporal Plan Graph (TPG) was proposed, which converts a MAPF time dependent solution into a time independent set of inter-agent dependencies. Recently, a Bidirectional TPG (BTPG) was proposed which relaxed some dependencies into ``bidirectional pairs" and improved efficiency of agents executing their MAPF solution with delays. Our work improves upon this prior work by designing an algorithm, BPTG-max, that finds more bidirectional pairs. Our main theoretical contribution is in designing the BTPG-max algorithm is locally optimal, i.e. which constructs a BTPG where no additional bidirectional pairs can be added. We also show how in practice BTPG-max leads to BTPGs with significantly more bidirectional edges, superior anytime behavior, and improves robustness to delays.
☆ On the causality between affective impact and coordinated human-robot reactions
In an effort to improve how robots function in social contexts, this paper investigates if a robot that actively shares a reaction to an event with a human alters how the human perceives the robot's affective impact. To verify this, we created two different test setups. One to highlight and isolate the reaction element of affective robot expressions, and one to investigate the effects of applying specific timing delays to a robot reacting to a physical encounter with a human. The first test was conducted with two different groups (n=84) of human observers, a test group and a control group both interacting with the robot. The second test was performed with 110 participants using increasingly longer reaction delays for the robot with every ten participants. The results show a statistically significant change (p$<$.05) in perceived affective impact for the robots when they react to an event shared with a human observer rather than reacting at random. The result also shows for shared physical interaction, the near-human reaction times from the robot are most appropriate for the scenario. The paper concludes that a delay time around 200ms may render the biggest impact on human observers for small-sized non-humanoid robots. It further concludes that a slightly shorter reaction time around 100ms is most effective when the goal is to make the human observers feel they made the biggest impact on the robot.
comment: 7 pages, 5 figures, 29th IEEE International Workshop on Robot and Human Communication (ROMAN)
☆ Achieving Precise and Reliable Locomotion with Differentiable Simulation-Based System Identification IROS 2025
Accurate system identification is crucial for reducing trajectory drift in bipedal locomotion, particularly in reinforcement learning and model-based control. In this paper, we present a novel control framework that integrates system identification into the reinforcement learning training loop using differentiable simulation. Unlike traditional approaches that rely on direct torque measurements, our method estimates system parameters using only trajectory data (positions, velocities) and control inputs. We leverage the differentiable simulator MuJoCo-XLA to optimize system parameters, ensuring that simulated robot behavior closely aligns with real-world motion. This framework enables scalable and flexible parameter optimization. Accurate system identification is crucial for reducing trajectory drift in bipedal locomotion, particularly in reinforcement learning and model-based control. In this paper, we present a novel control framework that integrates system identification into the reinforcement learning training loop using differentiable simulation. Unlike traditional approaches that rely on direct torque measurements, our method estimates system parameters using only trajectory data (positions, velocities) and control inputs. We leverage the differentiable simulator MuJoCo-XLA to optimize system parameters, ensuring that simulated robot behavior closely aligns with real-world motion. This framework enables scalable and flexible parameter optimization. It supports fundamental physical properties such as mass and inertia. Additionally, it handles complex system nonlinear behaviors, including advanced friction models, through neural network approximations. Experimental results show that our framework significantly improves trajectory following.
comment: 6 pages, Accepted for IROS 2025
☆ From MAS to MARS: Coordination Failures and Reasoning Trade-offs in Hierarchical Multi-Agent Robotic Systems within a Healthcare Scenario
Multi-agent robotic systems (MARS) build upon multi-agent systems by integrating physical and task-related constraints, increasing the complexity of action execution and agent coordination. However, despite the availability of advanced multi-agent frameworks, their real-world deployment on robots remains limited, hindering the advancement of MARS research in practice. To bridge this gap, we conducted two studies to investigate performance trade-offs of hierarchical multi-agent frameworks in a simulated real-world multi-robot healthcare scenario. In Study 1, using CrewAI, we iteratively refine the system's knowledge base, to systematically identify and categorize coordination failures (e.g., tool access violations, lack of timely handling of failure reports) not resolvable by providing contextual knowledge alone. In Study 2, using AutoGen, we evaluate a redesigned bidirectional communication structure and further measure the trade-offs between reasoning and non-reasoning models operating within the same robotic team setting. Drawing from our empirical findings, we emphasize the tension between autonomy and stability and the importance of edge-case testing to improve system reliability and safety for future real-world deployment. Supplementary materials, including codes, task agent setup, trace outputs, and annotated examples of coordination failures and reasoning behaviors, are available at: https://byc-sophie.github.io/mas-to-mars/.
☆ Open Scene Graphs for Open-World Object-Goal Navigation
How can we build general-purpose robot systems for open-world semantic navigation, e.g., searching a novel environment for a target object specified in natural language? To tackle this challenge, we introduce OSG Navigator, a modular system composed of foundation models, for open-world Object-Goal Navigation (ObjectNav). Foundation models provide enormous semantic knowledge about the world, but struggle to organise and maintain spatial information effectively at scale. Key to OSG Navigator is the Open Scene Graph representation, which acts as spatial memory for OSG Navigator. It organises spatial information hierarchically using OSG schemas, which are templates, each describing the common structure of a class of environments. OSG schemas can be automatically generated from simple semantic labels of a given environment, e.g., "home" or "supermarket". They enable OSG Navigator to adapt zero-shot to new environment types. We conducted experiments using both Fetch and Spot robots in simulation and in the real world, showing that OSG Navigator achieves state-of-the-art performance on ObjectNav benchmarks and generalises zero-shot over diverse goals, environments, and robot embodiments.
comment: In IJRR Special Issue: Foundation Models and Neuro-symbolic AI for Robotics. Journal extension to arXiv:2407.02473
☆ RoboTron-Sim: Improving Real-World Driving via Simulated Hard-Case ICCV 2025
Collecting real-world data for rare high-risk scenarios, long-tailed driving events, and complex interactions remains challenging, leading to poor performance of existing autonomous driving systems in these critical situations. In this paper, we propose RoboTron-Sim that improves real-world driving in critical situations by utilizing simulated hard cases. First, we develop a simulated dataset called Hard-case Augmented Synthetic Scenarios (HASS), which covers 13 high-risk edge-case categories, as well as balanced environmental conditions such as day/night and sunny/rainy. Second, we introduce Scenario-aware Prompt Engineering (SPE) and an Image-to-Ego Encoder (I2E Encoder) to enable multimodal large language models to effectively learn real-world challenging driving skills from HASS, via adapting to environmental deviations and hardware differences between real-world and simulated scenarios. Extensive experiments on nuScenes show that RoboTron-Sim improves driving performance in challenging scenarios by around 50%, achieving state-of-the-art results in real-world open-loop planning. Qualitative results further demonstrate the effectiveness of RoboTron-Sim in better managing rare high-risk driving scenarios. Project page: https://stars79689.github.io/RoboTron-Sim/
comment: ICCV 2025
☆ OmniDepth: Bridging Monocular and Stereo Reasoning with Latent Alignment ICCV 2025
Monocular and stereo depth estimation offer complementary strengths: monocular methods capture rich contextual priors but lack geometric precision, while stereo approaches leverage epipolar geometry yet struggle with ambiguities such as reflective or textureless surfaces. Despite post-hoc synergies, these paradigms remain largely disjoint in practice. We introduce OmniDepth, a unified framework that bridges both through iterative bidirectional alignment of their latent representations. At its core, a novel cross-attentive alignment mechanism dynamically synchronizes monocular contextual cues with stereo hypothesis representations during stereo reasoning. This mutual alignment resolves stereo ambiguities (e.g., specular surfaces) by injecting monocular structure priors while refining monocular depth with stereo geometry within a single network. Extensive experiments demonstrate state-of-the-art results: \textbf{OmniDepth reduces zero-shot generalization error by $\!>\!40\%$ on Middlebury and ETH3D}, while addressing longstanding failures on transparent and reflective surfaces. By harmonizing multi-view geometry with monocular context, OmniDepth enables robust 3D perception that transcends modality-specific limitations. Codes available at https://github.com/aeolusguan/OmniDepth.
comment: ICCV 2025 Highlight
☆ $NavA^3$: Understanding Any Instruction, Navigating Anywhere, Finding Anything
Embodied navigation is a fundamental capability of embodied intelligence, enabling robots to move and interact within physical environments. However, existing navigation tasks primarily focus on predefined object navigation or instruction following, which significantly differs from human needs in real-world scenarios involving complex, open-ended scenes. To bridge this gap, we introduce a challenging long-horizon navigation task that requires understanding high-level human instructions and performing spatial-aware object navigation in real-world environments. Existing embodied navigation methods struggle with such tasks due to their limitations in comprehending high-level human instructions and localizing objects with an open vocabulary. In this paper, we propose $NavA^3$, a hierarchical framework divided into two stages: global and local policies. In the global policy, we leverage the reasoning capabilities of Reasoning-VLM to parse high-level human instructions and integrate them with global 3D scene views. This allows us to reason and navigate to regions most likely to contain the goal object. In the local policy, we have collected a dataset of 1.0 million samples of spatial-aware object affordances to train the NaviAfford model (PointingVLM), which provides robust open-vocabulary object localization and spatial awareness for precise goal identification and navigation in complex environments. Extensive experiments demonstrate that $NavA^3$ achieves SOTA results in navigation performance and can successfully complete longhorizon navigation tasks across different robot embodiments in real-world settings, paving the way for universal embodied navigation. The dataset and code will be made available. Project website: https://NavigationA3.github.io/.
☆ Behaviorally Adaptive Multi-Robot Hazard Localization in Failure-Prone, Communication-Denied Environments
We address the challenge of multi-robot autonomous hazard mapping in high-risk, failure-prone, communication-denied environments such as post-disaster zones, underground mines, caves, and planetary surfaces. In these missions, robots must explore and map hazards while minimizing the risk of failure due to environmental threats or hardware limitations. We introduce a behavior-adaptive, information-theoretic planning framework for multi-robot teams grounded in the concept of Behavioral Entropy (BE), that generalizes Shannon entropy (SE) to capture diverse human-like uncertainty evaluations. Building on this formulation, we propose the Behavior-Adaptive Path Planning (BAPP) framework, which modulates information gathering strategies via a tunable risk-sensitivity parameter, and present two planning algorithms: BAPP-TID for intelligent triggering of high-fidelity robots, and BAPP-SIG for safe deployment under high risk. We provide theoretical insights on the informativeness of the proposed BAPP framework and validate its effectiveness through both single-robot and multi-robot simulations. Our results show that the BAPP stack consistently outperforms Shannon-based and random strategies: BAPP-TID accelerates entropy reduction, while BAPP-SIG improves robot survivability with minimal loss in information gain. In multi-agent deployments, BAPP scales effectively through spatial partitioning, mobile base relocation, and role-aware heterogeneity. These findings underscore the value of behavior-adaptive planning for robust, risk-sensitive exploration in complex, failure-prone environments.
☆ Reliable and Real-Time Highway Trajectory Planning via Hybrid Learning-Optimization Frameworks
Autonomous highway driving presents a high collision risk due to fast-changing environments and limited reaction time, necessitating reliable and efficient trajectory planning. This paper proposes a hybrid trajectory planning framework that integrates the adaptability of learning-based methods with the formal safety guarantees of optimization-based approaches. The framework features a two-layer architecture: an upper layer employing a graph neural network (GNN) trained on real-world highway data to predict human-like longitudinal velocity profiles, and a lower layer utilizing path optimization formulated as a mixed-integer quadratic programming (MIQP) problem. The primary contribution is the lower-layer path optimization model, which introduces a linear approximation of discretized vehicle geometry to substantially reduce computational complexity, while enforcing strict spatiotemporal non-overlapping constraints to formally guarantee collision avoidance throughout the planning horizon. Experimental results demonstrate that the planner generates highly smooth, collision-free trajectories in complex real-world emergency scenarios, achieving success rates exceeding 97% with average planning times of 54 ms, thereby confirming real-time capability.
☆ Incorporating Stochastic Models of Controller Behavior into Kinodynamic Efficiently Adaptive State Lattices for Mobile Robot Motion Planning in Off-Road Environments
Mobile robot motion planners rely on theoretical models to predict how the robot will move through the world. However, when deployed on a physical robot, these models are subject to errors due to real-world physics and uncertainty in how the lower-level controller follows the planned trajectory. In this work, we address this problem by presenting three methods of incorporating stochastic controller behavior into the recombinant search space of the Kinodynamic Efficiently Adaptive State Lattice (KEASL) planner. To demonstrate this work, we analyze the results of experiments performed on a Clearpath Robotics Warthog Unmanned Ground Vehicle (UGV) in an off-road, unstructured environment using two different perception algorithms, and performed an ablation study using a full spectrum of simulated environment map complexities. Analysis of the data found that incorporating stochastic controller sampling into KEASL leads to more conservative trajectories that decrease predicted collision likelihood when compared to KEASL without sampling. When compared to baseline planning with expanded obstacle footprints, the predicted likelihood of collisions becomes more comparable, but reduces the planning success rate for baseline search.
comment: Accepted to the International Symposium on Experimental Robotics (ISER) 2025
☆ Tactile Comfort: Lowering Heart Rate Through Interactions IROS
Children diagnosed with anxiety disorders are taught a range of strategies to navigate situations of heightened anxiety. Techniques such as deep breathing and repetition of mantras are commonly employed, as they are known to be calming and reduce elevated heart rates. Although these strategies are often effective, their successful application relies on prior training of the children for successful use when faced with challenging situations. This paper investigates a pocket-sized companion robot designed to offer a relaxation technique requiring no prior training, with a focus on immediate impact on the user's heart rate. The robot utilizes a tactile game to divert the user's attention, thereby promoting relaxation. We conducted two studies with children who were not diagnosed with anxiety: a 14-day pilot study with two children (age 8) and a main study with 18 children (ages 7-8). Both studies employed a within-subjects design and focused on measuring heart rate during tactile interaction with the robot and during non-use. Interacting with the robot was found to significantly lower the study participants' heart rate (p$<$0.01) compared to the non-use condition, indicating a consistent calming effect across all participants. These results suggest that tactile companion robots have the potential to enhance the therapeutic value of relaxation techniques.
comment: 6 pages, 4 figures, Proceedings from 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2024
☆ Improving Tactile Gesture Recognition with Optical Flow
Tactile gesture recognition systems play a crucial role in Human-Robot Interaction (HRI) by enabling intuitive communication between humans and robots. The literature mainly addresses this problem by applying machine learning techniques to classify sequences of tactile images encoding the pressure distribution generated when executing the gestures. However, some gestures can be hard to differentiate based on the information provided by tactile images alone. In this paper, we present a simple yet effective way to improve the accuracy of a gesture recognition classifier. Our approach focuses solely on processing the tactile images used as input by the classifier. In particular, we propose to explicitly highlight the dynamics of the contact in the tactile image by computing the dense optical flow. This additional information makes it easier to distinguish between gestures that produce similar tactile images but exhibit different contact dynamics. We validate the proposed approach in a tactile gesture recognition task, showing that a classifier trained on tactile images augmented with optical flow information achieved a 9% improvement in gesture classification accuracy compared to one trained on standard tactile images.
comment: 7 pages, 7 figures, paper accepted by the 2025 34th IEEE International Conference on Robot and Human Interactive Communication (ROMAN)
☆ RiemanLine: Riemannian Manifold Representation of 3D Lines for Factor Graph Optimization
Minimal parametrization of 3D lines plays a critical role in camera localization and structural mapping. Existing representations in robotics and computer vision predominantly handle independent lines, overlooking structural regularities such as sets of parallel lines that are pervasive in man-made environments. This paper introduces \textbf{RiemanLine}, a unified minimal representation for 3D lines formulated on Riemannian manifolds that jointly accommodates both individual lines and parallel-line groups. Our key idea is to decouple each line landmark into global and local components: a shared vanishing direction optimized on the unit sphere $\mathcal{S}^2$, and scaled normal vectors constrained on orthogonal subspaces, enabling compact encoding of structural regularities. For $n$ parallel lines, the proposed representation reduces the parameter space from $4n$ (orthonormal form) to $2n+2$, naturally embedding parallelism without explicit constraints. We further integrate this parameterization into a factor graph framework, allowing global direction alignment and local reprojection optimization within a unified manifold-based bundle adjustment. Extensive experiments on ICL-NUIM, TartanAir, and synthetic benchmarks demonstrate that our method achieves significantly more accurate pose estimation and line reconstruction, while reducing parameter dimensionality and improving convergence stability.
☆ Industrial Robot Motion Planning with GPUs: Integration of cuRobo for Extended DOF Systems ICRA
Efficient motion planning remains a key challenge in industrial robotics, especially for multi-axis systems operating in complex environments. This paper addresses that challenge by integrating GPU-accelerated motion planning through NVIDIA's cuRobo library into Vention's modular automation platform. By leveraging accurate CAD-based digital twins and real-time parallel optimization, our system enables rapid trajectory generation and dynamic collision avoidance for pick-and-place tasks. We demonstrate this capability on robots equipped with additional degrees of freedom, including a 7th-axis gantry, and benchmark performance across various scenarios. The results show significant improvements in planning speed and robustness, highlighting the potential of GPU-based planning pipelines for scalable, adaptable deployment in modern industrial workflows.
comment: 8 pages, 2 figures, 2 tables. Submitted to IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ DRIVE: Dynamic Rule Inference and Verified Evaluation for Constraint-Aware Autonomous Driving
Understanding and adhering to soft constraints is essential for safe and socially compliant autonomous driving. However, such constraints are often implicit, context-dependent, and difficult to specify explicitly. In this work, we present DRIVE, a novel framework for Dynamic Rule Inference and Verified Evaluation that models and evaluates human-like driving constraints from expert demonstrations. DRIVE leverages exponential-family likelihood modeling to estimate the feasibility of state transitions, constructing a probabilistic representation of soft behavioral rules that vary across driving contexts. These learned rule distributions are then embedded into a convex optimization-based planning module, enabling the generation of trajectories that are not only dynamically feasible but also compliant with inferred human preferences. Unlike prior approaches that rely on fixed constraint forms or purely reward-based modeling, DRIVE offers a unified framework that tightly couples rule inference with trajectory-level decision-making. It supports both data-driven constraint generalization and principled feasibility verification. We validate DRIVE on large-scale naturalistic driving datasets, including inD, highD, and RoundD, and benchmark it against representative inverse constraint learning and planning baselines. Experimental results show that DRIVE achieves 0.0% soft constraint violation rates, smoother trajectories, and stronger generalization across diverse driving scenarios. Verified evaluations further demonstrate the efficiency, explanability, and robustness of the framework for real-world deployment.
☆ SCOUT: An in-vivo Methane Sensing System for Real-time Monitoring of Enteric Emissions in Cattle with ex-vivo Validation
Accurate measurement of enteric methane emissions remains a critical bottleneck for advancing livestock sustainability through genetic selection and precision management. Existing ambient sampling approaches suffer from low data retention rates, environmental interference, and limited temporal resolution. We developed SCOUT (Smart Cannula-mounted Optical Unit for Trace-methane), the first robust in-vivo sensing system enabling continuous, high-resolution monitoring of ruminal methane concentrations through an innovative closed-loop gas recirculation design. We conducted comprehensive validation with two cannulated Simmental heifers under contrasting dietary treatments, with cross-platform comparison against established ambient sniffer systems. SCOUT achieved exceptional performance with 82% data retention compared to 17% for conventional sniffer systems, while capturing methane concentrations 100-1000x higher than ambient approaches. Cross-platform validation demonstrated strong scale-dependent correlations, with optimal correlation strength (r = -0.564 $\pm$ 0.007) at biologically relevant 40-minute windows and 100% statistical significance. High-frequency monitoring revealed novel behavior-emission coupling, including rapid concentration changes (14.5 $\pm$ 11.3k ppm) triggered by postural transitions within 15 minutes, insights previously inaccessible through existing technologies. The SCOUT system represents a transformative advancement, enabling accurate, continuous emission phenotyping essential for genomic selection programs and sustainable precision livestock management. This validation framework establishes new benchmarks for agricultural sensor performance while generating unprecedented biological insights into ruminal methane dynamics, contributing essential tools for sustainable livestock production in climate-conscious agricultural systems.
☆ Optimization of sliding control parameters for a 3-dof robot arm using genetic algorithm (GA)
This paper presents a method for optimizing the sliding mode control (SMC) parameter for a robot manipulator applying a genetic algorithm (GA). The objective of the SMC is to achieve precise and consistent tracking of the trajectory of the robot manipulator under uncertain and disturbed conditions. However, the system effectiveness and robustness depend on the choice of the SMC parameters, which is a difficult and crucial task. To solve this problem, a genetic algorithm is used to locate the optimal values of these parameters that gratify the capability criteria. The proposed method is efficient compared with the conventional SMC and Fuzzy-SMC. The simulation results show that the genetic algorithm with SMC can achieve better tracking capability and reduce the chattering effect.
♻ ☆ Subframework-based Bearing Rigidity Maintenance Control in Multirobot Networks
This work presents a novel approach for \textit{bearing rigidity} analysis and control in multi-robot networks with sensing constraints and dynamic topology. By decomposing the system's framework into \textit{subframeworks}, we express bearing rigidity -- a global property -- as a set of \textit{local} properties, with rigidity eigenvalues serving as natural \textit{local rigidity measures}. We propose a decentralized gradient-based controller to execute mission-specific commands using only bearing measurements. The controller preserves bearing rigidity by keeping the rigidity eigenvalues above a threshold, using only information exchanged within subframeworks. Simulations evaluate the scheme's effectiveness, underscoring its scalability and practicality.
comment: 6 pages
♻ ☆ Stability analysis through folds: An end-loaded elastic with a lever arm
Many physical systems can be modelled as parameter-dependent variational problems. In numerous cases, multiple equilibria co-exist, requiring the evaluation of their stability, and the monitoring of transitions between them. Generally, the stability characteristics of the equilibria change near folds in the parameter space. The direction of stability changes is embedded in a specific projection of the solutions, known as distinguished bifurcation diagrams. In this article, we identify such projections for variational problems characterized by fixed-free ends -- a class of problems frequently encountered in mechanics. Using these diagrams, we study an Elastica subject to an end load applied through a rigid lever arm. Several instances of snap-back instability are reported, along with their dependence on system parameters through numerical examples. These findings have potential applications in the design of soft robot arms and other actuator designs.
comment: 22 pages, 12 figures
♻ ☆ How to Adapt Control Barrier Functions? A Learning-Based Approach with Applications to a VTOL Quadplane
In this paper, we present a novel theoretical framework for online adaptation of Control Barrier Function (CBF) parameters, i.e., of the class K functions included in the CBF condition, under input constraints. We introduce the concept of locally validated CBF parameters, which are adapted online to guarantee finite-horizon safety, based on conditions derived from Nagumo's theorem and tangent cone analysis. To identify these parameters online, we integrate a learning-based approach with an uncertainty-aware verification process that account for both epistemic and aleatoric uncertainties inherent in neural network predictions. Our method is demonstrated on a VTOL quadplane model during challenging transition and landing maneuvers, showcasing enhanced performance while maintaining safety.
comment: 2025 IEEE Conference on Decision and Control (CDC). Project page: https://www.taekyung.me/how-to-adapt-cbf
♻ ☆ Compact LED-Based Displacement Sensing for Robot Fingers
In this paper, we introduce a sensor designed for integration in robot fingers, where it can provide information on the displacements induced by external contact. Our sensor uses LEDs to sense the displacement between two plates connected by a transparent elastomer; when a force is applied to the finger, the elastomer displaces and the LED signals change. We show that using LEDs as both light emitters an receivers in this context provides high sensitivity, allowing such an emitter and receiver pairs to detect very small displacements. We characterize the standalone performance of the sensor by testing the ability of a supervised learning model to predict complete force and torque data from its raw signals, and obtain a mean error between 0.05 and 0.07 N across the three directions of force applied to the finger. Our method allows for finger-size packaging with no amplification electronics, low cost manufacturing, easy integration into a complete hand, and high overload shear forces and bending torques, suggesting future applicability to complete manipulation tasks.
♻ ☆ Opti-Acoustic Scene Reconstruction in Highly Turbid Underwater Environments IROS 2022
Scene reconstruction is an essential capability for underwater robots navigating in close proximity to structures. Monocular vision-based reconstruction methods are unreliable in turbid waters and lack depth scale information. Sonars are robust to turbid water and non-uniform lighting conditions, however, they have low resolution and elevation ambiguity. This work proposes a real-time opti-acoustic scene reconstruction method that is specially optimized to work in turbid water. Our strategy avoids having to identify point features in visual data and instead identifies regions of interest in the data. We then match relevant regions in the image to corresponding sonar data. A reconstruction is obtained by leveraging range data from the sonar and elevation data from the camera image. Experimental comparisons against other vision-based and sonar-based approaches at varying turbidity levels, and field tests conducted in marina environments, validate the effectiveness of the proposed approach. We have made our code open-source to facilitate reproducibility and encourage community engagement.
comment: To appear at IROS 2022 in Hangzhou, China
♻ ☆ Reachset-Conformant System Identification
Formal verification techniques play a pivotal role in ensuring the safety of complex cyber-physical systems. To transfer model-based verification results to the real world, we require that the measurements of the target system lie in the set of reachable outputs of the corresponding model, a property we refer to as reachset conformance. This paper is on automatically identifying those reachset-conformant models. While state-of-the-art reachset-conformant identification methods focus on linear state-space models, we generalize these methods to nonlinear state-space models and linear and nonlinear input-output models. Furthermore, our identification framework adapts to different levels of prior knowledge on the system dynamics. In particular, we identify the set of model uncertainties for white-box models, the parameters and the set of model uncertainties for gray-box models, and entire reachset-conformant black-box models from data. The robustness and efficacy of our framework are demonstrated in extensive numerical experiments using simulated and real-world data.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ 3DTTNet: Multimodal Fusion-Based 3D Traversable Terrain Modeling for Off-Road Environments
Off-road environments remain significant challenges for autonomous ground vehicles, due to the lack of structured roads and the presence of complex obstacles, such as uneven terrain, vegetation, and occlusions. Traditional perception algorithms, primarily designed for structured environments, often fail in unstructured scenarios. In this paper, traversable area recognition is achieved through semantic scene completion. A novel multimodal method, 3DTTNet, is proposed to generate dense traversable terrain estimations by integrating LiDAR point clouds with monocular images from a forward-facing perspective. By integrating multimodal data, environmental feature extraction is strengthened, which is crucial for accurate terrain modeling in complex terrains. Furthermore, RELLIS-OCC, a dataset with 3D traversable annotations, is introduced, incorporating geometric features such as step height, slope, and unevenness. Through a comprehensive analysis of vehicle obsta cle-crossing conditions and the incorporation of vehicle body structure constraints, four traversability cost labels are generated: lethal, medium-cost, low-cost, and free. Experimental results demonstrate that 3DTTNet outperforms the comparison approaches in 3D traversable area recognition, particularly in off-road environments with irregular geometries and partial occlusions. Specifically, 3DTTNet achieves a 42\% improvement in scene completion IoU compared to other models. The proposed framework is scalable and adaptable to various vehicle platforms, allowing for adjustments to occupancy grid parameters and the integration of advanced dynamic models for traversability cost estimation.
comment: 15 pages,13 figures
♻ ☆ Real-World Offline Reinforcement Learning from Vision Language Model Feedback IROS 2025
Offline reinforcement learning can enable policy learning from pre-collected, sub-optimal datasets without online interactions. This makes it ideal for real-world robots and safety-critical scenarios, where collecting online data or expert demonstrations is slow, costly, and risky. However, most existing offline RL works assume the dataset is already labeled with the task rewards, a process that often requires significant human effort, especially when ground-truth states are hard to ascertain (e.g., in the real-world). In this paper, we build on prior work, specifically RL-VLM-F, and propose a novel system that automatically generates reward labels for offline datasets using preference feedback from a vision-language model and a text description of the task. Our method then learns a policy using offline RL with the reward-labeled dataset. We demonstrate the system's applicability to a complex real-world robot-assisted dressing task, where we first learn a reward function using a vision-language model on a sub-optimal offline dataset, and then we use the learned reward to employ Implicit Q learning to develop an effective dressing policy. Our method also performs well in simulation tasks involving the manipulation of rigid and deformable objects, and significantly outperform baselines such as behavior cloning and inverse RL. In summary, we propose a new system that enables automatic reward labeling and policy learning from unlabeled, sub-optimal offline datasets.
comment: 7 pages. Accepted at the LangRob Workshop 2024 @ CoRL, 2024. Accepted at 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ VISO-Grasp: Vision-Language Informed Spatial Object-centric 6-DoF Active View Planning and Grasping in Clutter and Invisibility IROS 2025
We propose VISO-Grasp, a novel vision-language-informed system designed to systematically address visibility constraints for grasping in severely occluded environments. By leveraging Foundation Models (FMs) for spatial reasoning and active view planning, our framework constructs and updates an instance-centric representation of spatial relationships, enhancing grasp success under challenging occlusions. Furthermore, this representation facilitates active Next-Best-View (NBV) planning and optimizes sequential grasping strategies when direct grasping is infeasible. Additionally, we introduce a multi-view uncertainty-driven grasp fusion mechanism that refines grasp confidence and directional uncertainty in real-time, ensuring robust and stable grasp execution. Extensive real-world experiments demonstrate that VISO-Grasp achieves a success rate of $87.5\%$ in target-oriented grasping with the fewest grasp attempts outperforming baselines. To the best of our knowledge, VISO-Grasp is the first unified framework integrating FMs into target-aware active view planning and 6-DoF grasping in environments with severe occlusions and entire invisibility constraints. Code is available at: https://github.com/YitianShi/vMF-Contact
comment: Accepted to IROS 2025
♻ ☆ Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents while minimizing a cost function--an NP-hard problem. Bounded suboptimal methods like Enhanced Conflict-Based Search (ECBS) and Explicit Estimation CBS (EECBS) balance solution quality with computational efficiency using focal search mechanisms. While effective, traditional focal search faces a limitation: the lower bound (LB) value determining which nodes enter the FOCAL list often increases slowly in early search stages, resulting in a constrained search space that delays finding valid solutions. In this paper, we propose a novel bounded suboptimal algorithm, double-ECBS (DECBS), to address this issue by first determining the maximum LB value and then employing a best-first search guided by this LB to find a collision-free path. Experimental results demonstrate that DECBS outperforms ECBS in most test cases and is compatible with existing optimization techniques. DECBS can reduce nearly 30% high-level CT nodes and 50% low-level focal search nodes. When agent density is moderate to high, DECBS achieves a 23.5% average runtime improvement over ECBS with identical suboptimality bounds and optimizations.
comment: 7 pages
♻ ☆ RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks
Multi-Agent Path Finding (MAPF), which focuses on finding collision-free paths for multiple robots, is crucial for applications ranging from aerial swarms to warehouse automation. Solving MAPF is NP-hard so learning-based approaches for MAPF have gained attention, particularly those leveraging deep neural networks. Nonetheless, despite the community's continued efforts, all learning-based MAPF planners still rely on decentralized planning due to variability in the number of agents and map sizes. We have developed the first centralized learning-based policy for MAPF problem called RAILGUN. RAILGUN is not an agent-based policy but a map-based policy. By leveraging a CNN-based architecture, RAILGUN can generalize across different maps and handle any number of agents. We collect trajectories from rule-based methods to train our model in a supervised way. In experiments, RAILGUN outperforms most baseline methods and demonstrates great zero-shot generalization capabilities on various tasks, maps and agent numbers that were not seen in the training dataset.
comment: 7 pages
♻ ☆ IS-Bench: Evaluating Interactive Safety of VLM-Driven Embodied Agents in Daily Household Tasks
Flawed planning from VLM-driven embodied agents poses significant safety hazards, hindering their deployment in real-world household tasks. However, existing static, non-interactive evaluation paradigms fail to adequately assess risks within these interactive environments, since they cannot simulate dynamic risks that emerge from an agent's actions and rely on unreliable post-hoc evaluations that ignore unsafe intermediate steps. To bridge this critical gap, we propose evaluating an agent's interactive safety: its ability to perceive emergent risks and execute mitigation steps in the correct procedural order. We thus present IS-Bench, the first multi-modal benchmark designed for interactive safety, featuring 161 challenging scenarios with 388 unique safety risks instantiated in a high-fidelity simulator. Crucially, it facilitates a novel process-oriented evaluation that verifies whether risk mitigation actions are performed before/after specific risk-prone steps. Extensive experiments on leading VLMs, including the GPT-4o and Gemini-2.5 series, reveal that current agents lack interactive safety awareness, and that while safety-aware Chain-of-Thought can improve performance, it often compromises task completion. By highlighting these critical limitations, IS-Bench provides a foundation for developing safer and more reliable embodied AI systems. Code and data are released under [this https URL](https://github.com/AI45Lab/IS-Bench).
♻ ☆ HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents ICCV 2025
Recent advances in multimodal large language models (MLLMs) have enabled richer perceptual grounding for code policy generation in embodied agents. However, most existing systems lack effective mechanisms to adaptively monitor policy execution and repair codes during task completion. In this work, we introduce HyCodePolicy, a hybrid language-based control framework that systematically integrates code synthesis, geometric grounding, perceptual monitoring, and iterative repair into a closed-loop programming cycle for embodied agents. Technically, given a natural language instruction, our system first decomposes it into subgoals and generates an initial executable program grounded in object-centric geometric primitives. The program is then executed in simulation, while a vision-language model (VLM) observes selected checkpoints to detect and localize execution failures and infer failure reasons. By fusing structured execution traces capturing program-level events with VLM-based perceptual feedback, HyCodePolicy infers failure causes and repairs programs. This hybrid dual feedback mechanism enables self-correcting program synthesis with minimal human supervision. Our results demonstrate that HyCodePolicy significantly improves the robustness and sample efficiency of robot manipulation policies, offering a scalable strategy for integrating multimodal reasoning into autonomous decision-making pipelines.
comment: Accepted to ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
♻ ☆ LTLCodeGen: Code Generation of Syntactically Correct Temporal Logic for Robot Task Planning
This paper focuses on planning robot navigation tasks from natural language specifications. We develop a modular approach, where a large language model (LLM) translates the natural language instructions into a linear temporal logic (LTL) formula with propositions defined by object classes in a semantic occupancy map. The LTL formula and the semantic occupancy map are provided to a motion planning algorithm to generate a collision-free robot path that satisfies the natural language instructions. Our main contribution is LTLCodeGen, a method to translate natural language to syntactically correct LTL using code generation. We demonstrate the complete task planning method in real-world experiments involving human speech to provide navigation instructions to a mobile robot. We also thoroughly evaluate our approach in simulated and real-world experiments in comparison to end-to-end LLM task planning and state-of-the-art LLM-to-LTL translation methods.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (iROS) 2025
♻ ☆ RoboBrain 2.0 Technical Report
We introduce RoboBrain 2.0, our latest generation of embodied vision-language foundation models, designed to unify perception, reasoning, and planning for complex embodied tasks in physical environments. It comes in two variants: a lightweight 7B model and a full-scale 32B model, featuring a heterogeneous architecture with a vision encoder and a language model. Despite its compact size, RoboBrain 2.0 achieves strong performance across a wide spectrum of embodied reasoning tasks. On both spatial and temporal benchmarks, the 32B variant achieves leading results, surpassing prior open-source and proprietary models. In particular, it supports key real-world embodied AI capabilities, including spatial understanding (e.g., affordance prediction, spatial referring, trajectory forecasting) and temporal decision-making (e.g., closed-loop interaction, multi-agent long-horizon planning, and scene graph updating). This report details the model architecture, data construction, multi-stage training strategies, infrastructure and practical applications. We hope RoboBrain 2.0 advances embodied AI research and serves as a practical step toward building generalist embodied agents. The code, checkpoint and benchmark are available at https://superrobobrain.github.io.
Information Retrieval 35
☆ Query Attribute Modeling: Improving search relevance with Semantic Search and Meta Data Filtering
This study introduces Query Attribute Modeling (QAM), a hybrid framework that enhances search precision and relevance by decomposing open text queries into structured metadata tags and semantic elements. QAM addresses traditional search limitations by automatically extracting metadata filters from free-form text queries, reducing noise and enabling focused retrieval of relevant items. Experimental evaluation using the Amazon Toys Reviews dataset (10,000 unique items with 40,000+ reviews and detailed product attributes) demonstrated QAM's superior performance, achieving a mean average precision at 5 (mAP@5) of 52.99\%. This represents significant improvement over conventional methods, including BM25 keyword search, encoder-based semantic similarity search, cross-encoder re-ranking, and hybrid search combining BM25 and semantic results via Reciprocal Rank Fusion (RRF). The results establish QAM as a robust solution for Enterprise Search applications, particularly in e-commerce systems.
☆ Lightweight Transformers for Zero-Shot and Fine-Tuned Text-to-SQL Generation Using Spider
Text-to-SQL translation enables non-expert users to query relational databases using natural language, with applications in education and business intelligence. This study evaluates three lightweight transformer models - T5-Small, BART-Small, and GPT-2 - on the Spider dataset, focusing on low-resource settings. We developed a reusable, model-agnostic pipeline that tailors schema formatting to each model's architecture, training them across 1000 to 5000 iterations and evaluating on 1000 test samples using Logical Form Accuracy (LFAcc), BLEU, and Exact Match (EM) metrics. Fine-tuned T5-Small achieves the highest LFAcc (27.8%), outperforming BART-Small (23.98%) and GPT-2 (20.1%), highlighting encoder-decoder models' superiority in schema-aware SQL generation. Despite resource constraints limiting performance, our pipeline's modularity supports future enhancements, such as advanced schema linking or alternative base models. This work underscores the potential of compact transformers for accessible text-to-SQL solutions in resource-scarce environments.
☆ HiD-VAE: Interpretable Generative Recommendation via Hierarchical and Disentangled Semantic IDs
Recommender systems are indispensable for helping users navigate the immense item catalogs of modern online platforms. Recently, generative recommendation has emerged as a promising paradigm, unifying the conventional retrieve-and-rank pipeline into an end-to-end model capable of dynamic generation. However, existing generative methods are fundamentally constrained by their unsupervised tokenization, which generates semantic IDs suffering from two critical flaws: (1) they are semantically flat and uninterpretable, lacking a coherent hierarchy, and (2) they are prone to representation entanglement (i.e., ``ID collisions''), which harms recommendation accuracy and diversity. To overcome these limitations, we propose HiD-VAE, a novel framework that learns hierarchically disentangled item representations through two core innovations. First, HiD-VAE pioneers a hierarchically-supervised quantization process that aligns discrete codes with multi-level item tags, yielding more uniform and disentangled IDs. Crucially, the trained codebooks can predict hierarchical tags, providing a traceable and interpretable semantic path for each recommendation. Second, to combat representation entanglement, HiD-VAE incorporates a novel uniqueness loss that directly penalizes latent space overlap. This mechanism not only resolves the critical ID collision problem but also promotes recommendation diversity by ensuring a more comprehensive utilization of the item representation space. These high-quality, disentangled IDs provide a powerful foundation for downstream generative models. Extensive experiments on three public benchmarks validate HiD-VAE's superior performance against state-of-the-art methods. The code is available at https://anonymous.4open.science/r/HiD-VAE-84B2.
☆ A Reproducible, Scalable Pipeline for Synthesizing Autoregressive Model Literature
The accelerating pace of research on autoregressive generative models has produced thousands of papers, making manual literature surveys and reproduction studies increasingly impractical. We present a fully open-source, reproducible pipeline that automatically retrieves candidate documents from public repositories, filters them for relevance, extracts metadata, hyper-parameters and reported results, clusters topics, produces retrieval-augmented summaries and generates containerised scripts for re-running selected experiments. Quantitative evaluation on 50 manually-annotated papers shows F1 scores above 0.85 for relevance classification, hyper-parameter extraction and citation identification. Experiments on corpora of up to 1000 papers demonstrate near-linear scalability with eight CPU workers. Three case studies -- AWD-LSTM on WikiText-2, Transformer-XL on WikiText-103 and an autoregressive music model on the Lakh MIDI dataset -- confirm that the extracted settings support faithful reproduction, achieving test perplexities within 1--3% of the original reports.
comment: 9 pages
☆ TURA: Tool-Augmented Unified Retrieval Agent for AI Search
The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
☆ Do Recommender Systems Really Leverage Multimodal Content? A Comprehensive Analysis on Multimodal Representations for Recommendation CIKM 2025
Multimodal Recommender Systems aim to improve recommendation accuracy by integrating heterogeneous content, such as images and textual metadata. While effective, it remains unclear whether their gains stem from true multimodal understanding or increased model complexity. This work investigates the role of multimodal item embeddings, emphasizing the semantic informativeness of the representations. Initial experiments reveal that embeddings from standard extractors (e.g., ResNet50, Sentence-Bert) enhance performance, but rely on modality-specific encoders and ad hoc fusion strategies that lack control over cross-modal alignment. To overcome these limitations, we leverage Large Vision-Language Models (LVLMs) to generate multimodal-by-design embeddings via structured prompts. This approach yields semantically aligned representations without requiring any fusion. Experiments across multiple settings show notable performance improvements. Furthermore, LVLMs embeddings offer a distinctive advantage: they can be decoded into structured textual descriptions, enabling direct assessment of their multimodal comprehension. When such descriptions are incorporated as side content into recommender systems, they improve recommendation performance, empirically validating the semantic depth and alignment encoded within LVLMs outputs. Our study highlights the importance of semantically rich representations and positions LVLMs as a compelling foundation for building robust and meaningful multimodal representations in recommendation tasks.
comment: Accepted as Full Research Papers at CIKM 2025
☆ TRAIL: Joint Inference and Refinement of Knowledge Graphs with Large Language Models
Recent advances in large language models (LLMs) have unlocked powerful reasoning and decision-making capabilities. However, their inherent dependence on static parametric memory fundamentally limits their adaptability, factual accuracy, and interpretability in knowledge-intensive scenarios. Knowledge graphs (KGs), as structured repositories of explicit relational knowledge, offer a promising approach for augmenting LLMs with external, interpretable memory. Nevertheless, most existing methods that combine LLMs with KGs treat reasoning and knowledge updating as separate processes, resulting in suboptimal utilization of new information and hindering real-time updates. In this work, we propose TRAIL: a novel, unified framework for Thinking, Reasoning, And Incremental Learning that couples joint inference and dynamic KG refinement with large language models. TRAIL enables LLM agents to iteratively explore, update, and refine knowledge graphs during the reasoning process, employing a confidence-driven mechanism for the generation, validation, and pruning of new facts. This plug-and-play architecture facilitates seamless integration with various LLMs, supporting continual adaptation without the need for retraining. Extensive experiments on multiple benchmarks demonstrate that TRAIL outperforms existing KG-augmented and retrieval-augmented LLM baselines by 3% to 13%. More importantly, these results represent a significant step toward developing adaptive, memory-augmented language models capable of continual learning and reliable, transparent reasoning.
☆ Algorithm Selection for Recommender Systems via Meta-Learning on Algorithm Characteristics
The Algorithm Selection Problem for recommender systems-choosing the best algorithm for a given user or context-remains a significant challenge. Traditional meta-learning approaches often treat algorithms as categorical choices, ignoring their intrinsic properties. Recent work has shown that explicitly characterizing algorithms with features can improve model performance in other domains. Building on this, we propose a per-user meta-learning approach for recommender system selection that leverages both user meta-features and automatically extracted algorithm features from source code. Our preliminary results, averaged over six diverse datasets, show that augmenting a meta-learner with algorithm features improves its average NDCG@10 performance by 8.83% from 0.135 (user features only) to 0.147. This enhanced model outperforms the Single Best Algorithm baseline (0.131) and successfully closes 10.5% of the performance gap to a theoretical oracle selector. These findings show that even static source code metrics provide a valuable predictive signal, presenting a promising direction for building more robust and intelligent recommender systems.
☆ Improving Crash Data Quality with Large Language Models: Evidence from Secondary Crash Narratives in Kentucky
This study evaluates advanced natural language processing (NLP) techniques to enhance crash data quality by mining crash narratives, using secondary crash identification in Kentucky as a case study. Drawing from 16,656 manually reviewed narratives from 2015-2022, with 3,803 confirmed secondary crashes, we compare three model classes: zero-shot open-source large language models (LLMs) (LLaMA3:70B, DeepSeek-R1:70B, Qwen3:32B, Gemma3:27B); fine-tuned transformers (BERT, DistilBERT, RoBERTa, XLNet, Longformer); and traditional logistic regression as baseline. Models were calibrated on 2015-2021 data and tested on 1,771 narratives from 2022. Fine-tuned transformers achieved superior performance, with RoBERTa yielding the highest F1-score (0.90) and accuracy (95%). Zero-shot LLaMA3:70B reached a comparable F1 of 0.86 but required 139 minutes of inference; the logistic baseline lagged well behind (F1:0.66). LLMs excelled in recall for some variants (e.g., GEMMA3:27B at 0.94) but incurred high computational costs (up to 723 minutes for DeepSeek-R1:70B), while fine-tuned models processed the test set in seconds after brief training. Further analysis indicated that mid-sized LLMs (e.g., DeepSeek-R1:32B) can rival larger counterparts in performance while reducing runtime, suggesting opportunities for optimized deployments. Results highlight trade-offs between accuracy, efficiency, and data requirements, with fine-tuned transformer models balancing precision and recall effectively on Kentucky data. Practical deployment considerations emphasize privacy-preserving local deployment, ensemble approaches for improved accuracy, and incremental processing for scalability, providing a replicable scheme for enhancing crash-data quality with advanced NLP.
comment: 19 pages, 2 figures
☆ Modelling and Classifying the Components of a Literature Review
Previous work has demonstrated that AI methods for analysing scientific literature benefit significantly from annotating sentences in papers according to their rhetorical roles, such as research gaps, results, limitations, extensions of existing methodologies, and others. Such representations also have the potential to support the development of a new generation of systems capable of producing high-quality literature reviews. However, achieving this goal requires the definition of a relevant annotation schema and effective strategies for large-scale annotation of the literature. This paper addresses these challenges by 1) introducing a novel annotation schema specifically designed to support literature review generation and 2) conducting a comprehensive evaluation of a wide range of state-of-the-art large language models (LLMs) in classifying rhetorical roles according to this schema. To this end, we also present Sci-Sentence, a novel multidisciplinary benchmark comprising 700 sentences manually annotated by domain experts and 2,240 sentences automatically labelled using LLMs. We evaluate 37 LLMs on this benchmark, spanning diverse model families and sizes, using both zero-shot learning and fine-tuning approaches. The experiments yield several novel insights that advance the state of the art in this challenging domain. First, the current generation of LLMs performs remarkably well on this task when fine-tuned on high-quality data, achieving performance levels above 96\% F1. Second, while large proprietary models like GPT-4o achieve the best results, some lightweight open-source alternatives also demonstrate excellent performance. Finally, enriching the training data with semi-synthetic examples generated by LLMs proves beneficial, enabling small encoders to achieve robust results and significantly enhancing the performance of several open decoder models.
☆ Comparative Analysis of Novel NIRMAL Optimizer Against Adam and SGD with Momentum
This study proposes NIRMAL (Novel Integrated Robust Multi-Adaptation Learning), a novel optimization algorithm that combines multiple strategies inspired by the movements of the chess piece. These strategies include gradient descent, momentum, stochastic perturbations, adaptive learning rates, and non-linear transformations. We carefully evaluated NIRMAL against two widely used and successful optimizers, Adam and SGD with Momentum, on four benchmark image classification datasets: MNIST, FashionMNIST, CIFAR-10, and CIFAR-100. The custom convolutional neural network (CNN) architecture is applied on each dataset. The experimental results show that NIRMAL achieves competitive performance, particularly on the more challenging CIFAR-100 dataset, where it achieved a test accuracy of 45.32\%and a weighted F1-score of 0.4328. This performance surpasses Adam (41.79\% accuracy, 0.3964 F1-score) and closely matches SGD with Momentum (46.97\% accuracy, 0.4531 F1-score). Also, NIRMAL exhibits robust convergence and strong generalization capabilities, especially on complex datasets, as evidenced by stable training results in loss and accuracy curves. These findings underscore NIRMAL's significant ability as a versatile and effective optimizer for various deep learning tasks.
comment: 9 pages, 12 figures
☆ Audio Does Matter: Importance-Aware Multi-Granularity Fusion for Video Moment Retrieval ACM MM 2025
Video Moment Retrieval (VMR) aims to retrieve a specific moment semantically related to the given query. To tackle this task, most existing VMR methods solely focus on the visual and textual modalities while neglecting the complementary but important audio modality. Although a few recent works try to tackle the joint audio-vision-text reasoning, they treat all modalities equally and simply embed them without fine-grained interaction for moment retrieval. These designs are counter-practical as: Not all audios are helpful for video moment retrieval, and the audio of some videos may be complete noise or background sound that is meaningless to the moment determination. To this end, we propose a novel Importance-aware Multi-Granularity fusion model (IMG), which learns to dynamically and selectively aggregate the audio-vision-text contexts for VMR. Specifically, after integrating the textual guidance with vision and audio separately, we first design a pseudo-label-supervised audio importance predictor that predicts the importance score of the audio, and accordingly assigns weights to mitigate the interference caused by noisy audio. Then, we design a multi-granularity audio fusion module that adaptively fuses audio and visual modalities at local-, event-, and global-level, fully capturing their complementary contexts. We further propose a cross-modal knowledge distillation strategy to address the challenge of missing audio modality during inference. To evaluate our method, we further construct a new VMR dataset, i.e., Charades-AudioMatter, where audio-related samples are manually selected and re-organized from the original Charades-STA to validate the model's capability in utilizing audio modality. Extensive experiments validate the effectiveness of our method, achieving state-of-the-art with audio-video fusion in VMR methods. Our code is available at https://github.com/HuiGuanLab/IMG.
comment: Accepted to ACM MM 2025
☆ I$^3$-MRec: Invariant Learning with Information Bottleneck for Incomplete Modality Recommendation
Multimodal recommender systems (MRS) improve recommendation performance by integrating diverse semantic information from multiple modalities. However, the assumption of the availability of all modalities rarely holds in practice due to missing images, incomplete descriptions, or inconsistent user content. These challenges significantly degrade the robustness and generalization capabilities of current models. To address these challenges, we introduce a novel method called \textbf{I$^3$-MRec}, which uses \textbf{I}nvariant learning with \textbf{I}nformation bottleneck principle for \textbf{I}ncomplete \textbf{M}odality \textbf{Rec}ommendation. To achieve robust performance in missing modality scenarios, I$^3$-MRec enforces two pivotal properties: (i) cross-modal preference invariance, which ensures consistent user preference modeling across varying modality environments, and (ii) compact yet effective modality representation, which filters out task-irrelevant modality information while maximally preserving essential features relevant to recommendation. By treating each modality as a distinct semantic environment, I$^3$-MRec employs invariant risk minimization (IRM) to learn modality-specific item representations. In parallel, a missing-aware fusion module grounded in the Information Bottleneck (IB) principle extracts compact and effective item embeddings by suppressing modality noise and preserving core user preference signals. Extensive experiments conducted on three real-world datasets demonstrate that I$^3$-MRec consistently outperforms existing state-of-the-art MRS methods across various modality-missing scenarios, highlighting its effectiveness and robustness in practical applications. The code and processed datasets are released at https://github.com/HuilinChenJN/I3-MRec.
comment: ACM Multimedia 2025 Accepted
☆ Discrete-event Tensor Factorization: Learning a Smooth Embedding for Continuous Domains
Recommender systems learn from past user behavior to predict future user preferences. Intuitively, it has been established that the most recent interactions are more indicative of future preferences than older interactions. Many recommendation algorithms use this notion to either drop older interactions or to assign them a lower weight, so the model can focus on the more informative, recent information. However, very few approaches model the flow of time explicitly. This paper analyzes how time can be encoded in factorization-style recommendation models. By including absolute time as a feature, our models can learn varying user preferences and changing item perception over time. In addition to simple binning approaches, we also propose a novel, fully continuous time encoding mechanism. Through the use of a polynomial fit inside the loss function, our models completely avoid the need for discretization, and they are able to capture the time dimension in arbitrary resolution. We perform a comparative study on three real-world datasets that span multiple years, where long user histories are present, and items stay relevant for a longer time. Empirical results show that, by explicitly modeling time, our models are very effective at capturing temporal signals, such as varying item popularities over time. Despite this however, our experiments also indicate that a simple post-hoc popularity adjustment is often sufficient to achieve the best performance on the unseen test set. This teaches us that, for the recommendation task, predicting the future is more important than capturing past trends. As such, we argue that specialized mechanisms are needed for extrapolation to future data.
☆ A Hybrid AI Methodology for Generating Ontologies of Research Topics from Scientific Paper Corpora
Taxonomies and ontologies of research topics (e.g., MeSH, UMLS, CSO, NLM) play a central role in providing the primary framework through which intelligent systems can explore and interpret the literature. However, these resources have traditionally been manually curated, a process that is time-consuming, prone to obsolescence, and limited in granularity. This paper presents Sci-OG, a semi-auto\-mated methodology for generating research topic ontologies, employing a multi-step approach: 1) Topic Discovery, extracting potential topics from research papers; 2) Relationship Classification, determining semantic relationships between topic pairs; and 3) Ontology Construction, refining and organizing topics into a structured ontology. The relationship classification component, which constitutes the core of the system, integrates an encoder-based language model with features describing topic occurrence in the scientific literature. We evaluate this approach against a range of alternative solutions using a dataset of 21,649 manually annotated semantic triples. Our method achieves the highest F1 score (0.951), surpassing various competing approaches, including a fine-tuned SciBERT model and several LLM baselines, such as the fine-tuned GPT4-mini. Our work is corroborated by a use case which illustrates the practical application of our system to extend the CSO ontology in the area of cybersecurity. The presented solution is designed to improve the accessibility, organization, and analysis of scientific knowledge, thereby supporting advancements in AI-enabled literature management and research exploration.
☆ ViLLA-MMBench: A Unified Benchmark Suite for LLM-Augmented Multimodal Movie Recommendation
Recommending long-form video content demands joint modeling of visual, audio, and textual modalities, yet most benchmarks address only raw features or narrow fusion. We present ViLLA-MMBench, a reproducible, extensible benchmark for LLM-augmented multimodal movie recommendation. Built on MovieLens and MMTF-14K, it aligns dense item embeddings from three modalities: audio (block-level, i-vector), visual (CNN, AVF), and text. Missing or sparse metadata is automatically enriched using state-of-the-art LLMs (e.g., OpenAI Ada), generating high-quality synopses for thousands of movies. All text (raw or augmented) is embedded with configurable encoders (Ada, LLaMA-2, Sentence-T5), producing multiple ready-to-use sets. The pipeline supports interchangeable early-, mid-, and late-fusion (concatenation, PCA, CCA, rank-aggregation) and multiple backbones (MF, VAECF, VBPR, AMR, VMF) for ablation. Experiments are fully declarative via a single YAML file. Evaluation spans accuracy (Recall, nDCG) and beyond-accuracy metrics: cold-start rate, coverage, novelty, diversity, fairness. Results show LLM-based augmentation and strong text embeddings boost cold-start and coverage, especially when fused with audio-visual features. Systematic benchmarking reveals universal versus backbone- or metric-specific combinations. Open-source code, embeddings, and configs enable reproducible, fair multimodal RS research and advance principled generative AI integration in large-scale recommendation. Code: https://recsys-lab.github.io/ViLLA-MMBench
comment: 17 pages, 3 figures, 5 tables
☆ Bridging Search and Recommendation through Latent Cross Reasoning
Search and recommendation (S&R) are fundamental components of modern online platforms, yet effectively leveraging search behaviors to improve recommendation remains a challenging problem. User search histories often contain noisy or irrelevant signals that can even degrade recommendation performance, while existing approaches typically encode S&R histories either jointly or separately without explicitly identifying which search behaviors are truly useful. Inspired by the human decision-making process, where one first identifies recommendation intent and then reasons about relevant evidence, we design a latent cross reasoning framework that first encodes user S&R histories to capture global interests and then iteratively reasons over search behaviors to extract signals beneficial for recommendation. Contrastive learning is employed to align latent reasoning states with target items, and reinforcement learning is further introduced to directly optimize ranking performance. Extensive experiments on public benchmarks demonstrate consistent improvements over strong baselines, validating the importance of reasoning in enhancing search-aware recommendation.
☆ Benefit from Rich: Tackling Search Interaction Sparsity in Search Enhanced Recommendation CIKM 2025
In modern online platforms, search and recommendation (S&R) often coexist, offering opportunities for performance improvement through search-enhanced approaches. Existing studies show that incorporating search signals boosts recommendation performance. However, the effectiveness of these methods relies heavily on rich search interactions. They primarily benefit a small subset of users with abundant search behavior, while offering limited improvements for the majority of users who exhibit only sparse search activity. To address the problem of sparse search data in search-enhanced recommendation, we face two key challenges: (1) how to learn useful search features for users with sparse search interactions, and (2) how to design effective training objectives under sparse conditions. Our idea is to leverage the features of users with rich search interactions to enhance those of users with sparse search interactions. Based on this idea, we propose GSERec, a method that utilizes message passing on the User-Code Graphs to alleviate data sparsity in Search-Enhanced Recommendation. Specifically, we utilize Large Language Models (LLMs) with vector quantization to generate discrete codes, which connect similar users and thereby construct the graph. Through message passing on this graph, embeddings of users with rich search data are propagated to enhance the embeddings of users with sparse interactions. To further ensure that the message passing captures meaningful information from truly similar users, we introduce a contrastive loss to better model user similarities. The enhanced user representations are then integrated into downstream search-enhanced recommendation models. Experiments on three real-world datasets show that GSERec consistently outperforms baselines, especially for users with sparse search behaviors.
comment: Accepted by CIKM 2025
☆ LLM4ES: Learning User Embeddings from Event Sequences via Large Language Models
This paper presents LLM4ES, a novel framework that exploits large pre-trained language models (LLMs) to derive user embeddings from event sequences. Event sequences are transformed into a textual representation, which is subsequently used to fine-tune an LLM through next-token prediction to generate high-quality embeddings. We introduce a text enrichment technique that enhances LLM adaptation to event sequence data, improving representation quality for low-variability domains. Experimental results demonstrate that LLM4ES achieves state-of-the-art performance in user classification tasks in financial and other domains, outperforming existing embedding methods. The resulting user embeddings can be incorporated into a wide range of applications, from user segmentation in finance to patient outcome prediction in healthcare.
☆ Enhancing Serendipity Recommendation System by Constructing Dynamic User Knowledge Graphs with Large Language Models
The feedback loop in industrial recommendation systems reinforces homogeneous content, creates filter bubble effects, and diminishes user satisfaction. Recently, large language models(LLMs) have demonstrated potential in serendipity recommendation, thanks to their extensive world knowledge and superior reasoning capabilities. However, these models still face challenges in ensuring the rationality of the reasoning process, the usefulness of the reasoning results, and meeting the latency requirements of industrial recommendation systems (RSs). To address these challenges, we propose a method that leverages llm to dynamically construct user knowledge graphs, thereby enhancing the serendipity of recommendation systems. This method comprises a two stage framework:(1) two-hop interest reasoning, where user static profiles and historical behaviors are utilized to dynamically construct user knowledge graphs via llm. Two-hop reasoning, which can enhance the quality and accuracy of LLM reasoning results, is then performed on the constructed graphs to identify users' potential interests; and(2) Near-line adaptation, a cost-effective approach to deploying the aforementioned models in industrial recommendation systems. We propose a u2i (user-to-item) retrieval model that also incorporates i2i (item-to-item) retrieval capabilities, the retrieved items not only exhibit strong relevance to users' newly emerged interests but also retain the high conversion rate of traditional u2i retrieval. Our online experiments on the Dewu app, which has tens of millions of users, indicate that the method increased the exposure novelty rate by 4.62%, the click novelty rate by 4.85%, the average view duration per person by 0.15%, unique visitor click through rate by 0.07%, and unique visitor interaction penetration by 0.30%, enhancing user experience.
comment: 8 pages
☆ Dual Prompt Learning for Adapting Vision-Language Models to Downstream Image-Text Retrieval
Recently, prompt learning has demonstrated remarkable success in adapting pre-trained Vision-Language Models (VLMs) to various downstream tasks such as image classification. However, its application to the downstream Image-Text Retrieval (ITR) task is more challenging. We find that the challenge lies in discriminating both fine-grained attributes and similar subcategories of the downstream data. To address this challenge, we propose Dual prompt Learning with Joint Category-Attribute Reweighting (DCAR), a novel dual-prompt learning framework to achieve precise image-text matching. The framework dynamically adjusts prompt vectors from both semantic and visual dimensions to improve the performance of CLIP on the downstream ITR task. Based on the prompt paradigm, DCAR jointly optimizes attribute and class features to enhance fine-grained representation learning. Specifically, (1) at the attribute level, it dynamically updates the weights of attribute descriptions based on text-image mutual information correlation; (2) at the category level, it introduces negative samples from multiple perspectives with category-matching weighting to learn subcategory distinctions. To validate our method, we construct the Fine-class Described Retrieval Dataset (FDRD), which serves as a challenging benchmark for ITR in downstream data domains. It covers over 1,500 downstream fine categories and 230,000 image-caption pairs with detailed attribute annotations. Extensive experiments on FDRD demonstrate that DCAR achieves state-of-the-art performance over existing baselines.
comment: 10 pages, 7figures
☆ Prototype-Driven Structure Synergy Network for Remote Sensing Images Segmentation
In the semantic segmentation of remote sensing images, acquiring complete ground objects is critical for achieving precise analysis. However, this task is severely hindered by two major challenges: high intra-class variance and high inter-class similarity. Traditional methods often yield incomplete segmentation results due to their inability to effectively unify class representations and distinguish between similar features. Even emerging class-guided approaches are limited by coarse class prototype representations and a neglect of target structural information. Therefore, this paper proposes a Prototype-Driven Structure Synergy Network (PDSSNet). The design of this network is based on a core concept, a complete ground object is jointly defined by its invariant class semantics and its variant spatial structure. To implement this, we have designed three key modules. First, the Adaptive Prototype Extraction Module (APEM) ensures semantic accuracy from the source by encoding the ground truth to extract unbiased class prototypes. Subsequently, the designed Semantic-Structure Coordination Module (SSCM) follows a hierarchical semantics-first, structure-second principle. This involves first establishing a global semantic cognition, then leveraging structural information to constrain and refine the semantic representation, thereby ensuring the integrity of class information. Finally, the Channel Similarity Adjustment Module (CSAM) employs a dynamic step-size adjustment mechanism to focus on discriminative features between classes. Extensive experiments demonstrate that PDSSNet outperforms state-of-the-art methods. The source code is available at https://github.com/wangjunyi-1/PDSSNet.
☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
♻ ☆ PinRec: Outcome-Conditioned, Multi-Token Generative Retrieval for Industry-Scale Recommendation Systems
Generative retrieval methods utilize generative sequential modeling techniques, such as transformers, to generate candidate items for recommender systems. These methods have demonstrated promising results in academic benchmarks, surpassing traditional retrieval models like two-tower architectures. However, current generative retrieval methods lack the scalability required for industrial recommender systems, and they are insufficiently flexible to satisfy the multiple metric requirements of modern systems. This paper introduces PinRec, a novel generative retrieval model developed for applications at Pinterest. PinRec utilizes outcome-conditioned generation, enabling modelers to specify how to balance various outcome metrics, such as the number of saves and clicks, to effectively align with business goals and user exploration. Additionally, PinRec incorporates multi-token generation to enhance output diversity while optimizing generation. Our experiments demonstrate that PinRec can successfully balance performance, diversity, and efficiency, delivering a significant positive impact to users using generative models. This paper marks a significant milestone in generative retrieval, as it presents, to our knowledge, the first rigorous study on implementing generative retrieval at the scale of Pinterest.
♻ ☆ Realizing Scaling Laws in Recommender Systems: A Foundation-Expert Paradigm for Hyperscale Model Deployment
While scaling laws promise significant performance gains for recommender systems, efficiently deploying hyperscale models remains a major unsolved challenge. In contrast to fields where FMs are already widely adopted such as natural language processing and computer vision, progress in recommender systems is hindered by unique challenges including the need to learn from online streaming data under shifting data distributions, the need to adapt to different recommendation surfaces with a wide diversity in their downstream tasks and their input distributions, and stringent latency and computational constraints. To bridge this gap, we propose to leverage the Foundation-Expert Paradigm: a framework designed for the development and deployment of hyperscale recommendation FMs. In our approach, a central FM is trained on lifelong, cross-surface, multi-modal user data to learn generalizable knowledge. This knowledge is then efficiently transferred to various lightweight, surface-specific "expert" models via target-aware embeddings, allowing them to adapt to local data distributions and optimization goals with minimal overhead. To meet our training, inference and development needs, we built HyperCast, a production-grade infrastructure system that re-engineers training, serving, logging and iteration to power this decoupled paradigm. Our approach is now deployed at Meta serving tens of billions of user requests daily, demonstrating online metric improvements over our previous one-stage production system while improving developer velocity and maintaining infrastructure efficiency. To the best of our knowledge, this work represents the first successful deployment of a Foundation-Expert paradigm at this scale, offering a proven, compute-efficient, and developer-friendly blueprint to realize the promise of scaling laws in recommender systems.
♻ ☆ Harnessing Large Language Models for Group POI Recommendations
The rapid proliferation of Location-Based Social Networks (LBSNs) has underscored the importance of Point-of-Interest (POI) recommendation systems in enhancing user experiences. While individual POI recommendation methods leverage users' check-in histories to provide personalized suggestions, they struggle to address scenarios requiring group decision-making. Group POI recommendation systems aim to satisfy the collective preferences of multiple users, but existing approaches face two major challenges: diverse group preferences and extreme data sparsity in group check-in data. To overcome these challenges, we propose LLMGPR, a novel framework that leverages large language models (LLMs) for group POI recommendations. LLMGPR introduces semantic-enhanced POI tokens and incorporates rich contextual information to model the diverse and complex dynamics of group decision-making. To further enhance its capabilities, we developed a sequencing adapter using Quantized Low-Rank Adaptation (QLoRA), which aligns LLMs with group POI recommendation tasks. To address the issue of sparse group check-in data, LLMGPR employs an aggregation adapter that integrates individual representations into meaningful group representations. Additionally, a self-supervised learning (SSL) task is designed to predict the purposes of check-in sequences (e.g., business trips and family vacations), thereby enriching group representations with deeper semantic insights. Extensive experiments demonstrate the effectiveness of LLMGPR, showcasing its ability to significantly enhance the accuracy and robustness of group POI recommendations.
♻ ☆ Paragon: Parameter Generation for Controllable Multi-Task Recommendation
Commercial recommender systems face the challenge that task requirements from platforms or users often change dynamically (e.g., varying preferences for accuracy or diversity). Ideally, the model should be re-trained after resetting a new objective function, adapting to these changes in task requirements. However, in practice, the high computational costs associated with retraining make this process impractical for models already deployed to online environments. This raises a new challenging problem: how to efficiently adapt the learned model to different task requirements by controlling the model parameters after deployment, without the need for retraining. To address this issue, we propose a novel controllable learning approach via \textbf{para}meter \textbf{g}eneration for c\textbf{on}trollable multi-task recommendation (\textbf{Paragon}), which allows the customization and adaptation of recommendation model parameters to new task requirements without retraining. Specifically, we first obtain the optimized model parameters through adapter tunning based on the feasible task requirements. Then, we utilize the generative model as a parameter generator, employing classifier-free guidance in conditional training to learn the distribution of optimized model parameters under various task requirements. Finally, the parameter generator is applied to effectively generate model parameters in a test-time adaptation manner given task requirements. Moreover, Paragon seamlessly integrates with various existing recommendation models to enhance their controllability. Extensive experiments on two public datasets and one commercial dataset demonstrate that Paragon can efficiently generate model parameters instead of retraining, reducing computational time by at least 94.6\%. The code is released at \href{https://github.com/bubble65/Paragon}{https://github.com/bubble65/Paragon}.
♻ ☆ A Survey of Controllable Learning: Methods and Applications in Information Retrieval
Controllability has become a crucial aspect of trustworthy machine learning, enabling learners to meet predefined targets and adapt dynamically at test time without requiring retraining as the targets shift. We provide a formal definition of controllable learning (CL), and discuss its applications in information retrieval (IR) where information needs are often complex and dynamic. The survey categorizes CL according to what is controllable (e.g., multiple objectives, user portrait, scenario adaptation), who controls (users or platforms), how control is implemented (e.g., rule-based method, Pareto optimization, hypernetwork and others), and where to implement control (e.g., pre-processing, in-processing, post-processing methods). Then, we identify challenges faced by CL across training, evaluation, task setting, and deployment in online environments. Additionally, we outline promising directions for CL in theoretical analysis, efficient computation, empowering large language models, application scenarios and evaluation frameworks.
♻ ☆ GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation
Learning path recommendation seeks to provide learners with a structured sequence of learning items (\eg, knowledge concepts or exercises) to optimize their learning efficiency. Despite significant efforts in this area, most existing methods primarily rely on prerequisite relationships, which present two major limitations: 1) Requiring prerequisite relationships between knowledge concepts, which are difficult to obtain due to the cost of expert annotation, hindering the application of current learning path recommendation methods. 2) Relying on a single, sequentially dependent knowledge structure based on prerequisite relationships implies that difficulties at any stage can cause learning blockages, which in turn disrupt subsequent learning processes. To address these challenges, we propose a novel approach, GraphRAG-Induced Dual Knowledge Structure Graphs for Personalized Learning Path Recommendation (KnowLP), which enhances learning path recommendations by incorporating both prerequisite and similarity relationships between knowledge concepts. Specifically, we introduce a knowledge concept structure graph generation module EDU-GraphRAG that adaptively constructs knowledge concept structure graphs for different educational datasets, significantly improving the generalizability of learning path recommendation methods. We then propose a Discrimination Learning-driven Reinforcement Learning (DLRL) module, which mitigates the issue of blocked learning paths, further enhancing the efficacy of learning path recommendations. Finally, we conduct extensive experiments on three benchmark datasets, demonstrating that our method not only achieves state-of-the-art performance but also provides interpretable reasoning for the recommended learning paths.
♻ ☆ A Comparative Study of Specialized LLMs as Dense Retrievers
While large language models (LLMs) are increasingly deployed as dense retrievers, the impact of their domain-specific specialization on retrieval effectiveness remains underexplored. This investigation systematically examines how task-specific adaptations in LLMs influence their retrieval capabilities, an essential step toward developing unified retrievers capable of handling text, code, images, and multimodal content. We conduct extensive experiments with eight Qwen2.5 7B LLMs, including base, instruction-tuned, code/math-specialized, long reasoning, and vision-language models across zero-shot retrieval settings and the supervised setting. For the zero-shot retrieval settings, we consider text retrieval from the BEIR benchmark and code retrieval from the CoIR benchmark. Further, to evaluate supervised performance, all LLMs are fine-tuned on the MS MARCO dataset. We find that mathematical specialization and the long reasoning capability cause consistent degradation in three settings, indicating conflicts between mathematical reasoning and semantic matching. The vision-language model and code-specialized LLMs demonstrate superior zero-shot performance compared to other LLMs, even surpassing BM25 on the code retrieval task, and maintain comparable performance to base LLMs in supervised settings. These findings suggest promising directions for the unified retrieval task leveraging cross-domain and cross-modal fusion.
comment: Accepted by CCIR25 and published by Springer LNCS or LNAI
♻ ☆ Modality and Task Adaptation for Enhanced Zero-shot Composed Image Retrieval
As a challenging vision-language task, Zero-Shot Composed Image Retrieval (ZS-CIR) is designed to retrieve target images using bi-modal (image+text) queries. Typical ZS-CIR methods employ an inversion network to generate pseudo-word tokens that effectively represent the input semantics. However, the inversion-based methods suffer from two inherent issues: First, the task discrepancy exists because inversion training and CIR inference involve different objectives. Second, the modality discrepancy arises from the input feature distribution mismatch between training and inference. To this end, we propose a lightweight post-hoc framework, consisting of two components: (1) A new text-anchored triplet construction pipeline leverages a large language model (LLM) to transform a standard image-text dataset into a triplet dataset, where a textual description serves as the target of each triplet. (2) The MoTa-Adapter, a novel parameter-efficient fine-tuning method, adapts the dual encoder to the CIR task using our constructed triplet data. Specifically, on the text side, multiple sets of learnable task prompts are integrated via a Mixture-of-Experts (MoE) layer to capture task-specific priors and handle different types of modifications. On the image side, MoTa-Adapter modulates the inversion network's input to better match the downstream text encoder. In addition, an entropy-based optimization strategy is proposed to assign greater weight to challenging samples, thus ensuring efficient adaptation. Experiments show that, with the incorporation of our proposed components, inversion-based methods achieve significant improvements, reaching state-of-the-art performance across four widely-used benchmarks. All data and code will be made publicly available.
♻ ☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OzCHI 2025. 23 pages, 1 figure, 5 tables
♻ ☆ On-Device Recommender Systems: A Comprehensive Survey
Recommender systems have been widely deployed in various real-world applications to help users identify content of interest from massive amounts of information. Traditional recommender systems work by collecting user-item interaction data in a cloud-based data center and training a centralized model to perform the recommendation service. However, such cloud-based recommender systems (CloudRSs) inevitably suffer from excessive resource consumption, response latency, as well as privacy and security risks concerning both data and models. Recently, driven by the advances in storage, communication, and computation capabilities of edge devices, there has been a shift of focus from CloudRSs to on-device recommender systems (DeviceRSs), which leverage the capabilities of edge devices to minimize centralized data storage requirements, reduce the response latency caused by communication overheads, and enhance user privacy and security by localizing data processing and model training. Despite the rapid rise of DeviceRSs, there is a clear absence of timely literature reviews that systematically introduce, categorize and contrast these methods. To bridge this gap, we aim to provide a comprehensive survey of DeviceRSs, covering three main aspects: (1) the deployment and inference of DeviceRSs (2) the training and update of DeviceRSs (3) the security and privacy of DeviceRSs. Furthermore, we provide a fine-grained and systematic taxonomy of the methods involved in each aspect, followed by a discussion regarding challenges and future research directions. This is the first comprehensive survey on DeviceRSs that covers a spectrum of tasks to fit various needs. We believe this survey will help readers effectively grasp the current research status in this field, equip them with relevant technical foundations, and stimulate new research ideas for developing DeviceRSs.
♻ ☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
♻ ☆ Enhancing Graph-based Recommendations with Majority-Voting LLM-Rerank Augmentation
Recommendation systems often suffer from data sparsity caused by limited user-item interactions, which degrade their performance and amplify popularity bias in real-world scenarios. This paper proposes a novel data augmentation framework that leverages Large Language Models (LLMs) and item textual descriptions to enrich interaction data. By few-shot prompting LLMs multiple times to rerank items and aggregating the results via majority voting, we generate high-confidence synthetic user-item interactions, supported by theoretical guarantees based on the concentration of measure. To effectively leverage the augmented data in the context of a graph recommendation system, we integrate it into a graph contrastive learning framework to mitigate distributional shift and alleviate popularity bias. Extensive experiments show that our method improves accuracy and reduces popularity bias, outperforming strong baselines.
Robotics 60
☆ LiDARCrafter: Dynamic 4D World Modeling from LiDAR Sequences
Generative world models have become essential data engines for autonomous driving, yet most existing efforts focus on videos or occupancy grids, overlooking the unique LiDAR properties. Extending LiDAR generation to dynamic 4D world modeling presents challenges in controllability, temporal coherence, and evaluation standardization. To this end, we present LiDARCrafter, a unified framework for 4D LiDAR generation and editing. Given free-form natural language inputs, we parse instructions into ego-centric scene graphs, which condition a tri-branch diffusion network to generate object structures, motion trajectories, and geometry. These structured conditions enable diverse and fine-grained scene editing. Additionally, an autoregressive module generates temporally coherent 4D LiDAR sequences with smooth transitions. To support standardized evaluation, we establish a comprehensive benchmark with diverse metrics spanning scene-, object-, and sequence-level aspects. Experiments on the nuScenes dataset using this benchmark demonstrate that LiDARCrafter achieves state-of-the-art performance in fidelity, controllability, and temporal consistency across all levels, paving the way for data augmentation and simulation. The code and benchmark are released to the community.
comment: Preprint; 28 pages, 18 figures, 12 tables; Project Page at https://lidarcrafter.github.io
☆ La La LiDAR: Large-Scale Layout Generation from LiDAR Data
Controllable generation of realistic LiDAR scenes is crucial for applications such as autonomous driving and robotics. While recent diffusion-based models achieve high-fidelity LiDAR generation, they lack explicit control over foreground objects and spatial relationships, limiting their usefulness for scenario simulation and safety validation. To address these limitations, we propose Large-scale Layout-guided LiDAR generation model ("La La LiDAR"), a novel layout-guided generative framework that introduces semantic-enhanced scene graph diffusion with relation-aware contextual conditioning for structured LiDAR layout generation, followed by foreground-aware control injection for complete scene generation. This enables customizable control over object placement while ensuring spatial and semantic consistency. To support our structured LiDAR generation, we introduce Waymo-SG and nuScenes-SG, two large-scale LiDAR scene graph datasets, along with new evaluation metrics for layout synthesis. Extensive experiments demonstrate that La La LiDAR achieves state-of-the-art performance in both LiDAR generation and downstream perception tasks, establishing a new benchmark for controllable 3D scene generation.
comment: Preprint; 10 pages, 6 figures, 7 tables
☆ Veila: Panoramic LiDAR Generation from a Monocular RGB Image
Realistic and controllable panoramic LiDAR data generation is critical for scalable 3D perception in autonomous driving and robotics. Existing methods either perform unconditional generation with poor controllability or adopt text-guided synthesis, which lacks fine-grained spatial control. Leveraging a monocular RGB image as a spatial control signal offers a scalable and low-cost alternative, which remains an open problem. However, it faces three core challenges: (i) semantic and depth cues from RGB are vary spatially, complicating reliable conditioning generation; (ii) modality gaps between RGB appearance and LiDAR geometry amplify alignment errors under noisy diffusion; and (iii) maintaining structural coherence between monocular RGB and panoramic LiDAR is challenging, particularly in non-overlap regions between images and LiDAR. To address these challenges, we propose Veila, a novel conditional diffusion framework that integrates: a Confidence-Aware Conditioning Mechanism (CACM) that strengthens RGB conditioning by adaptively balancing semantic and depth cues according to their local reliability; a Geometric Cross-Modal Alignment (GCMA) for robust RGB-LiDAR alignment under noisy diffusion; and a Panoramic Feature Coherence (PFC) for enforcing global structural consistency across monocular RGB and panoramic LiDAR. Additionally, we introduce two metrics, Cross-Modal Semantic Consistency and Cross-Modal Depth Consistency, to evaluate alignment quality across modalities. Experiments on nuScenes, SemanticKITTI, and our proposed KITTI-Weather benchmark demonstrate that Veila achieves state-of-the-art generation fidelity and cross-modal consistency, while enabling generative data augmentation that improves downstream LiDAR semantic segmentation.
comment: Preprint; 10 pages, 6 figures, 7 tables
☆ Inland-LOAM: Voxel-Based Structural Semantic Mapping for Inland Waterways
Accurate geospatial information is crucial for safe, autonomous Inland Waterway Transport (IWT), as existing charts (IENC) lack real-time detail and conventional LiDAR SLAM fails in waterway environments. These challenges lead to vertical drift and non-semantic maps, hindering autonomous navigation. This paper introduces Inland-LOAM, a LiDAR SLAM framework for waterways. It uses an improved feature extraction and a water surface planar constraint to mitigate vertical drift. A novel pipeline transforms 3D point clouds into structured 2D semantic maps using voxel-based geometric analysis, enabling real-time computation of navigational parameters like bridge clearances. An automated module extracts shorelines and exports them into a lightweight, IENC-compatible format. Evaluations on a real-world dataset show Inland-LOAM achieves superior localization accuracy over state-of-the-art methods. The generated semantic maps and shorelines align with real-world conditions, providing reliable data for enhanced situational awareness. The code and dataset will be publicly available
☆ OmniShape: Zero-Shot Multi-Hypothesis Shape and Pose Estimation in the Real World ICRA 2025
We would like to estimate the pose and full shape of an object from a single observation, without assuming known 3D model or category. In this work, we propose OmniShape, the first method of its kind to enable probabilistic pose and shape estimation. OmniShape is based on the key insight that shape completion can be decoupled into two multi-modal distributions: one capturing how measurements project into a normalized object reference frame defined by the dataset and the other modelling a prior over object geometries represented as triplanar neural fields. By training separate conditional diffusion models for these two distributions, we enable sampling multiple hypotheses from the joint pose and shape distribution. OmniShape demonstrates compelling performance on challenging real world datasets. Project website: https://tri-ml.github.io/omnishape
comment: 8 pages, 5 figures. This version has typo fixes on top of the version published at ICRA 2025
☆ DiWA: Diffusion Policy Adaptation with World Models
Fine-tuning diffusion policies with reinforcement learning (RL) presents significant challenges. The long denoising sequence for each action prediction impedes effective reward propagation. Moreover, standard RL methods require millions of real-world interactions, posing a major bottleneck for practical fine-tuning. Although prior work frames the denoising process in diffusion policies as a Markov Decision Process to enable RL-based updates, its strong dependence on environment interaction remains highly inefficient. To bridge this gap, we introduce DiWA, a novel framework that leverages a world model for fine-tuning diffusion-based robotic skills entirely offline with reinforcement learning. Unlike model-free approaches that require millions of environment interactions to fine-tune a repertoire of robot skills, DiWA achieves effective adaptation using a world model trained once on a few hundred thousand offline play interactions. This results in dramatically improved sample efficiency, making the approach significantly more practical and safer for real-world robot learning. On the challenging CALVIN benchmark, DiWA improves performance across eight tasks using only offline adaptation, while requiring orders of magnitude fewer physical interactions than model-free baselines. To our knowledge, this is the first demonstration of fine-tuning diffusion policies for real-world robotic skills using an offline world model. We make the code publicly available at https://diwa.cs.uni-freiburg.de.
comment: Accepted at the 2025 Conference on Robot Learning (CoRL)
☆ Why Evolve When You Can Adapt? Post-Evolution Adaptation of Genetic Memory for On-the-Fly Control
Imagine a robot controller with the ability to adapt like human synapses, dynamically rewiring itself to overcome unforeseen challenges in real time. This paper proposes a novel zero-shot adaptation mechanism for evolutionary robotics, merging a standard Genetic Algorithm (GA) controller with online Hebbian plasticity. Inspired by biological systems, the method separates learning and memory, with the genotype acting as memory and Hebbian updates handling learning. In our approach, the fitness function is leveraged as a live scaling factor for Hebbian learning, enabling the robot's neural controller to adjust synaptic weights on-the-fly without additional training. This adds a dynamic adaptive layer that activates only during runtime to handle unexpected environmental changes. After the task, the robot 'forgets' the temporary adjustments and reverts to the original weights, preserving core knowledge. We validate this hybrid GA-Hebbian controller on an e-puck robot in a T-maze navigation task with changing light conditions and obstacles.
comment: This work was accepted for presentation at the ALIFE 2025 Conference in Kyoto, and will be published by MIT Press as part of the ALIFE 2025 proceedings
☆ Online Learning for Vibration Suppression in Physical Robot Interaction using Power Tools
Vibration suppression is an important capability for collaborative robots deployed in challenging environments such as construction sites. We study the active suppression of vibration caused by external sources such as power tools. We adopt the band-limited multiple Fourier linear combiner (BMFLC) algorithm to learn the vibration online and counter it by feedforward force control. We propose the damped BMFLC method, extending BMFLC with a novel adaptive step-size approach that improves the convergence time and noise resistance. Our logistic function-based damping mechanism reduces the effect of noise and enables larger learning rates. We evaluate our method on extensive simulation experiments with realistic time-varying multi-frequency vibration and real-world physical interaction experiments. The simulation experiments show that our method improves the suppression rate in comparison to the original BMFLC and its recursive least squares and Kalman filter-based extensions. Furthermore, our method is far more efficient than the latter two. We further validate the effectiveness of our method in real-world polishing experiments. A supplementary video is available at https://youtu.be/ms6m-6JyVAI.
comment: Submitted, under review
☆ Vision-based Perception System for Automated Delivery Robot-Pedestrians Interactions
The integration of Automated Delivery Robots (ADRs) into pedestrian-heavy urban spaces introduces unique challenges in terms of safe, efficient, and socially acceptable navigation. We develop the complete pipeline for a single vision sensor based multi-pedestrian detection and tracking, pose estimation, and monocular depth perception. Leveraging the real-world MOT17 dataset sequences, this study demonstrates how integrating human-pose estimation and depth cues enhances pedestrian trajectory prediction and identity maintenance, even under occlusions and dense crowds. Results show measurable improvements, including up to a 10% increase in identity preservation (IDF1), a 7% improvement in multiobject tracking accuracy (MOTA), and consistently high detection precision exceeding 85%, even in challenging scenarios. Notably, the system identifies vulnerable pedestrian groups supporting more socially aware and inclusive robot behaviour.
☆ CollaBot: Vision-Language Guided Simultaneous Collaborative Manipulation
A central research topic in robotics is how to use this system to interact with the physical world. Traditional manipulation tasks primarily focus on small objects. However, in factory or home environments, there is often a need for the movement of large objects, such as moving tables. These tasks typically require multi-robot systems to work collaboratively. Previous research lacks a framework that can scale to arbitrary sizes of robots and generalize to various kinds of tasks. In this work, we propose CollaBot, a generalist framework for simultaneous collaborative manipulation. First, we use SEEM for scene segmentation and point cloud extraction of the target object. Then, we propose a collaborative grasping framework, which decomposes the task into local grasp pose generation and global collaboration. Finally, we design a 2-stage planning module that can generate collision-free trajectories to achieve this task. Experiments show a success rate of 52% across different numbers of robots, objects, and tasks, indicating the effectiveness of the proposed framework.
comment: 9 pages,5 figures
☆ Theatre in the Loop: A Rehearsal-Based, Collaborative Workflow for Expressive Robotic Behaviours
In this paper, we propose theatre-in-the-loop, a framework for developing expressive robot behaviours tailored to artistic performance through a director-guided puppeteering workflow. Leveraging theatrical methods, we use narrative objectives to direct a puppeteer in generating improvised robotic gestures that convey specific emotions. These improvisations are captured and curated to build a dataset of reusable movement templates for standalone playback in future autonomous performances. Initial trials demonstrate the feasibility of this approach, illustrating how the workflow enables precise sculpting of robotic gestures into coherent emotional arcs while revealing challenges posed by the robot's mechanical constraints. We argue that this practice-led framework provides a model for interdisciplinary teams creating socially expressive robot behaviours, contributing to (1) theatre as an interactive training ground for human-robot interaction and (2) co-creation methodologies between humans and machines.
comment: The paper is accepted for presentation to International Conference on Social Robotics + AI (https://icsr2025.eu/)
☆ Residual Neural Terminal Constraint for MPC-based Collision Avoidance in Dynamic Environments
In this paper, we propose a hybrid MPC local planner that uses a learning-based approximation of a time-varying safe set, derived from local observations and applied as the MPC terminal constraint. This set can be represented as a zero-superlevel set of the value function computed via Hamilton-Jacobi (HJ) reachability analysis, which is infeasible in real-time. We exploit the property that the HJ value function can be expressed as a difference of the corresponding signed distance function (SDF) and a non-negative residual function. The residual component is modeled as a neural network with non-negative output and subtracted from the computed SDF, resulting in a real-time value function estimate that is at least as safe as the SDF by design. Additionally, we parametrize the neural residual by a hypernetwork to improve real-time performance and generalization properties. The proposed method is compared with three state-of-the-art methods in simulations and hardware experiments, achieving up to 30\% higher success rates compared to the best baseline while requiring a similar computational effort and producing high-quality (low travel-time) solutions.
☆ Opti-Acoustic Scene Reconstruction in Highly Turbid Underwater Environments
Scene reconstruction is an essential capability for underwater robots navigating in close proximity to structures. Monocular vision-based reconstruction methods are unreliable in turbid waters and lack depth scale information. Sonars are robust to turbid water and non-uniform lighting conditions, however, they have low resolution and elevation ambiguity. This work proposes a real-time opti-acoustic scene reconstruction method that is specially optimized to work in turbid water. Our strategy avoids having to identify point features in visual data and instead identifies regions of interest in the data. We then match relevant regions in the image to corresponding sonar data. A reconstruction is obtained by leveraging range data from the sonar and elevation data from the camera image. Experimental comparisons against other vision-based and sonar-based approaches at varying turbidity levels, and field tests conducted in marina environments, validate the effectiveness of the proposed approach. We have made our code open-source to facilitate reproducibility and encourage community engagement.
☆ UniFucGrasp: Human-Hand-Inspired Unified Functional Grasp Annotation Strategy and Dataset for Diverse Dexterous Hands
Dexterous grasp datasets are vital for embodied intelligence, but mostly emphasize grasp stability, ignoring functional grasps needed for tasks like opening bottle caps or holding cup handles. Most rely on bulky, costly, and hard-to-control high-DOF Shadow Hands. Inspired by the human hand's underactuated mechanism, we establish UniFucGrasp, a universal functional grasp annotation strategy and dataset for multiple dexterous hand types. Based on biomimicry, it maps natural human motions to diverse hand structures and uses geometry-based force closure to ensure functional, stable, human-like grasps. This method supports low-cost, efficient collection of diverse, high-quality functional grasps. Finally, we establish the first multi-hand functional grasp dataset and provide a synthesis model to validate its effectiveness. Experiments on the UFG dataset, IsaacSim, and complex robotic tasks show that our method improves functional manipulation accuracy and grasp stability, enables efficient generalization across diverse robotic hands, and overcomes annotation cost and generalization challenges in dexterous grasping. The project page is at https://haochen611.github.io/UFG.
comment: The project page is at https://haochen611.github.io/UFG
☆ LRDDv2: Enhanced Long-Range Drone Detection Dataset with Range Information and Comprehensive Real-World Challenges
The exponential growth in Unmanned Aerial Vehicles (UAVs) usage underscores the critical need of detecting them at extended distances to ensure safe operations, especially in densely populated areas. Despite the tremendous advances made in computer vision through deep learning, the detection of these small airborne objects remains a formidable challenge. While several datasets have been developed specifically for drone detection, the need for a more extensive and diverse collection of drone image data persists, particularly for long-range detection under varying environmental conditions. We introduce here the Long Range Drone Detection (LRDD) Version 2 dataset, comprising 39,516 meticulously annotated images, as a second release of the LRDD dataset released previously. The LRDDv2 dataset enhances the LRDDv1 by incorporating a greater variety of images, providing a more diverse and comprehensive resource for drone detection research. What sets LRDDv2 apart is its inclusion of target range information for over 8,000 images, making it possible to develop algorithms for drone range estimation. Tailored for long-range aerial object detection, the majority of LRDDv2's dataset consists of images capturing drones with 50 or fewer pixels in 1080p resolution. For access to the complete Long-Range Drone Detection Dataset (LRDD)v2, please visit https://research.coe.drexel.edu/ece/imaple/lrddv2/ .
comment: Accepted and presented at ISRR 2024
☆ Enhancing Joint Human-AI Inference in Robot Missions: A Confidence-Based Approach
Joint human-AI inference holds immense potential to improve outcomes in human-supervised robot missions. Current day missions are generally in the AI-assisted setting, where the human operator makes the final inference based on the AI recommendation. However, due to failures in human judgement on when to accept or reject the AI recommendation, complementarity is rarely achieved. We investigate joint human-AI inference where the inference made with higher confidence is selected. Through a user study with N=100 participants on a representative simulated robot teleoperation task, specifically studying the inference of robots' control delays we show that: a) Joint inference accuracy is higher and its extent is regulated by the confidence calibration of the AI agent, and b) Humans change their inferences based on AI recommendations and the extent and direction of this change is also regulated by the confidence calibration of the AI agent. Interestingly, our results show that pairing poorly-calibrated AI-DSS with humans hurts performance instead of helping the team, reiterating the need for AI-based decision support systems with good metacognitive sensitivity. To the best of our knowledge, our study presents the first application of a maximum-confidence-based heuristic for joint human-AI inference within a simulated robot teleoperation task.
☆ Force-Compliance MPC and Robot-User CBFs for Interactive Navigation and User-Robot Safety in Hexapod Guide Robots
Guiding the visually impaired in complex environments requires real-time two-way interaction and safety assurance. We propose a Force-Compliance Model Predictive Control (FC-MPC) and Robot-User Control Barrier Functions (CBFs) for force-compliant navigation and obstacle avoidance in Hexapod guide robots. FC-MPC enables two-way interaction by estimating user-applied forces and moments using the robot's dynamic model and the recursive least squares (RLS) method, and then adjusting the robot's movements accordingly, while Robot-User CBFs ensure the safety of both the user and the robot by handling static and dynamic obstacles, and employ weighted slack variables to overcome feasibility issues in complex dynamic environments. We also adopt an Eight-Way Connected DBSCAN method for obstacle clustering, reducing computational complexity from O(n2) to approximately O(n), enabling real-time local perception on resource-limited on-board robot computers. Obstacles are modeled using Minimum Bounding Ellipses (MBEs), and their trajectories are predicted through Kalman filtering. Implemented on the HexGuide robot, the system seamlessly integrates force compliance, autonomous navigation, and obstacle avoidance. Experimental results demonstrate the system's ability to adapt to user force commands while guaranteeing user and robot safety simultaneously during navigation in complex environments.
☆ CookBench: A Long-Horizon Embodied Planning Benchmark for Complex Cooking Scenarios
Embodied Planning is dedicated to the goal of creating agents capable of executing long-horizon tasks in complex physical worlds. However, existing embodied planning benchmarks frequently feature short-horizon tasks and coarse-grained action primitives. To address this challenge, we introduce CookBench, a benchmark for long-horizon planning in complex cooking scenarios. By leveraging a high-fidelity simulation environment built upon the powerful Unity game engine, we define frontier AI challenges in a complex, realistic environment. The core task in CookBench is designed as a two-stage process. First, in Intention Recognition, an agent needs to accurately parse a user's complex intent. Second, in Embodied Interaction, the agent should execute the identified cooking goal through a long-horizon, fine-grained sequence of physical actions. Unlike existing embodied planning benchmarks, we refine the action granularity to a spatial level that considers crucial operational information while abstracting away low-level robotic control. Besides, We provide a comprehensive toolset that encapsulates the simulator. Its unified API supports both macro-level operations, such as placing orders and purchasing ingredients, and a rich set of fine-grained embodied actions for physical interaction, enabling researchers to focus on high-level planning and decision-making. Furthermore, we present an in-depth analysis of state-of-the-art, closed-source Large Language Model and Vision-Language Model, revealing their major shortcomings and challenges posed by complex, long-horizon tasks. The full benchmark will be open-sourced to facilitate future research.
comment: 9 pages, 5 figures
☆ Language as Cost: Proactive Hazard Mapping using VLM for Robot Navigation IROS
Robots operating in human-centric or hazardous environments must proactively anticipate and mitigate dangers beyond basic obstacle detection. Traditional navigation systems often depend on static maps, which struggle to account for dynamic risks, such as a person emerging from a suddenly opening door. As a result, these systems tend to be reactive rather than anticipatory when handling dynamic hazards. Recent advancements in pre-trained large language models and vision-language models (VLMs) create new opportunities for proactive hazard avoidance. In this work, we propose a zero-shot language-as-cost mapping framework that leverages VLMs to interpret visual scenes, assess potential dynamic risks, and assign risk-aware navigation costs preemptively, enabling robots to anticipate hazards before they materialize. By integrating this language-based cost map with a geometric obstacle map, the robot not only identifies existing obstacles but also anticipates and proactively plans around potential hazards arising from environmental dynamics. Experiments in simulated and diverse dynamic environments demonstrate that the proposed method significantly improves navigation success rates and reduces hazard encounters, compared to reactive baseline planners. Code and supplementary materials are available at https://github.com/Taekmino/LaC.
comment: Accepted at IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025. 8 pages, 7 figures
☆ COFFEE: A Shadow-Resilient Real-Time Pose Estimator for Unknown Tumbling Asteroids using Sparse Neural Networks
The accurate state estimation of unknown bodies in space is a critical challenge with applications ranging from the tracking of space debris to the shape estimation of small bodies. A necessary enabler to this capability is to find and track features on a continuous stream of images. Existing methods, such as SIFT, ORB and AKAZE, achieve real-time but inaccurate pose estimates, whereas modern deep learning methods yield higher quality features at the cost of more demanding computational resources which might not be available on space-qualified hardware. Additionally, both classical and data-driven methods are not robust to the highly opaque self-cast shadows on the object of interest. We show that, as the target body rotates, these shadows may lead to large biases in the resulting pose estimates. For these objects, a bias in the real-time pose estimation algorithm may mislead the spacecraft's state estimator and cause a mission failure, especially if the body undergoes a chaotic tumbling motion. We present COFFEE, the Celestial Occlusion Fast FEature Extractor, a real-time pose estimation framework for asteroids designed to leverage prior information on the sun phase angle given by sun-tracking sensors commonly available onboard spacecraft. By associating salient contours to their projected shadows, a sparse set of features are detected, invariant to the motion of the shadows. A Sparse Neural Network followed by an attention-based Graph Neural Network feature matching model are then jointly trained to provide a set of correspondences between successive frames. The resulting pose estimation pipeline is found to be bias-free, more accurate than classical pose estimation pipelines and an order of magnitude faster than other state-of-the-art deep learning pipelines on synthetic data as well as on renderings of the tumbling asteroid Apophis.
comment: in Proc. 75th Int. Astronautical Congress (IAC-24), Milan, Italy, Oct. 2024
☆ Safety-Aware Imitation Learning via MPC-Guided Disturbance Injection
Imitation Learning has provided a promising approach to learning complex robot behaviors from expert demonstrations. However, learned policies can make errors that lead to safety violations, which limits their deployment in safety-critical applications. We propose MPC-SafeGIL, a design-time approach that enhances the safety of imitation learning by injecting adversarial disturbances during expert demonstrations. This exposes the expert to a broader range of safety-critical scenarios and allows the imitation policy to learn robust recovery behaviors. Our method uses sampling-based Model Predictive Control (MPC) to approximate worst-case disturbances, making it scalable to high-dimensional and black-box dynamical systems. In contrast to prior work that relies on analytical models or interactive experts, MPC-SafeGIL integrates safety considerations directly into data collection. We validate our approach through extensive simulations including quadruped locomotion and visuomotor navigation and real-world experiments on a quadrotor, demonstrating improvements in both safety and task performance. See our website here: https://leqiu2003.github.io/MPCSafeGIL/
☆ Can Large Language Models Identify Materials from Radar Signals?
Accurately identifying the material composition of objects is a critical capability for AI robots powered by large language models (LLMs) to perform context-aware manipulation. Radar technologies offer a promising sensing modality for material recognition task. When combined with deep learning, radar technologies have demonstrated strong potential in identifying the material of various objects. However, existing radar-based solutions are often constrained to closed-set object categories and typically require task-specific data collection to train deep learning models, largely limiting their practical applicability. This raises an important question: Can we leverage the powerful reasoning capabilities of pre-trained LLMs to directly infer material composition from raw radar signals? Answering this question is non-trivial due to the inherent redundancy of radar signals and the fact that pre-trained LLMs have no prior exposure to raw radar data during training. To address this, we introduce LLMaterial, the first study to investigate the feasibility of using LLM to identify materials directly from radar signals. First, we introduce a physics-informed signal processing pipeline that distills high-redundancy radar raw data into a set of compact intermediate parameters that encapsulate the material's intrinsic characteristics. Second, we adopt a retrieval-augmented generation (RAG) strategy to provide the LLM with domain-specific knowledge, enabling it to interpret and reason over the extracted intermediate parameters. Leveraging this integration, the LLM is empowered to perform step-by-step reasoning on the condensed radar features, achieving open-set material recognition directly from raw radar signals. Preliminary results show that LLMaterial can effectively distinguish among a variety of common materials, highlighting its strong potential for real-world material identification applications.
☆ Point2Act: Efficient 3D Distillation of Multimodal LLMs for Zero-Shot Context-Aware Grasping
We propose Point2Act, which directly retrieves the 3D action point relevant for a contextually described task, leveraging Multimodal Large Language Models (MLLMs). Foundation models opened the possibility for generalist robots that can perform a zero-shot task following natural language descriptions within an unseen environment. While the semantics obtained from large-scale image and language datasets provide contextual understanding in 2D images, the rich yet nuanced features deduce blurry 2D regions and struggle to find precise 3D locations for actions. Our proposed 3D relevancy fields bypass the high-dimensional features and instead efficiently imbue lightweight 2D point-level guidance tailored to the task-specific action. The multi-view aggregation effectively compensates for misalignments due to geometric ambiguities, such as occlusion, or semantic uncertainties inherent in the language descriptions. The output region is highly localized, reasoning fine-grained 3D spatial context that can directly transfer to an explicit position for physical action at the on-the-fly reconstruction of the scene. Our full-stack pipeline, which includes capturing, MLLM querying, 3D reconstruction, and grasp pose extraction, generates spatially grounded responses in under 20 seconds, facilitating practical manipulation tasks. Project page: https://sangminkim-99.github.io/point2act/
☆ Optimizing Bipedal Locomotion for The 100m Dash With Comparison to Human Running ICRA 2023
In this paper, we explore the space of running gaits for the bipedal robot Cassie. Our first contribution is to present an approach for optimizing gait efficiency across a spectrum of speeds with the aim of enabling extremely high-speed running on hardware. This raises the question of how the resulting gaits compare to human running mechanics, which are known to be highly efficient in comparison to quadrupeds. Our second contribution is to conduct this comparison based on established human biomechanical studies. We find that despite morphological differences between Cassie and humans, key properties of the gaits are highly similar across a wide range of speeds. Finally, our third contribution is to integrate the optimized running gaits into a full controller that satisfies the rules of the real-world task of the 100m dash, including starting and stopping from a standing position. We demonstrate this controller on hardware to establish the Guinness World Record for Fastest 100m by a Bipedal Robot.
comment: 7 pages, 7 figures, published by IEEE at ICRA 2023, pp. 12205-12211, see https://ieeexplore.ieee.org/document/10160436
☆ Hand-Eye Autonomous Delivery: Learning Humanoid Navigation, Locomotion and Reaching
We propose Hand-Eye Autonomous Delivery (HEAD), a framework that learns navigation, locomotion, and reaching skills for humanoids, directly from human motion and vision perception data. We take a modular approach where the high-level planner commands the target position and orientation of the hands and eyes of the humanoid, delivered by the low-level policy that controls the whole-body movements. Specifically, the low-level whole-body controller learns to track the three points (eyes, left hand, and right hand) from existing large-scale human motion capture data while high-level policy learns from human data collected by Aria glasses. Our modular approach decouples the ego-centric vision perception from physical actions, promoting efficient learning and scalability to novel scenes. We evaluate our method both in simulation and in the real-world, demonstrating humanoid's capabilities to navigate and reach in complex environments designed for humans.
☆ SkeNa: Learning to Navigate Unseen Environments Based on Abstract Hand-Drawn Maps
A typical human strategy for giving navigation guidance is to sketch route maps based on the environmental layout. Inspired by this, we introduce Sketch map-based visual Navigation (SkeNa), an embodied navigation task in which an agent must reach a goal in an unseen environment using only a hand-drawn sketch map as guidance. To support research for SkeNa, we present a large-scale dataset named SoR, comprising 54k trajectory and sketch map pairs across 71 indoor scenes. In SoR, we introduce two navigation validation sets with varying levels of abstraction in hand-drawn sketches, categorized based on their preservation of spatial scales in the environment, to facilitate future research. To construct SoR, we develop an automated sketch-generation pipeline that efficiently converts floor plans into hand-drawn representations. To solve SkeNa, we propose SkeNavigator, a navigation framework that aligns visual observations with hand-drawn maps to estimate navigation targets. It employs a Ray-based Map Descriptor (RMD) to enhance sketch map valid feature representation using equidistant sampling points and boundary distances. To improve alignment with visual observations, a Dual-Map Aligned Goal Predictor (DAGP) leverages the correspondence between sketch map features and on-site constructed exploration map features to predict goal position and guide navigation. SkeNavigator outperforms prior floor plan navigation methods by a large margin, improving SPL on the high-abstract validation set by 105% relatively. Our code and dataset will be released.
comment: 9 pages, 5 figures
☆ Aerobatic maneuvers in insect-scale flapping-wing aerial robots via deep-learned robust tube model predictive control
Aerial insects exhibit highly agile maneuvers such as sharp braking, saccades, and body flips under disturbance. In contrast, insect-scale aerial robots are limited to tracking non-aggressive trajectories with small body acceleration. This performance gap is contributed by a combination of low robot inertia, fast dynamics, uncertainty in flapping-wing aerodynamics, and high susceptibility to environmental disturbance. Executing highly dynamic maneuvers requires the generation of aggressive flight trajectories that push against the hardware limit and a high-rate feedback controller that accounts for model and environmental uncertainty. Here, through designing a deep-learned robust tube model predictive controller, we showcase insect-like flight agility and robustness in a 750-millgram flapping-wing robot. Our model predictive controller can track aggressive flight trajectories under disturbance. To achieve a high feedback rate in a compute-constrained real-time system, we design imitation learning methods to train a two-layer, fully connected neural network, which resembles insect flight control architecture consisting of central nervous system and motor neurons. Our robot demonstrates insect-like saccade movements with lateral speed and acceleration of 197 centimeters per second and 11.7 meters per second square, representing 447$\%$ and 255$\%$ improvement over prior results. The robot can also perform saccade maneuvers under 160 centimeters per second wind disturbance and large command-to-force mapping errors. Furthermore, it performs 10 consecutive body flips in 11 seconds - the most challenging maneuver among sub-gram flyers. These results represent a milestone in achieving insect-scale flight agility and inspire future investigations on sensing and compute autonomy.
comment: 27 pages, 26 supplementary pages, 6 main figures, 16 supplementary figures, 1 table
☆ CogniPlan: Uncertainty-Guided Path Planning with Conditional Generative Layout Prediction
Path planning in unknown environments is a crucial yet inherently challenging capability for mobile robots, which primarily encompasses two coupled tasks: autonomous exploration and point-goal navigation. In both cases, the robot must perceive the environment, update its belief, and accurately estimate potential information gain on-the-fly to guide planning. In this work, we propose CogniPlan, a novel path planning framework that leverages multiple plausible layouts predicted by a COnditional GeNerative Inpainting model, mirroring how humans rely on cognitive maps during navigation. These predictions, based on the partially observed map and a set of layout conditioning vectors, enable our planner to reason effectively under uncertainty. We demonstrate strong synergy between generative image-based layout prediction and graph-attention-based path planning, allowing CogniPlan to combine the scalability of graph representations with the fidelity and predictiveness of occupancy maps, yielding notable performance gains in both exploration and navigation. We extensively evaluate CogniPlan on two datasets (hundreds of maps and realistic floor plans), consistently outperforming state-of-the-art planners. We further deploy it in a high-fidelity simulator and on hardware, showcasing its high-quality path planning and real-world applicability.
comment: Accepted for presentation at CORL 2025
☆ LiGen: GAN-Augmented Spectral Fingerprinting for Indoor Positioning
Accurate and robust indoor localization is critical for smart building applications, yet existing Wi-Fi-based systems are often vulnerable to environmental conditions. This work presents a novel indoor localization system, called LiGen, that leverages the spectral intensity patterns of ambient light as fingerprints, offering a more stable and infrastructure-free alternative to radio signals. To address the limited spectral data, we design a data augmentation framework based on generative adversarial networks (GANs), featuring two variants: PointGAN, which generates fingerprints conditioned on coordinates, and FreeGAN, which uses a weak localization model to label unconditioned samples. Our positioning model, leveraging a Multi-Layer Perceptron (MLP) architecture to train on synthesized data, achieves submeter-level accuracy, outperforming Wi-Fi-based baselines by over 50\%. LiGen also demonstrates strong robustness in cluttered environments. To the best of our knowledge, this is the first system to combine spectral fingerprints with GAN-based data augmentation for indoor localization.
comment: 6 pages, 10 figures
☆ Beyond Policy Optimization: A Data Curation Flywheel for Sparse-Reward Long-Horizon Planning
Large Language Reasoning Models have demonstrated remarkable success on static tasks, yet their application to multi-round agentic planning in interactive environments faces two fundamental challenges. First, the intractable credit assignment problem renders conventional reinforcement learning ineffective in sparse-reward settings. Second, the computational overhead of verbose, step-by-step reasoning histories is prohibitive. To address these challenges, we propose BPO, a three-stage framework (bootstrapping, extrapolation, and refinement) that establishes a self-improving data flywheel to develop robust reasoning models for long-horizon, sparse-reward environments. Our framework first bootstraps efficient reasoning using the proposed planning quaternions with long-short chain-of-thought fusion. It then extrapolates to out-of-distribution tasks through complexity-stratified curriculum learning. Finally, the model iteratively refines itself by learning exclusively on experiences selected via reward-gated rejection sampling. Experiments on ALFWorld, ScienceWorld, and WebShop demonstrate that our approach achieves state-of-the-art with significant token efficiency, providing a new recipe for reasoning models in agentic planning.
☆ Generating Light-based Fingerprints for Indoor Localization
Accurate indoor localization underpins applications ranging from wayfinding and emergency response to asset tracking and smart-building services. Radio-frequency solutions (e.g. Wi-Fi, RFID, UWB) are widely adopted but remain vulnerable to multipath fading, interference, and uncontrollable coverage variation. We explore an orthogonal modality -- visible light communication (VLC) -- and demonstrate that the spectral signatures captured by a low-cost AS7341 sensor can serve as robust location fingerprints. We introduce a two-stage framework that (i) trains a multi-layer perceptron (MLP) on real spectral measurements and (ii) enlarges the training corpus with synthetic samples produced by TabGAN. The augmented dataset reduces the mean localization error from 62.9cm to 49.3cm -- a 20% improvement -- while requiring only 5% additional data-collection effort. Experimental results obtained on 42 reference points in a U-shaped laboratory confirm that GAN-based augmentation mitigates data-scarcity issues and enhances generalization.
comment: 5 pages, 12 figures; presented at the 2024 MC & WASN Conference (Best Paper Candidate)
☆ Thruster-Enhanced Locomotion: A Decoupled Model Predictive Control with Learned Contact Residuals
Husky Carbon, a robot developed by Northeastern University, serves as a research platform to explore unification of posture manipulation and thrust vectoring. Unlike conventional quadrupeds, its joint actuators and thrusters enable enhanced control authority, facilitating thruster-assisted narrow-path walking. While a unified Model Predictive Control (MPC) framework optimizing both ground reaction forces and thruster forces could theoretically address this control problem, its feasibility is limited by the low torque-control bandwidth of the system's lightweight actuators. To overcome this challenge, we propose a decoupled control architecture: a Raibert-type controller governs legged locomotion using position-based control, while an MPC regulates the thrusters augmented by learned Contact Residual Dynamics (CRD) to account for leg-ground impacts. This separation bypasses the torque-control rate bottleneck while retaining the thruster MPC to explicitly account for leg-ground impact dynamics through learned residuals. We validate this approach through both simulation and hardware experiments, showing that the decoupled control architecture with CRD performs more stable behavior in terms of push recovery and cat-like walking gait compared to the decoupled controller without CRD.
☆ GACL: Grounded Adaptive Curriculum Learning with Active Task and Performance Monitoring IROS 2025
Curriculum learning has emerged as a promising approach for training complex robotics tasks, yet current applications predominantly rely on manually designed curricula, which demand significant engineering effort and can suffer from subjective and suboptimal human design choices. While automated curriculum learning has shown success in simple domains like grid worlds and games where task distributions can be easily specified, robotics tasks present unique challenges: they require handling complex task spaces while maintaining relevance to target domain distributions that are only partially known through limited samples. To this end, we propose Grounded Adaptive Curriculum Learning, a framework specifically designed for robotics curriculum learning with three key innovations: (1) a task representation that consistently handles complex robot task design, (2) an active performance tracking mechanism that allows adaptive curriculum generation appropriate for the robot's current capabilities, and (3) a grounding approach that maintains target domain relevance through alternating sampling between reference and synthetic tasks. We validate GACL on wheeled navigation in constrained environments and quadruped locomotion in challenging 3D confined spaces, achieving 6.8% and 6.1% higher success rates, respectively, than state-of-the-art methods in each domain.
comment: 7 pages, IROS 2025
☆ Estimation of Aerodynamics Forces in Dynamic Morphing Wing Flight
Accurate estimation of aerodynamic forces is essential for advancing the control, modeling, and design of flapping-wing aerial robots with dynamic morphing capabilities. In this paper, we investigate two distinct methodologies for force estimation on Aerobat, a bio-inspired flapping-wing platform designed to emulate the inertial and aerodynamic behaviors observed in bat flight. Our goal is to quantify aerodynamic force contributions during tethered flight, a crucial step toward closed-loop flight control. The first method is a physics-based observer derived from Hamiltonian mechanics that leverages the concept of conjugate momentum to infer external aerodynamic forces acting on the robot. This observer builds on the system's reduced-order dynamic model and utilizes real-time sensor data to estimate forces without requiring training data. The second method employs a neural network-based regression model, specifically a multi-layer perceptron (MLP), to learn a mapping from joint kinematics, flapping frequency, and environmental parameters to aerodynamic force outputs. We evaluate both estimators using a 6-axis load cell in a high-frequency data acquisition setup that enables fine-grained force measurements during periodic wingbeats. The conjugate momentum observer and the regression model demonstrate strong agreement across three force components (Fx, Fy, Fz).
☆ Multimodal Human-Intent Modeling for Contextual Robot-to-Human Handovers of Arbitrary Objects
Human-robot object handover is a crucial element for assistive robots that aim to help people in their daily lives, including elderly care, hospitals, and factory floors. The existing approaches to solving these tasks rely on pre-selected target objects and do not contextualize human implicit and explicit preferences for handover, limiting natural and smooth interaction between humans and robots. These preferences can be related to the target object selection from the cluttered environment and to the way the robot should grasp the selected object to facilitate desirable human grasping during handovers. Therefore, this paper presents a unified approach that selects target distant objects using human verbal and non-verbal commands and performs the handover operation by contextualizing human implicit and explicit preferences to generate robot grasps and compliant handover motion sequences. We evaluate our integrated framework and its components through real-world experiments and user studies with arbitrary daily-life objects. The results of these evaluations demonstrate the effectiveness of our proposed pipeline in handling object handover tasks by understanding human preferences. Our demonstration videos can be found at https://youtu.be/6z27B2INl-s.
☆ Physics-informed Neural Time Fields for Prehensile Object Manipulation
Object manipulation skills are necessary for robots operating in various daily-life scenarios, ranging from warehouses to hospitals. They allow the robots to manipulate the given object to their desired arrangement in the cluttered environment. The existing approaches to solving object manipulations are either inefficient sampling based techniques, require expert demonstrations, or learn by trial and error, making them less ideal for practical scenarios. In this paper, we propose a novel, multimodal physics-informed neural network (PINN) for solving object manipulation tasks. Our approach efficiently learns to solve the Eikonal equation without expert data and finds object manipulation trajectories fast in complex, cluttered environments. Our method is multimodal as it also reactively replans the robot's grasps during manipulation to achieve the desired object poses. We demonstrate our approach in both simulation and real-world scenarios and compare it against state-of-the-art baseline methods. The results indicate that our approach is effective across various objects, has efficient training compared to previous learning-based methods, and demonstrates high performance in planning time, trajectory length, and success rates. Our demonstration videos can be found at https://youtu.be/FaQLkTV9knI.
☆ Constraint-Preserving Data Generation for Visuomotor Policy Learning
Large-scale demonstration data has powered key breakthroughs in robot manipulation, but collecting that data remains costly and time-consuming. We present Constraint-Preserving Data Generation (CP-Gen), a method that uses a single expert trajectory to generate robot demonstrations containing novel object geometries and poses. These generated demonstrations are used to train closed-loop visuomotor policies that transfer zero-shot to the real world and generalize across variations in object geometries and poses. Similar to prior work using pose variations for data generation, CP-Gen first decomposes expert demonstrations into free-space motions and robot skills. But unlike those works, we achieve geometry-aware data generation by formulating robot skills as keypoint-trajectory constraints: keypoints on the robot or grasped object must track a reference trajectory defined relative to a task-relevant object. To generate a new demonstration, CP-Gen samples pose and geometry transforms for each task-relevant object, then applies these transforms to the object and its associated keypoints or keypoint trajectories. We optimize robot joint configurations so that the keypoints on the robot or grasped object track the transformed keypoint trajectory, and then motion plan a collision-free path to the first optimized joint configuration. Experiments on 16 simulation tasks and four real-world tasks, featuring multi-stage, non-prehensile and tight-tolerance manipulation, show that policies trained using CP-Gen achieve an average success rate of 77%, outperforming the best baseline that achieves an average of 50%.
comment: CoRL 2025. Website: https://cp-gen.github.io
♻ ☆ Doppler-SLAM: Doppler-Aided Radar-Inertial and LiDAR-Inertial Simultaneous Localization and Mapping
Simultaneous localization and mapping (SLAM) is a critical capability for autonomous systems. Traditional SLAM approaches, which often rely on visual or LiDAR sensors, face significant challenges in adverse conditions such as low light or featureless environments. To overcome these limitations, we propose a novel Doppler-aided radar-inertial and LiDAR-inertial SLAM framework that leverages the complementary strengths of 4D radar, FMCW LiDAR, and inertial measurement units. Our system integrates Doppler velocity measurements and spatial data into a tightly-coupled front-end and graph optimization back-end to provide enhanced ego velocity estimation, accurate odometry, and robust mapping. We also introduce a Doppler-based scan-matching technique to improve front-end odometry in dynamic environments. In addition, our framework incorporates an innovative online extrinsic calibration mechanism, utilizing Doppler velocity and loop closure to dynamically maintain sensor alignment. Extensive evaluations on both public and proprietary datasets show that our system significantly outperforms state-of-the-art radar-SLAM and LiDAR-SLAM frameworks in terms of accuracy and robustness. To encourage further research, the code of our Doppler-SLAM and our dataset are available at: https://github.com/Wayne-DWA/Doppler-SLAM.
comment: 8 pages, 7 figures
♻ ☆ The Starlink Robot: A Platform and Dataset for Mobile Satellite Communication
The integration of satellite communication into mobile devices represents a paradigm shift in connectivity, yet the performance characteristics under motion and environmental occlusion remain poorly understood. We present the Starlink Robot, the first mobile robotic platform equipped with Starlink satellite internet, comprehensive sensor suite including upward-facing camera, LiDAR, and IMU, designed to systematically study satellite communication performance during movement. Our multi-modal dataset captures synchronized communication metrics, motion dynamics, sky visibility, and 3D environmental context across diverse scenarios including steady-state motion, variable speeds, and different occlusion conditions. This platform and dataset enable researchers to develop motion-aware communication protocols, predict connectivity disruptions, and optimize satellite communication for emerging mobile applications from smartphones to autonomous vehicles. In this work, we use LEOViz for real-time satellite tracking and data collection. The starlink robot project is available at https://github.com/StarlinkRobot.
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on restrictive assumptions, such as single-object settings or limited environments, showing constrained generalization. We present DexGraspVLA, a hierarchical framework for robust generalization in language-guided general dexterous grasping and beyond. It utilizes a pre-trained Vision-Language model as the high-level planner and learns a diffusion-based low-level Action controller. The key insight to achieve generalization lies in iteratively transforming diverse language and visual inputs into domain-invariant representations via foundation models, where imitation learning can be effectively applied due to the alleviation of domain shift. Notably, our method achieves a 90+% dexterous grasping success rate under thousands of challenging unseen cluttered scenes. Empirical analysis confirms the consistency of internal model behavior across environmental variations, validating our design. DexGraspVLA also, for the first time, simultaneously demonstrates free-form long-horizon prompt execution, robustness to adversarial objects and human disturbance, and failure recovery. Extended application to nonprehensile grasping further proves its generality. Project website: https://dexgraspvla.github.io.
comment: 19 pages, 11 figures
♻ ☆ Real-Time Sense and Detect of Drones Using Deep Learning and Airborne LiDAR
The safe operation of drone swarms beyond visual line of sight requires multiple safeguards to mitigate the risk of collision between drones flying in close-proximity scenarios. Cooperative navigation and flight coordination strategies that rely on pre-planned trajectories, constant %{satellite and network connectivity and reliable Global Navigation Satellite System (GNSS) positioning are brittle to failure. Drone embedded sense and detect offers a comprehensive mode of separation between drones for deconfliction and collision avoidance. This paper presents the first airborne LiDAR based solution for drone-swarm detection and localization using 3D deep learning model. It adapts an existing deep learning neural network to the air-to-air drone scenario by expanding the scan space vertically. A new sparse convolution is proposed and applied to accelerate the backbone layer, which is the most time-consuming part of the neural network. To collect training data of safety critical, close-proximity multi-drone operations, a scenario Digital Twin is used to augment real datasets with high fidelity synthetic data. The trained model achieves over 80% recall and 96% precision when tested on real-world datasets. By incorporating a tracking-by-detection algorithm the system can reliably monitor the separation distance of multiple drones in challenging environments.
♻ ☆ Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
Being able to use tools is a widely recognised indicator of intelligence across species. Humans, for instance, have demonstrated mastery of tool use for over two million years. The ability to use tools is invaluable as it extends an organism's reach and enhances its capacity to interact with objects and the environment. Being able to understand the geometric-mechanical relations between the tools-objects-environments allows certain species (e.g., apes and crows) to reach food in narrow constrained spaces. The same principles of physical augmentation and its associated non-prehensile manipulation capabilities also apply to robotic systems. For example, by instrumenting them with different types of end-effectors, robots can (in principle) dexterously interact (e.g., push and flip) with objects of various shapes and masses akin to its biological counterpart. However, developing this type of manipulation skill is still an open research problem. Furthermore, the complexity of planning tool-object manipulation tasks, particularly in coordinating the actions of dual-arm robots, presents significant challenges. To address these complexities, we propose integrating Large Language Models (LLMs) to assist in planning and executing these intricate manipulations, thereby enhancing the robot's ability to perform in diverse scenarios.
♻ ☆ Rethink Repeatable Measures of Robot Performance with Statistical Query
For a general standardized testing algorithm designed to evaluate a specific aspect of a robot's performance, several key expectations are commonly imposed. Beyond accuracy (i.e., closeness to a typically unknown ground-truth reference) and efficiency (i.e., feasibility within acceptable testing costs and equipment constraints), one particularly important attribute is repeatability. Repeatability refers to the ability to consistently obtain the same testing outcome when similar testing algorithms are executed on the same subject robot by different stakeholders, across different times or locations. However, achieving repeatable testing has become increasingly challenging as the components involved grow more complex, intelligent, diverse, and, most importantly, stochastic. While related efforts have addressed repeatability at ethical, hardware, and procedural levels, this study focuses specifically on repeatable testing at the algorithmic level. Specifically, we target the well-adopted class of testing algorithms in standardized evaluation: statistical query (SQ) algorithms (i.e., algorithms that estimate the expected value of a bounded function over a distribution using sampled data). We propose a lightweight, parameterized, and adaptive modification applicable to any SQ routine, whether based on Monte Carlo sampling, importance sampling, or adaptive importance sampling, that makes it provably repeatable, with guaranteed bounds on both accuracy and efficiency. We demonstrate the effectiveness of the proposed approach across three representative scenarios: (i) established and widely adopted standardized testing of manipulators, (ii) emerging intelligent testing algorithms for operational risk assessment in automated vehicles, and (iii) developing use cases involving command tracking performance evaluation of humanoid robots in locomotion tasks.
♻ ☆ Equivariant Volumetric Grasping
We propose a new volumetric grasp model that is equivariant to rotations around the vertical axis, leading to a significant improvement in sample efficiency. Our model employs a tri-plane volumetric feature representation -- i.e., the projection of 3D features onto three canonical planes. We introduce a novel tri-plane feature design in which features on the horizontal plane are equivariant to 90{\deg} rotations, while the sum of features from the other two planes remains invariant to the same transformations. This design is enabled by a new deformable steerable convolution, which combines the adaptability of deformable convolutions with the rotational equivariance of steerable ones. This allows the receptive field to adapt to local object geometry while preserving equivariance properties. We further develop equivariant adaptations of two state-of-the-art volumetric grasp planners, GIGA and IGD. Specifically, we derive a new equivariant formulation of IGD's deformable attention mechanism and propose an equivariant generative model of grasp orientations based on flow matching. We provide a detailed analytical justification of the proposed equivariance properties and validate our approach through extensive simulated and real-world experiments. Our results demonstrate that the proposed projection-based design significantly reduces both computational and memory costs. Moreover, the equivariant grasp models built on top of our tri-plane features consistently outperform their non-equivariant counterparts, achieving higher performance with only a modest computational overhead. Video and code can be viewed in: https://mousecpn.github.io/evg-page/
comment: 19 pages
♻ ☆ 3DRot: 3D Rotation Augmentation for RGB-Based 3D Tasks
RGB-based 3D tasks, e.g., 3D detection, depth estimation, 3D keypoint estimation, still suffer from scarce, expensive annotations and a thin augmentation toolbox, since most image transforms, including resize and rotation, disrupt geometric consistency. In this paper, we introduce 3DRot, a plug-and-play augmentation that rotates and mirrors images about the camera's optical center while synchronously updating RGB images, camera intrinsics, object poses, and 3D annotations to preserve projective geometry-achieving geometry-consistent rotations and reflections without relying on any scene depth. We validate 3DRot with a classical 3D task, monocular 3D detection. On SUN RGB-D dataset, 3DRot raises $IoU_{3D}$ from 43.21 to 44.51, cuts rotation error (ROT) from 22.91$^\circ$ to 20.93$^\circ$, and boosts $mAP_{0.5}$ from 35.70 to 38.11. As a comparison, Cube R-CNN adds 3 other datasets together with SUN RGB-D for monocular 3D estimation, with a similar mechanism and test dataset, increases $IoU_{3D}$ from 36.2 to 37.8, boosts $mAP_{0.5}$ from 34.7 to 35.4. Because it operates purely through camera-space transforms, 3DRot is readily transferable to other 3D tasks.
♻ ☆ Unveiling the Potential of iMarkers: Invisible Fiducial Markers for Advanced Robotics
Fiducial markers are widely used in various robotics tasks, facilitating enhanced navigation, object recognition, and scene understanding. Despite their advantages for robots and Augmented Reality (AR) applications, they often disrupt the visual aesthetics of environments because they are visible to humans, making them unsuitable for non-intrusive use cases. To address this gap, this paper presents "iMarkers"-innovative, unobtrusive fiducial markers detectable exclusively by robots equipped with specialized sensors. These markers offer high flexibility in production, allowing customization of their visibility range and encoding algorithms to suit various demands. The paper also introduces the hardware designs and software algorithms developed for detecting iMarkers, highlighting their adaptability and robustness in the detection and recognition stages. Various evaluations have demonstrated the effectiveness of iMarkers compared to conventional (printed) and blended fiducial markers and confirmed their applicability in diverse robotics scenarios.
comment: 18 pages, 10 figures, 3 tables
♻ ☆ Improving Drone Racing Performance Through Iterative Learning MPC IROS 2025
Autonomous drone racing presents a challenging control problem, requiring real-time decision-making and robust handling of nonlinear system dynamics. While iterative learning model predictive control (LMPC) offers a promising framework for iterative performance improvement, its direct application to drone racing faces challenges like real-time compatibility or the trade-off between time-optimal and safe traversal. In this paper, we enhance LMPC with three key innovations: (1) an adaptive cost function that dynamically weights time-optimal tracking against centerline adherence, (2) a shifted local safe set to prevent excessive shortcutting and enable more robust iterative updates, and (3) a Cartesian-based formulation that accommodates safety constraints without the singularities or integration errors associated with Frenet-frame transformations. Results from extensive simulation and real-world experiments demonstrate that our improved algorithm can optimize initial trajectories generated by a wide range of controllers with varying levels of tuning for a maximum improvement in lap time by 60.85%. Even applied to the most aggressively tuned state-of-the-art model-based controller, MPCC++, on a real drone, a 6.05% improvement is still achieved. Overall, the proposed method pushes the drone toward faster traversal and avoids collisions in simulation and real-world experiments, making it a practical solution to improve the peak performance of drone racing.
comment: Accepted for oral presentation at IROS 2025
♻ ☆ Opt-in Camera: Person Identification in Video via UWB Localization and Its Application to Opt-in Systems IROS 2025
This paper presents opt-in camera, a concept of privacy-preserving camera systems capable of recording only specific individuals in a crowd who explicitly consent to be recorded. Our system utilizes a mobile wireless communication tag attached to personal belongings as proof of opt-in and as a means of localizing tag carriers in video footage. Specifically, the on-ground positions of the wireless tag are first tracked over time using the unscented Kalman filter (UKF). The tag trajectory is then matched against visual tracking results for pedestrians found in videos to identify the tag carrier. Technically, we devise a dedicated trajectory matching technique based on constrained linear optimization, as well as a novel calibration technique that handles wireless tag-camera calibration and hyperparameter tuning for the UKF, which mitigates the non-line-of-sight (NLoS) issue in wireless localization. We implemented the proposed opt-in camera system using ultra-wideband (UWB) devices and an off-the-shelf webcam. Experimental results demonstrate that our system can perform opt-in recording of individuals in real-time at 10 fps, with reliable identification accuracy in crowds of 8-23 people in a confined space.
comment: IROS 2025
♻ ☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation ICCV 2025
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: ICCV 2025. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
♻ ☆ Simultaneous Pick and Place Detection by Combining SE(3) Diffusion Models with Differential Kinematics IROS2025
Grasp detection methods typically target the detection of a set of free-floating hand poses that can grasp the object. However, not all of the detected grasp poses are executable due to physical constraints. Even though it is straightforward to filter invalid grasp poses in the post-process, such a two-staged approach is computationally inefficient, especially when the constraint is hard. In this work, we propose an approach to take the following two constraints into account during the grasp detection stage, namely, (i) the picked object must be able to be placed with a predefined configuration without in-hand manipulation (ii) it must be reachable by the robot under the joint limit and collision-avoidance constraints for both pick and place cases. Our key idea is to train an SE(3) grasp diffusion network to estimate the noise in the form of spatial velocity, and constrain the denoising process by a multi-target differential inverse kinematics with an inequality constraint, so that the states are guaranteed to be reachable and placement can be performed without collision. In addition to an improved success ratio, we experimentally confirmed that our approach is more efficient and consistent in computation time compared to a naive two-stage approach.
comment: Accepted for IROS2025
♻ ☆ Breaking Imitation Bottlenecks: Reinforced Diffusion Powers Diverse Trajectory Generation
Most end-to-end autonomous driving methods rely on imitation learning from single expert demonstrations, often leading to conservative and homogeneous behaviors that limit generalization in complex real-world scenarios. In this work, we propose DIVER, an end-to-end driving framework that integrates reinforcement learning with diffusion-based generation to produce diverse and feasible trajectories. At the core of DIVER lies a reinforced diffusion-based generation mechanism. First, the model conditions on map elements and surrounding agents to generate multiple reference trajectories from a single ground-truth trajectory, alleviating the limitations of imitation learning that arise from relying solely on single expert demonstrations. Second, reinforcement learning is employed to guide the diffusion process, where reward-based supervision enforces safety and diversity constraints on the generated trajectories, thereby enhancing their practicality and generalization capability. Furthermore, to address the limitations of L2-based open-loop metrics in capturing trajectory diversity, we propose a novel Diversity metric to evaluate the diversity of multi-mode predictions.Extensive experiments on the closed-loop NAVSIM and Bench2Drive benchmarks, as well as the open-loop nuScenes dataset, demonstrate that DIVER significantly improves trajectory diversity, effectively addressing the mode collapse problem inherent in imitation learning.
comment: 16 pages, 6 figures
♻ ☆ DriveSOTIF: Advancing Perception SOTIF Through Multimodal Large Language Models
Human drivers possess spatial and causal intelligence, enabling them to perceive driving scenarios, anticipate hazards, and react to dynamic environments. In contrast, autonomous vehicles lack these abilities, making it challenging to manage perception-related Safety of the Intended Functionality (SOTIF) risks, especially under complex or unpredictable driving conditions. To address this gap, we propose fine-tuning multimodal large language models (MLLMs) on a customized dataset specifically designed to capture perception-related SOTIF scenarios. Benchmarking results show that fine-tuned MLLMs achieve an 11.8\% improvement in close-ended VQA accuracy and a 12.0\% increase in open-ended VQA scores compared to baseline models, while maintaining real-time performance with a 0.59-second average inference time per image. We validate our approach through real-world case studies in Canada and China, where fine-tuned models correctly identify safety risks that challenge even experienced human drivers. This work represents the first application of domain-specific MLLM fine-tuning for SOTIF domain in autonomous driving. The dataset and related resources are available at github.com/s95huang/DriveSOTIF.git
comment: This work has been submitted to the IEEE for possible publication. V2 of the manuscript, submitted to IEEE-TVT;
♻ ☆ Vision-Language Fusion for Real-Time Autonomous Driving: Goal-Centered Cross-Attention of Camera, HD-Map, & Waypoints
Autonomous cars need geometric accuracy and semantic understanding to navigate complex environments, yet most stacks handle them separately. We present XYZ-Drive, a single vision-language model that reads a front-camera frame, a 25m $\times$ 25m overhead map, and the next waypoint, then outputs steering and speed. A lightweight goal-centered cross-attention layer lets waypoint tokens highlight relevant image and map patches, supporting both action and textual explanations, before the fused tokens enter a partially fine-tuned LLaMA-3.2 11B model. On the MD-NEX Outdoor-Driving benchmark XYZ-Drive attains 95% success and 0.80 Success weighted by Path Length (SPL), surpassing PhysNav-DG by 15%. and halving collisions, all while significantly improving efficiency by using only a single branch. Sixteen ablations explain the gains. Removing any modality (vision, waypoint, map) drops success by up to 11%, confirming their complementary roles and rich connections. Replacing goal-centered attention with simple concatenation cuts 3% in performance, showing query-based fusion injects map knowledge more effectively. Keeping the transformer frozen loses 5%, showing the importance of fine-tuning when applying VLMs for specific tasks such as autonomous driving. Coarsening map resolution from 10 cm to 40 cm blurs lane edges and raises crash rate. Overall, these results demonstrate that early, token-level fusion of intent and map layout enables accurate, transparent, real-time driving.
comment: 5 pages
♻ ☆ Residual Koopman Model Predictive Control for Enhanced Vehicle Dynamics with Small On-Track Data Input
In vehicle trajectory tracking tasks, the simplest approach is the Pure Pursuit (PP) Control. However, this single-point preview tracking strategy fails to consider vehicle model constraints, compromising driving safety. Model Predictive Control (MPC) as a widely adopted control method, optimizes control actions by incorporating mechanistic models and physical constraints. While its control performance critically depends on the accuracy of vehicle modeling. Traditional vehicle modeling approaches face inherent trade-offs between capturing nonlinear dynamics and maintaining computational efficiency, often resulting in reduced control performance. To address these challenges, this paper proposes Residual Koopman Model Predictive Control (RKMPC) framework. This method uses two linear MPC architecture to calculate control inputs: a Linear Model Predictive Control (LMPC) computes the baseline control input based on the vehicle kinematic model, and a neural network-based RKMPC calculates the compensation input. The final control command is obtained by adding these two components. This design preserves the reliability and interpretability of traditional mechanistic model while achieving performance optimization through residual modeling. This method has been validated on the Carsim-Matlab joint simulation platform and a physical 1:10 scale F1TENTH racing car. Experimental results show that RKMPC requires only 20% of the training data needed by traditional Koopman Model Predictive Control (KMPC) while delivering superior tracking performance. Compared to traditional LMPC, RKMPC reduces lateral error by 11.7%-22.1%, decreases heading error by 8.9%-15.8%, and improves front-wheel steering stability by up to 27.6%. The implementation code is available at: https://github.com/ZJU-DDRX/Residual Koopman.
♻ ☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ Learning Pivoting Manipulation with Force and Vision Feedback Using Optimization-based Demonstrations
Non-prehensile manipulation is challenging due to complex contact interactions between objects, the environment, and robots. Model-based approaches can efficiently generate complex trajectories of robots and objects under contact constraints. However, they tend to be sensitive to model inaccuracies and require access to privileged information (e.g., object mass, size, pose), making them less suitable for novel objects. In contrast, learning-based approaches are typically more robust to modeling errors but require large amounts of data. In this paper, we bridge these two approaches to propose a framework for learning closed-loop pivoting manipulation. By leveraging computationally efficient Contact-Implicit Trajectory Optimization (CITO), we design demonstration-guided deep Reinforcement Learning (RL), leading to sample-efficient learning. We also present a sim-to-real transfer approach using a privileged training strategy, enabling the robot to perform pivoting manipulation using only proprioception, vision, and force sensing without access to privileged information. Our method is evaluated on several pivoting tasks, demonstrating that it can successfully perform sim-to-real transfer. The overview of our method and the hardware experiments are shown at https://youtu.be/akjGDgfwLbM?si=QVw6ExoPy2VsU2g6
♻ ☆ RAMBO: RL-Augmented Model-Based Whole-Body Control for Loco-Manipulation
Loco-manipulation, physical interaction of various objects that is concurrently coordinated with locomotion, remains a major challenge for legged robots due to the need for both precise end-effector control and robustness to unmodeled dynamics. While model-based controllers provide precise planning via online optimization, they are limited by model inaccuracies. In contrast, learning-based methods offer robustness, but they struggle with precise modulation of interaction forces. We introduce RAMBO, a hybrid framework that integrates model-based whole-body control within a feedback policy trained with reinforcement learning. The model-based module generates feedforward torques by solving a quadratic program, while the policy provides feedback corrective terms to enhance robustness. We validate our framework on a quadruped robot across a diverse set of real-world loco-manipulation tasks, such as pushing a shopping cart, balancing a plate, and holding soft objects, in both quadrupedal and bipedal walking. Our experiments demonstrate that RAMBO enables precise manipulation capabilities while achieving robust and dynamic locomotion.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
♻ ☆ VOTE: Vision-Language-Action Optimization with Trajectory Ensemble Voting
Recent large-scale Vision Language Action (VLA) models have shown superior performance in robotic manipulation tasks guided by natural language. However, current VLA models suffer from two drawbacks: (i) generation of massive tokens leading to high inference latency and increased training cost, and (ii) insufficient utilization of generated actions resulting in potential performance loss. To address these issues, we develop a training framework to finetune VLA models for generating significantly fewer action tokens with high parallelism, effectively reducing inference latency and training cost. Furthermore, we introduce an inference optimization technique with a novel voting-based ensemble strategy to combine current and previous action predictions, improving the utilization of generated actions and overall performance. Our results demonstrate that we achieve superior performance compared with state-of-the-art VLA models, achieving significantly higher success rates and 39$\times$ faster inference than OpenVLA with 46 Hz throughput on edge platforms, demonstrating practical deployability. The code is available at https://github.com/LukeLIN-web/VOTE.
♻ ☆ NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.
♻ ☆ Empirical Analysis of Sim-and-Real Cotraining of Diffusion Policies for Planar Pushing from Pixels IROS 2025
Cotraining with demonstration data generated both in simulation and on real hardware has emerged as a promising recipe for scaling imitation learning in robotics. This work seeks to elucidate basic principles of this sim-and-real cotraining to inform simulation design, sim-and-real dataset creation, and policy training. Our experiments confirm that cotraining with simulated data can dramatically improve performance, especially when real data is limited. We show that these performance gains scale with additional simulated data up to a plateau; adding more real-world data increases this performance ceiling. The results also suggest that reducing physical domain gaps may be more impactful than visual fidelity for non-prehensile or contact-rich tasks. Perhaps surprisingly, we find that some visual gap can help cotraining -- binary probes reveal that high-performing policies must learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. Focusing narrowly on the canonical task of planar pushing from pixels allows us to be thorough in our study. In total, our experiments span 50+ real-world policies (evaluated on 1000+ trials) and 250 simulated policies (evaluated on 50,000+ trials). Videos and code can be found at https://sim-and-real-cotraining.github.io/.
comment: 11 pages, 17 figures, IROS 2025 Aug 5, 2025 update: Included new experiments in Sections V and VII. Updated abstract and minor changes to text
Artificial Intelligence 150
☆ CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.
comment: Technical Report; 31 Pages
☆ Self-Questioning Language Models
Can large language models improve without external data -- by generating their own questions and answers? We hypothesize that a pre-trained language model can improve its reasoning skills given only a single prompt specifying the topic (e.g., algebra word problems) and asking the model to generate its own questions. To do this, we propose Self-Questioning Language Models (SQLM): an asymmetric self-play framework where a proposer is given the topic and generates a question for a solver, who tries to answer it. Both the proposer and solver are trained via reinforcement learning. The proposer receives a reward if the problem is not too easy or too difficult, and the solver receives a reward based on majority voting, a proxy for correctness in the absence of ground-truth answers. For coding, the proposer can instead generate unit tests which are used for verification. We study this asymmetric self-play framework on three benchmarks: three-digit multiplication, algebra problems from the OMEGA benchmark, and programming problems from Codeforces. By continually generating more interesting problems and attempting to solve them, language models can improve on downstream benchmarks without access to any curated training datasets.
☆ Agent Lightning: Train ANY AI Agents with Reinforcement Learning
We present Agent Lightning, a flexible and extensible framework that enables Reinforcement Learning (RL)-based training of Large Language Models (LLMs) for any AI agent. Unlike existing methods that tightly couple RL training with agent or rely on sequence concatenation with masking, Agent Lightning achieves complete decoupling between agent execution and training, allowing seamless integration with existing agents developed via diverse ways (e.g., using frameworks like LangChain, OpenAI Agents SDK, AutoGen, and building from scratch) with almost ZERO code modifications. By formulating agent execution as Markov decision process, we define an unified data interface and propose a hierarchical RL algorithm, LightningRL, which contains a credit assignment module, allowing us to decompose trajectories generated by ANY agents into training transition. This enables RL to handle complex interaction logic, such as multi-agent scenarios and dynamic workflows. For the system design, we introduce a Training-Agent Disaggregation architecture, and brings agent observability frameworks into agent runtime, providing a standardized agent finetuning interface. Experiments across text-to-SQL, retrieval-augmented generation, and math tool-use tasks demonstrate stable, continuous improvements, showcasing the framework's potential for real-world agent training and deployment.
☆ Beyond risk: A proto-framework for assessing the societal impact of AI systems
In the discourse on AI regulation, 'responsible AI' is the dominant paradigm, with the focus on mitigating the risks related to AI systems. While this focus is important and necessary, it has limited use for a systematic consideration of AI's societal impact. This paper proposes a proto-framework for assessing the societal impact of AI systems by operationalising the concept of freedom. This proto-framework is intended as a step towards a fully operationalised framework to be used in policymaking contexts. By drawing on Kantian philosophy and related contemporary interpretations, freedom is developed as the counterpart to the concept of responsibility. Two dimensions of freedom are developed in further detail: freedom as capability and freedom as opportunity. These two dimensions of freedom are then applied in a proto-framework that systematically considers AI's impact on society using the Sustainable Development Goals. This proto-framework aims to complement current risk-based approaches and thereby offers a first step towards operationalising the concept of freedom in AI regulation.
☆ A DbC Inspired Neurosymbolic Layer for Trustworthy Agent Design
Generative models, particularly Large Language Models (LLMs), produce fluent outputs yet lack verifiable guarantees. We adapt Design by Contract (DbC) and type-theoretic principles to introduce a contract layer that mediates every LLM call. Contracts stipulate semantic and type requirements on inputs and outputs, coupled with probabilistic remediation to steer generation toward compliance. The layer exposes the dual view of LLMs as semantic parsers and probabilistic black-box components. Contract satisfaction is probabilistic and semantic validation is operationally defined through programmer-specified conditions on well-typed data structures. More broadly, this work postulates that any two agents satisfying the same contracts are \emph{functionally equivalent} with respect to those contracts.
comment: 3 pages, 1 figure
☆ Forest vs Tree: The $(N, K)$ Trade-off in Reproducible ML Evaluation
Reproducibility is a cornerstone of scientific validation and of the authority it confers on its results. Reproducibility in machine learning evaluations leads to greater trust, confidence, and value. However, the ground truth responses used in machine learning often necessarily come from humans, among whom disagreement is prevalent, and surprisingly little research has studied the impact of effectively ignoring disagreement in these responses, as is typically the case. One reason for the lack of research is that budgets for collecting human-annotated evaluation data are limited, and obtaining more samples from multiple annotators for each example greatly increases the per-item annotation costs. We investigate the trade-off between the number of items ($N$) and the number of responses per item ($K$) needed for reliable machine learning evaluation. We analyze a diverse collection of categorical datasets for which multiple annotations per item exist, and simulated distributions fit to these datasets, to determine the optimal $(N, K)$ configuration, given a fixed budget ($N \times K$), for collecting evaluation data and reliably comparing the performance of machine learning models. Our findings show, first, that accounting for human disagreement may come with $N \times K$ at no more than 1000 (and often much lower) for every dataset tested on at least one metric. Moreover, this minimal $N \times K$ almost always occurred for $K > 10$. Furthermore, the nature of the tradeoff between $K$ and $N$ -- or if one even existed -- depends on the evaluation metric, with metrics that are more sensitive to the full distribution of responses performing better at higher levels of $K$. Our methods can be used to help ML practitioners get more effective test data by finding the optimal metrics and number of items and annotations per item to collect to get the most reliability for their budget.
☆ Automated Algorithmic Discovery for Gravitational-Wave Detection Guided by LLM-Informed Evolutionary Monte Carlo Tree Search
Computational scientific discovery increasingly relies on algorithms to process complex data and identify meaningful patterns - yet faces persistent challenges in gravitational-wave signal identification. While existing algorithmic approaches like matched filtering (MF) and deep neural networks (DNNs) have achieved partial success, their limitations directly stem from fundamental limitations: MF's excessive computational demands arise from its reliance on predefined theoretical waveform templates, while DNNs' black-box architectures obscure decision logic and introduce hidden biases. We propose Evolutionary Monte Carlo Tree Search (Evo-MCTS), a framework that addresses these limitations through systematic algorithm space exploration guided by domain-aware physical constraints. Our approach combines tree-structured search with evolutionary optimization and large language model heuristics to create interpretable algorithmic solutions. Our Evo-MCTS framework demonstrates substantial improvements, achieving a 20.2\% improvement over state-of-the-art gravitational wave detection algorithms on the MLGWSC-1 benchmark dataset. High-performing algorithm variants consistently exceed thresholds. The framework generates human-interpretable algorithmic pathways that reveal distinct performance patterns. Beyond performance improvements, our framework discovers novel algorithmic combinations, thereby establishing a transferable methodology for automated algorithmic discovery across computational science domains.
comment: 89 pages (37 main), 6+6 figures, 1 table. Initial submission; subject to revision
☆ Probing the Gaps in ChatGPT Live Video Chat for Real-World Assistance for People who are Blind or Visually Impaired
Recent advancements in large multimodal models have provided blind or visually impaired (BVI) individuals with new capabilities to interpret and engage with the real world through interactive systems that utilize live video feeds. However, the potential benefits and challenges of such capabilities to support diverse real-world assistive tasks remain unclear. In this paper, we present findings from an exploratory study with eight BVI participants. Participants used ChatGPT's Advanced Voice with Video, a state-of-the-art live video AI released in late 2024, in various real-world scenarios, from locating objects to recognizing visual landmarks, across unfamiliar indoor and outdoor environments. Our findings indicate that current live video AI effectively provides guidance and answers for static visual scenes but falls short in delivering essential live descriptions required in dynamic situations. Despite inaccuracies in spatial and distance information, participants leveraged the provided visual information to supplement their mobility strategies. Although the system was perceived as human-like due to high-quality voice interactions, assumptions about users' visual abilities, hallucinations, generic responses, and a tendency towards sycophancy led to confusion, distrust, and potential risks for BVI users. Based on the results, we discuss implications for assistive video AI agents, including incorporating additional sensing capabilities for real-world use, determining appropriate intervention timing beyond turn-taking interactions, and addressing ecological and safety concerns.
comment: ACM ASSETS 2025
☆ Cross-Model Semantics in Representation Learning
The internal representations learned by deep networks are often sensitive to architecture-specific choices, raising questions about the stability, alignment, and transferability of learned structure across models. In this paper, we investigate how structural constraints--such as linear shaping operators and corrective paths--affect the compatibility of internal representations across different architectures. Building on the insights from prior studies on structured transformations and convergence, we develop a framework for measuring and analyzing representational alignment across networks with distinct but related architectural priors. Through a combination of theoretical insights, empirical probes, and controlled transfer experiments, we demonstrate that structural regularities induce representational geometry that is more stable under architectural variation. This suggests that certain forms of inductive bias not only support generalization within a model, but also improve the interoperability of learned features across models. We conclude with a discussion on the implications of representational transferability for model distillation, modular learning, and the principled design of robust learning systems.
☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
☆ AttZoom: Attention Zoom for Better Visual Features ICCV
We present Attention Zoom, a modular and model-agnostic spatial attention mechanism designed to improve feature extraction in convolutional neural networks (CNNs). Unlike traditional attention approaches that require architecture-specific integration, our method introduces a standalone layer that spatially emphasizes high-importance regions in the input. We evaluated Attention Zoom on multiple CNN backbones using CIFAR-100 and TinyImageNet, showing consistent improvements in Top-1 and Top-5 classification accuracy. Visual analyses using Grad-CAM and spatial warping reveal that our method encourages fine-grained and diverse attention patterns. Our results confirm the effectiveness and generality of the proposed layer for improving CCNs with minimal architectural overhead.
comment: Accepted at ICCVw HiCV
☆ Refining Critical Thinking in LLM Code Generation: A Faulty Premise-based Evaluation Framework
With the advancement of code generation capabilities in large language models (LLMs), their reliance on input premises has intensified. When users provide inputs containing faulty premises, the probability of code generation hallucinations rises significantly, exposing deficiencies in their self-scrutiny capabilities. This paper proposes Faulty Premises Bench (FPBench), the first code generation evaluation framework targeting faulty premises. By systematically constructing three categories of faulty premises and integrating multi-dimensional evaluation metrics, it conducts in-depth assessments of 15 representative LLMs. The key findings are as follows: (1) Most models exhibit poor reasoning abilities and suboptimal code generation performance under faulty premises, heavily relying on explicit prompts for error detection, with limited self-scrutiny capabilities; (2) Faulty premises trigger a point of diminishing returns in resource investment, leading to blindly increasing length fails to enhance quality; (3) The three types of faulty premises respectively activate distinct defect patterns in models, revealing a triple dissociation in the cognitive mechanisms of code generation models. This study not only highlights the urgent need for LLMs to proactively verify premises in code generation but also, through the proposed FPBench framework and multi-dimensional evaluation system, provides a theoretical foundation and practical pathway for developing reliable, human-centric code generation models.
☆ Hidden Dynamics of Massive Activations in Transformer Training
Massive activations are scalar values in transformer hidden states that achieve values orders of magnitude larger than typical activations and have been shown to be critical for model functionality. While prior work has characterized these phenomena in fully trained models, the temporal dynamics of their emergence during training remain poorly understood. We present the first comprehensive analysis of massive activation development throughout transformer training, using the Pythia model family as our testbed. Through systematic analysis of various model sizes across multiple training checkpoints, we demonstrate that massive activation emergence follows predictable mathematical patterns that can be accurately modeled using an exponentially-modulated logarithmic function with five key parameters. We develop a machine learning framework to predict these mathematical parameters from architectural specifications alone, achieving high accuracy for steady-state behavior and moderate accuracy for emergence timing and magnitude. These findings enable architects to predict and potentially control key aspects of massive activation emergence through design choices, with significant implications for model stability, training cycle length, interpretability, and optimization. Our findings demonstrate that the emergence of massive activations is governed by model design and can be anticipated, and potentially controlled, before training begins.
☆ Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction
We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.
comment: 24 pages, 10 figures, 4 tables
☆ Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
This paper presents Block, a distributed scheduling framework designed to optimize load balancing and auto-provisioning across instances in large language model serving frameworks by leveraging contextual information from incoming requests. Unlike popular model serving systems that rely on monolithic and heuristic task schedulers, Block operates as a fully distributed, stateless, and predictive scheduling system to achieve low overhead, reliability, and scalability. It leverages the deterministic and predictable characteristics of LLM inferences, such as host configurations, response lengths, and hardware performance, to make scheduling decisions based on accurately predicted metrics. Evaluation on a 12 GPUs cluster shows that Block significantly outperforms heuristic schedulers, boosting serving capacity by up to 16.7\% and reducing P99 tail latency by up to 49.5\%. These performance gains remain consistent across diverse models, workloads and configurations. Code and data are open-sourced.
comment: 12 pages, 8 figures excluding appendix
☆ MetaScope: Optics-Driven Neural Network for Ultra-Micro Metalens Endoscopy ICCV 2025
Miniaturized endoscopy has advanced accurate visual perception within the human body. Prevailing research remains limited to conventional cameras employing convex lenses, where the physical constraints with millimetre-scale thickness impose serious impediments on the micro-level clinical. Recently, with the emergence of meta-optics, ultra-micro imaging based on metalenses (micron-scale) has garnered great attention, serving as a promising solution. However, due to the physical difference of metalens, there is a large gap in data acquisition and algorithm research. In light of this, we aim to bridge this unexplored gap, advancing the novel metalens endoscopy. First, we establish datasets for metalens endoscopy and conduct preliminary optical simulation, identifying two derived optical issues that physically adhere to strong optical priors. Second, we propose MetaScope, a novel optics-driven neural network tailored for metalens endoscopy driven by physical optics. MetaScope comprises two novel designs: Optics-informed Intensity Adjustment (OIA), rectifying intensity decay by learning optical embeddings, and Optics-informed Chromatic Correction (OCC), mitigating chromatic aberration by learning spatial deformations informed by learned Point Spread Function (PSF) distributions. To enhance joint learning, we further deploy a gradient-guided distillation to transfer knowledge from the foundational model adaptively. Extensive experiments demonstrate that MetaScope not only outperforms state-of-the-art methods in both metalens segmentation and restoration but also achieves impressive generalized ability in real biomedical scenes.
comment: ICCV 2025 (Highlight); Project Page: https://cuhk-aim-group.github.io/MetaScope/
☆ DeepFaith: A Domain-Free and Model-Agnostic Unified Framework for Highly Faithful Explanations
Explainable AI (XAI) builds trust in complex systems through model attribution methods that reveal the decision rationale. However, due to the absence of a unified optimal explanation, existing XAI methods lack a ground truth for objective evaluation and optimization. To address this issue, we propose Deep architecture-based Faith explainer (DeepFaith), a domain-free and model-agnostic unified explanation framework under the lens of faithfulness. By establishing a unified formulation for multiple widely used and well-validated faithfulness metrics, we derive an optimal explanation objective whose solution simultaneously achieves optimal faithfulness across these metrics, thereby providing a ground truth from a theoretical perspective. We design an explainer learning framework that leverages multiple existing explanation methods, applies deduplicating and filtering to construct high-quality supervised explanation signals, and optimizes both pattern consistency loss and local correlation to train a faithful explainer. Once trained, DeepFaith can generate highly faithful explanations through a single forward pass without accessing the model being explained. On 12 diverse explanation tasks spanning 6 models and 6 datasets, DeepFaith achieves the highest overall faithfulness across 10 metrics compared to all baseline methods, highlighting its effectiveness and cross-domain generalizability.
comment: 22 pages
☆ Decoding and Engineering the Phytobiome Communication for Smart Agriculture
Smart agriculture applications, integrating technologies like the Internet of Things and machine learning/artificial intelligence (ML/AI) into agriculture, hold promise to address modern challenges of rising food demand, environmental pollution, and water scarcity. Alongside the concept of the phytobiome, which defines the area including the plant, its environment, and associated organisms, and the recent emergence of molecular communication (MC), there exists an important opportunity to advance agricultural science and practice using communication theory. In this article, we motivate to use the communication engineering perspective for developing a holistic understanding of the phytobiome communication and bridge the gap between the phytobiome communication and smart agriculture. Firstly, an overview of phytobiome communication via molecular and electrophysiological signals is presented and a multi-scale framework modeling the phytobiome as a communication network is conceptualized. Then, how this framework is used to model electrophysiological signals is demonstrated with plant experiments. Furthermore, possible smart agriculture applications, such as smart irrigation and targeted delivery of agrochemicals, through engineering the phytobiome communication are proposed. These applications merge ML/AI methods with the Internet of Bio-Nano-Things enabled by MC and pave the way towards more efficient, sustainable, and eco-friendly agricultural production. Finally, the implementation challenges, open research issues, and industrial outlook for these applications are discussed.
comment: Under revision for IEEE Communications Magazine
☆ Supervised Dynamic Dimension Reduction with Deep Neural Network
This paper studies the problem of dimension reduction, tailored to improving time series forecasting with high-dimensional predictors. We propose a novel Supervised Deep Dynamic Principal component analysis (SDDP) framework that incorporates the target variable and lagged observations into the factor extraction process. Assisted by a temporal neural network, we construct target-aware predictors by scaling the original predictors in a supervised manner, with larger weights assigned to predictors with stronger forecasting power. A principal component analysis is then performed on the target-aware predictors to extract the estimated SDDP factors. This supervised factor extraction not only improves predictive accuracy in the downstream forecasting task but also yields more interpretable and target-specific latent factors. Building upon SDDP, we propose a factor-augmented nonlinear dynamic forecasting model that unifies a broad family of factor-model-based forecasting approaches. To further demonstrate the broader applicability of SDDP, we extend our studies to a more challenging scenario when the predictors are only partially observable. We validate the empirical performance of the proposed method on several real-world public datasets. The results show that our algorithm achieves notable improvements in forecasting accuracy compared to state-of-the-art methods.
☆ EmoSteer-TTS: Fine-Grained and Training-Free Emotion-Controllable Text-to-Speech via Activation Steering
Text-to-speech (TTS) has shown great progress in recent years. However, most existing TTS systems offer only coarse and rigid emotion control, typically via discrete emotion labels or a carefully crafted and detailed emotional text prompt, making fine-grained emotion manipulation either inaccessible or unstable. These models also require extensive, high-quality datasets for training. To address these limitations, we propose EmoSteer-TTS, a novel training-free approach, to achieve fine-grained speech emotion control (conversion, interpolation, erasure) by activation steering. We first empirically observe that modifying a subset of the internal activations within a flow matching-based TTS model can effectively alter the emotional tone of synthesized speech. Building on this insight, we then develop a training-free and efficient algorithm, including activation extraction, emotional token searching, and inference-time steering, which can be seamlessly integrated into a wide range of pretrained models (e.g., F5-TTS, CosyVoice2, and E2-TTS). In addition, to derive effective steering vectors, we construct a curated emotional speech dataset with diverse speakers. Extensive experiments demonstrate that EmoSteer-TTS enables fine-grained, interpretable, and continuous control over speech emotion, outperforming the state-of-the-art (SOTA). To the best of our knowledge, this is the first method that achieves training-free and continuous fine-grained emotion control in TTS.
☆ Retinal Lipidomics Associations as Candidate Biomarkers for Cardiovascular Health
Retinal microvascular imaging is increasingly recognised as a non invasive method for evaluating systemic vascular and metabolic health. However, the association between lipidomics and retinal vasculature remains inadequate. This study investigates the relationships between serum lipid subclasses, free fatty acids (FA), diacylglycerols (DAG), triacylglycerols (TAG), and cholesteryl esters (CE), and retinal microvascular characteristics in a large population-based cohort. Using Spearman correlation analysis, we examined the interconnection between lipid subclasses and ten retinal microvascular traits, applying the Benjamini-Hochberg false discovery rate (BH-FDR) to adjust for statistical significance. Results indicated that FA were linked to retinal vessel twistiness, while CE correlated with the average widths of arteries and veins. Conversely, DAG and TAG showed negative correlations with the width and complexity of arterioles and venules. These findings suggest that retinal vascular architecture reflects distinct circulating lipid profiles, supporting its role as a non-invasive marker of systemic metabolic health. This study is the first to integrate deep learning (DL)derived retinal traits with lipidomic subclasses in a healthy cohort, thereby providing insights into microvascular structural changes independent of disease status or treatment effects.
☆ MoKA: Mixture of Kronecker Adapters
Parameter-efficient fine-tuning (PEFT) is essential for reducing the computational overhead of large language models (LLMs). Low-rank family adapters are commonly used to control the parameter size efficiently while maintaining the generative power of LLMs. However, their limited expressiveness due to the rank constraint often restricts their performance on complex tasks. We propose Mixture of Kronecker Adapters (MoKA), a new generation of Kronecker adapters that addresses this limitation by modeling weight updates as a mixture of Kronecker products. Our proposed adapter leverages a gating mechanism that measures the importance of each Kronecker factor, enabling more expressive adaptation. Moreover, MoKA enables a rank flexibility that provides a better trade-off between parameter efficiency and accuracy. To ensure hardware efficiency, we reformulate Kronecker computations using standard matrix operations, allowing seamless deployment on GPU-optimized hardware. We conduct extensive experiments on instruction-tuning and commonsense reasoning tasks using low-bit quantized versions of LLaMA2-7B and LLaMA3-8B models. MoKA not only outperforms PEFT baselines, but also reduces the number of trainable parameters up to 27x, achieving state-of-the-art trade-offs between performance and parameter efficiency.
☆ Error Detection and Correction for Interpretable Mathematics in Large Language Models
Recent large language models (LLMs) have demonstrated the ability to perform explicit multi-step reasoning such as chain-of-thought prompting. However, their intermediate steps often contain errors that can propagate leading to inaccurate final predictions. Additionally, LLMs still struggle with hallucinations and often fail to adhere to prescribed output formats, which is particularly problematic for tasks like generating mathematical expressions or source code. This work introduces EDCIM (Error Detection and Correction for Interpretable Mathematics), a method for detecting and correcting these errors in interpretable mathematics tasks, where the model must generate the exact functional form that explicitly solve the problem (expressed in natural language) rather than a black-box solution. EDCIM uses LLMs to generate a system of equations for a given problem, followed by a symbolic error-detection framework that identifies errors and provides targeted feedback for LLM-based correction. To optimize efficiency, EDCIM integrates lightweight, open-source LLMs with more powerful proprietary models, balancing cost and accuracy. This balance is controlled by a single hyperparameter, allowing users to control the trade-off based on their cost and accuracy requirements. Experimental results across different datasets show that EDCIM significantly reduces both computational and financial costs, while maintaining, and even improving, prediction accuracy when the balance is properly configured.
☆ CF-RAG: A Dataset and Method for Carbon Footprint QA Using Retrieval-Augmented Generation
Product sustainability reports provide valuable insights into the environmental impacts of a product and are often distributed in PDF format. These reports often include a combination of tables and text, which complicates their analysis. The lack of standardization and the variability in reporting formats further exacerbate the difficulty of extracting and interpreting relevant information from large volumes of documents. In this paper, we tackle the challenge of answering questions related to carbon footprints within sustainability reports available in PDF format. Unlike previous approaches, our focus is on addressing the difficulties posed by the unstructured and inconsistent nature of text extracted from PDF parsing. To facilitate this analysis, we introduce CarbonPDF-QA, an open-source dataset containing question-answer pairs for 1735 product report documents, along with human-annotated answers. Our analysis shows that GPT-4o struggles to answer questions with data inconsistencies. To address this limitation, we propose CarbonPDF, an LLM-based technique specifically designed to answer carbon footprint questions on such datasets. We develop CarbonPDF by fine-tuning Llama 3 with our training data. Our results show that our technique outperforms current state-of-the-art techniques, including question-answering (QA) systems finetuned on table and text data.
☆ VQA support to Arabic Language Learning Educational Tool
We address the problem of scarcity of educational Arabic Language Learning tools that advocate modern pedagogical models such as active learning which ensures language proficiency. In fact, we investigate the design and evaluation of an AI-powered educational tool designed to enhance Arabic language learning for non-native speakers with beginner-to-intermediate proficiency level. The tool leverages advanced AI models to generate interactive visual quizzes, deploying Visual Question Answering as the primary activity. Adopting a constructivist learning approach, the system encourages active learning through real-life visual quizzes, and image-based questions that focus on improving vocabulary, grammar, and comprehension. The system integrates Vision-Language Pretraining models to generate contextually relevant image description from which Large Language Model generate assignments based on customized Arabic language Learning quizzes thanks to prompting. The effectiveness of the tool is evaluated through a manual annotated benchmark consisting of 1266 real-life visual quizzes, with human participants providing feedback. The results show a suitable accuracy rates, validating the tool's potential to bridge the gap in Arabic language education and highlighting the tool's promise as a reliable, AI-powered resource for Arabic learners, offering personalized and interactive learning experiences.
☆ BitsAI-Fix: LLM-Driven Approach for Automated Lint Error Resolution in Practice
As enterprise codebases continue to grow in scale and complexity, the volume of lint errors far exceeds engineers' manual remediation capacity, leading to continuous accumulation of technical debt and hindered development efficiency. This paper presents BitsAI-Fix, an automated lint error remediation workflow based on Large Language Models (LLMs), designed to address this critical challenge in industrial-scale environments. BitsAI-Fix employs tree-sitter for context expansion and generates search-and-replace format patches through specially trained LLMs, followed by lint scan re-verification to output final remediation results. Additionally, our approach introduces an innovative progressive reinforcement learning (RL) training strategy that can automatically acquire verifiable training data during the project cold-start phase and continuously iterate the model by collecting online samples through feedback after system deployment. Furthermore, we designed a targeted rule-based reward mechanism that combines format rewards and correctness rewards while penalizing redundant modifications. We also propose a "code diff matching" methodology to continuously track online effectiveness. In production deployment at ByteDance, our solution has supported over 5,000 engineers, resolved more than 12,000 static analysis issues, achieved approximately 85% remediation accuracy, with around 1,000 weekly active adopters. This work demonstrates the practical feasibility of LLM-based code remediation solutions in enterprise environments and serves as a reference for automated code fix in large-scale industrial scenarios.
☆ Semantic-aware Graph-guided Behavior Sequences Generation with Large Language Models for Smart Homes
As smart homes become increasingly prevalent, intelligent models are widely used for tasks such as anomaly detection and behavior prediction. These models are typically trained on static datasets, making them brittle to behavioral drift caused by seasonal changes, lifestyle shifts, or evolving routines. However, collecting new behavior data for retraining is often impractical due to its slow pace, high cost, and privacy concerns. In this paper, we propose SmartGen, an LLM-based framework that synthesizes context-aware user behavior data to support continual adaptation of downstream smart home models. SmartGen consists of four key components. First, we design a Time and Semantic-aware Split module to divide long behavior sequences into manageable, semantically coherent subsequences under dual time-span constraints. Second, we propose Semantic-aware Sequence Compression to reduce input length while preserving representative semantics by clustering behavior mapping in latent space. Third, we introduce Graph-guided Sequence Synthesis, which constructs a behavior relationship graph and encodes frequent transitions into prompts, guiding the LLM to generate data aligned with contextual changes while retaining core behavior patterns. Finally, we design a Two-stage Outlier Filter to identify and remove implausible or semantically inconsistent outputs, aiming to improve the factual coherence and behavioral validity of the generated sequences. Experiments on three real-world datasets demonstrate that SmartGen significantly enhances model performance on anomaly detection and behavior prediction tasks under behavioral drift, with anomaly detection improving by 85.43% and behavior prediction by 70.51% on average. The code is available at https://github.com/horizonsinzqs/SmartGen.
☆ When Cars Have Stereotypes: Auditing Demographic Bias in Objects from Text-to-Image Models
While prior research on text-to-image generation has predominantly focused on biases in human depictions, we investigate a more subtle yet pervasive phenomenon: demographic bias in generated objects (e.g., cars). We introduce SODA (Stereotyped Object Diagnostic Audit), a novel framework for systematically measuring such biases. Our approach compares visual attributes of objects generated with demographic cues (e.g., "for young people'') to those from neutral prompts, across 2,700 images produced by three state-of-the-art models (GPT Image-1, Imagen 4, and Stable Diffusion) in five object categories. Through a comprehensive analysis, we uncover strong associations between specific demographic groups and visual attributes, such as recurring color patterns prompted by gender or ethnicity cues. These patterns reflect and reinforce not only well-known stereotypes but also more subtle and unintuitive biases. We also observe that some models generate less diverse outputs, which in turn amplifies the visual disparities compared to neutral prompts. Our proposed auditing framework offers a practical approach for testing, revealing how stereotypes still remain embedded in today's generative models. We see this as an essential step toward more systematic and responsible AI development.
☆ Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models ICCV 2025
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
comment: Accepted at ICCV 2025
☆ VideoGuard: Protecting Video Content from Unauthorized Editing
With the rapid development of generative technology, current generative models can generate high-fidelity digital content and edit it in a controlled manner. However, there is a risk that malicious individuals might misuse these capabilities for misleading activities. Although existing research has attempted to shield photographic images from being manipulated by generative models, there remains a significant disparity in the protection offered to video content editing. To bridge the gap, we propose a protection method named VideoGuard, which can effectively protect videos from unauthorized malicious editing. This protection is achieved through the subtle introduction of nearly unnoticeable perturbations that interfere with the functioning of the intended generative diffusion models. Due to the redundancy between video frames, and inter-frame attention mechanism in video diffusion models, simply applying image-based protection methods separately to every video frame can not shield video from unauthorized editing. To tackle the above challenge, we adopt joint frame optimization, treating all video frames as an optimization entity. Furthermore, we extract video motion information and fuse it into optimization objectives. Thus, these alterations can effectively force the models to produce outputs that are implausible and inconsistent. We provide a pipeline to optimize this perturbation. Finally, we use both objective metrics and subjective metrics to demonstrate the efficacy of our method, and the results show that the protection performance of VideoGuard is superior to all the baseline methods.
comment: ai security, 10pages, 5 figures
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval SemEval-2025
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Toward a Graph-Theoretic Model of Belief: Confidence, Credibility, and Structural Coherence
Belief systems are often treated as globally consistent sets of propositions or as scalar-valued probability distributions. Such representations tend to obscure the internal structure of belief, conflate external credibility with internal coherence, and preclude the modeling of fragmented or contradictory epistemic states. This paper introduces a minimal formalism for belief systems as directed, weighted graphs. In this framework, nodes represent individual beliefs, edges encode epistemic relationships (e.g., support or contradiction), and two distinct functions assign each belief a credibility (reflecting source trust) and a confidence (derived from internal structural support). Unlike classical probabilistic models, our approach does not assume prior coherence or require belief updating. Unlike logical and argumentation-based frameworks, it supports fine-grained structural representation without committing to binary justification status or deductive closure. The model is purely static and deliberately excludes inference or revision procedures. Its aim is to provide a foundational substrate for analyzing the internal organization of belief systems, including coherence conditions, epistemic tensions, and representational limits. By distinguishing belief structure from belief strength, this formalism enables a richer classification of epistemic states than existing probabilistic, logical, or argumentation-based approaches.
☆ SonicMaster: Towards Controllable All-in-One Music Restoration and Mastering
Music recordings often suffer from audio quality issues such as excessive reverberation, distortion, clipping, tonal imbalances, and a narrowed stereo image, especially when created in non-professional settings without specialized equipment or expertise. These problems are typically corrected using separate specialized tools and manual adjustments. In this paper, we introduce SonicMaster, the first unified generative model for music restoration and mastering that addresses a broad spectrum of audio artifacts with text-based control. SonicMaster is conditioned on natural language instructions to apply targeted enhancements, or can operate in an automatic mode for general restoration. To train this model, we construct the SonicMaster dataset, a large dataset of paired degraded and high-quality tracks by simulating common degradation types with nineteen degradation functions belonging to five enhancements groups: equalization, dynamics, reverb, amplitude, and stereo. Our approach leverages a flow-matching generative training paradigm to learn an audio transformation that maps degraded inputs to their cleaned, mastered versions guided by text prompts. Objective audio quality metrics demonstrate that SonicMaster significantly improves sound quality across all artifact categories. Furthermore, subjective listening tests confirm that listeners prefer SonicMaster's enhanced outputs over the original degraded audio, highlighting the effectiveness of our unified approach.
☆ LLMs Have a Heart of Stone: Demystifying the Soft Thinking Ability of Large Reasoning Models
Human cognition naturally engages with abstract and fluid concepts, whereas existing reasoning models often rely on generating discrete tokens, potentially constraining their expressive capabilities. Recent advancements aim to address this limitation by enabling large language models (LLMs) to generate soft, abstract tokens, thus facilitating reasoning within a continuous concept space. This paper explores the `Soft Thinking' capabilities of various LLMs by examining the models' internal behavior using a suite of probing techniques. Contrary to the common belief that Soft Thinking enables the simultaneous exploration of diverse reasoning paths, our findings reveal that LLMs predominantly rely on the most influential component of the soft inputs during subsequent decoding steps. This reliance hinders the exploration of different reasoning paths and reduces vanilla Soft Thinking to a form of greedy decoding, obscuring the advantage of transmitting more information through Soft Tokens. To tackle this issue, we explore sampling strategies to introduce \emph{randomness}, employing methods such as Dirichlet resampling and the Gumbel-Softmax trick. Our experiments demonstrate that incorporating randomness can alleviate the limitations of vanilla approaches and unleash the potential of Soft Thinking. Notably, the Gumbel-Softmax trick provides adequate randomness with controlled smoothness, resulting in superior performance across eight reasoning benchmarks.
comment: 10 pages, 7 figures, working in progress
☆ Data Overdose? Time for a Quadruple Shot: Knowledge Graph Construction using Enhanced Triple Extraction
The rapid expansion of publicly-available medical data presents a challenge for clinicians and researchers alike, increasing the gap between the volume of scientific literature and its applications. The steady growth of studies and findings overwhelms medical professionals at large, hindering their ability to systematically review and understand the latest knowledge. This paper presents an approach to information extraction and automatic knowledge graph (KG) generation to identify and connect biomedical knowledge. Through a pipeline of large language model (LLM) agents, the system decomposes 44 PubMed abstracts into semantically meaningful proposition sentences and extracts KG triples from these sentences. The triples are enhanced using a combination of open domain and ontology-based information extraction methodologies to incorporate ontological categories. On top of this, a context variable is included during extraction to allow the triple to stand on its own - thereby becoming `quadruples'. The extraction accuracy of the LLM is validated by comparing natural language sentences generated from the enhanced triples to the original propositions, achieving an average cosine similarity of 0.874. The similarity for generated sentences of enhanced triples were compared with generated sentences of ordinary triples showing an increase as a result of the context variable. Furthermore, this research explores the ability for LLMs to infer new relationships and connect clusters in the knowledge base of the knowledge graph. This approach leads the way to provide medical practitioners with a centralised, updated in real-time, and sustainable knowledge source, and may be the foundation of similar gains in a wide variety of fields.
comment: 18 pages, 8 figures, Published in the Annual Conference of South African Institute of Computer Scientists and Information Technologists, Preprint (author original)
☆ Spatial Imputation Drives Cross-Domain Alignment for EEG Classification
Electroencephalogram (EEG) signal classification faces significant challenges due to data distribution shifts caused by heterogeneous electrode configurations, acquisition protocols, and hardware discrepancies across domains. This paper introduces IMAC, a novel channel-dependent mask and imputation self-supervised framework that formulates the alignment of cross-domain EEG data shifts as a spatial time series imputation task. To address heterogeneous electrode configurations in cross-domain scenarios, IMAC first standardizes different electrode layouts using a 3D-to-2D positional unification mapping strategy, establishing unified spatial representations. Unlike previous mask-based self-supervised representation learning methods, IMAC introduces spatio-temporal signal alignment. This involves constructing a channel-dependent mask and reconstruction task framed as a low-to-high resolution EEG spatial imputation problem. Consequently, this approach simulates cross-domain variations such as channel omissions and temporal instabilities, thus enabling the model to leverage the proposed imputer for robust signal alignment during inference. Furthermore, IMAC incorporates a disentangled structure that separately models the temporal and spatial information of the EEG signals separately, reducing computational complexity while enhancing flexibility and adaptability. Comprehensive evaluations across 10 publicly available EEG datasets demonstrate IMAC's superior performance, achieving state-of-the-art classification accuracy in both cross-subject and cross-center validation scenarios. Notably, IMAC shows strong robustness under both simulated and real-world distribution shifts, surpassing baseline methods by up to $35$\% in integrity scores while maintaining consistent classification accuracy.
comment: ACMMM 2025 poster
☆ The Science Fiction Science Method
Predicting the social and behavioral impact of future technologies, before they are achieved, would allow us to guide their development and regulation before these impacts get entrenched. Traditionally, this prediction has relied on qualitative, narrative methods. Here we describe a method which uses experimental methods to simulate future technologies, and collect quantitative measures of the attitudes and behaviors of participants assigned to controlled variations of the future. We call this method 'science fiction science'. We suggest that the reason why this method has not been fully embraced yet, despite its potential benefits, is that experimental scientists may be reluctant to engage in work facing such serious validity threats as science fiction science. To address these threats, we consider possible constraints on the kind of technology that science fiction science may study, as well as the unconventional, immersive methods that science fiction science may require. We seek to provide perspective on the reasons why this method has been marginalized for so long, what benefits it would bring if it could be built on strong yet unusual methods, and how we can normalize these methods to help the diverse community of science fiction scientists to engage in a virtuous cycle of validity improvement.
☆ R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
☆ Learning Latent Representations for Image Translation using Frequency Distributed CycleGAN
This paper presents Fd-CycleGAN, an image-to-image (I2I) translation framework that enhances latent representation learning to approximate real data distributions. Building upon the foundation of CycleGAN, our approach integrates Local Neighborhood Encoding (LNE) and frequency-aware supervision to capture fine-grained local pixel semantics while preserving structural coherence from the source domain. We employ distribution-based loss metrics, including KL/JS divergence and log-based similarity measures, to explicitly quantify the alignment between real and generated image distributions in both spatial and frequency domains. To validate the efficacy of Fd-CycleGAN, we conduct experiments on diverse datasets -- Horse2Zebra, Monet2Photo, and a synthetically augmented Strike-off dataset. Compared to baseline CycleGAN and other state-of-the-art methods, our approach demonstrates superior perceptual quality, faster convergence, and improved mode diversity, particularly in low-data regimes. By effectively capturing local and global distribution characteristics, Fd-CycleGAN achieves more visually coherent and semantically consistent translations. Our results suggest that frequency-guided latent learning significantly improves generalization in image translation tasks, with promising applications in document restoration, artistic style transfer, and medical image synthesis. We also provide comparative insights with diffusion-based generative models, highlighting the advantages of our lightweight adversarial approach in terms of training efficiency and qualitative output.
comment: This paper is currently under review for publication in an IEEE Transactions. If accepted, the copyright will be transferred to IEEE
☆ SlotMatch: Distilling Temporally Consistent Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on two datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running 1.9x faster. Moreover, our student surpasses previous unsupervised video segmentation models.
☆ NeuroSync: Intent-Aware Code-Based Problem Solving via Direct LLM Understanding Modification
Conversational LLMs have been widely adopted by domain users with limited programming experience to solve domain problems. However, these users often face misalignment between their intent and generated code, resulting in frustration and rounds of clarification. This work first investigates the cause of this misalignment, which dues to bidirectional ambiguity: both user intents and coding tasks are inherently nonlinear, yet must be expressed and interpreted through linear prompts and code sequences. To address this, we propose direct intent-task matching, a new human-LLM interaction paradigm that externalizes and enables direct manipulation of the LLM understanding, i.e., the coding tasks and their relationships inferred by the LLM prior to code generation. As a proof-of-concept, this paradigm is then implemented in NeuroSync, which employs a knowledge distillation pipeline to extract LLM understanding, user intents, and their mappings, and enhances the alignment by allowing users to intuitively inspect and edit them via visualizations. We evaluate the algorithmic components of NeuroSync via technical experiments, and assess its overall usability and effectiveness via a user study (N=12). The results show that it enhances intent-task alignment, lowers cognitive effort, and improves coding efficiency.
comment: Accepted in UIST 2025
☆ Multi-Objective Infeasibility Diagnosis for Routing Problems Using Large Language Models
In real-world routing problems, users often propose conflicting or unreasonable requirements, which result in infeasible optimization models due to overly restrictive or contradictory constraints, leading to an empty feasible solution set. Existing Large Language Model (LLM)-based methods attempt to diagnose infeasible models, but modifying such models often involves multiple potential adjustments that these methods do not consider. To fill this gap, we introduce Multi-Objective Infeasibility Diagnosis (MOID), which combines LLM agents and multi-objective optimization within an automatic routing solver, to provide a set of representative actionable suggestions. Specifically, MOID employs multi-objective optimization to consider both path cost and constraint violation, generating a set of trade-off solutions, each encompassing varying degrees of model adjustments. To extract practical insights from these solutions, MOID utilizes LLM agents to generate a solution analysis function for the infeasible model. This function analyzes these distinct solutions to diagnose the original infeasible model, providing users with diverse diagnostic insights and suggestions. Finally, we compare MOID with several LLM-based methods on 50 types of infeasible routing problems. The results indicate that MOID automatically generates multiple diagnostic suggestions in a single run, providing more practical insights for restoring model feasibility and decision-making compared to existing methods.
☆ Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.
☆ SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models ICCV 2025
Explicitly disentangling style and content in vision models remains challenging due to their semantic overlap and the subjectivity of human perception. Existing methods propose separation through generative or discriminative objectives, but they still face the inherent ambiguity of disentangling intertwined concepts. Instead, we ask: Can we bypass explicit disentanglement by learning to merge style and content invertibly, allowing separation to emerge naturally? We propose SCFlow, a flow-matching framework that learns bidirectional mappings between entangled and disentangled representations. Our approach is built upon three key insights: 1) Training solely to merge style and content, a well-defined task, enables invertible disentanglement without explicit supervision; 2) flow matching bridges on arbitrary distributions, avoiding the restrictive Gaussian priors of diffusion models and normalizing flows; and 3) a synthetic dataset of 510,000 samples (51 styles $\times$ 10,000 content samples) was curated to simulate disentanglement through systematic style-content pairing. Beyond controllable generation tasks, we demonstrate that SCFlow generalizes to ImageNet-1k and WikiArt in zero-shot settings and achieves competitive performance, highlighting that disentanglement naturally emerges from the invertible merging process.
comment: ICCV 2025, Project Page: https://compvis.github.io/SCFlow/
☆ Hide and Seek with LLMs: An Adversarial Game for Sneaky Error Generation and Self-Improving Diagnosis
Large Language Models (LLMs) excel in reasoning and generation across domains, but still struggle with identifying and diagnosing complex errors. This stems mainly from training objectives that prioritize correct answers, limiting exposure to and learning from errors. While recent studies have begun to address this by introducing error signals, most rely on shallow, static errors, restricting improvement in deep diagnostic ability. To overcome this, we propose Hide and Seek Game (HSG), a dynamic adversarial framework for error generation and diagnosis, and evaluate it on mathematical problem-solving. HSG involves two adversarial roles: Sneaky, which "hides" by generating subtle, deceptive reasoning errors, and Diagnosis, which "seeks" to accurately detect them. Through adversarial co-evolution, both error stealth and diagnostic precision are enhanced. Experiments on several math reasoning tasks show that HSG significantly boosts error diagnosis, achieving 16.8\%--31.4\% higher accuracy than baselines like GPT-4o. We also release a challenging dataset of deceptive errors and diagnostic annotations as a benchmark for future research.
☆ Agentic AI in 6G Software Businesses: A Layered Maturity Model
The emergence of agentic AI systems in 6G software businesses presents both strategic opportunities and significant challenges. While such systems promise increased autonomy, scalability, and intelligent decision-making across distributed environments, their adoption raises concerns regarding technical immaturity, integration complexity, organizational readiness, and performance-cost trade-offs. In this study, we conducted a preliminary thematic mapping to identify factors influencing the adoption of agentic software within the context of 6G. Drawing on a multivocal literature review and targeted scanning, we identified 29 motivators and 27 demotivators, which were further categorized into five high-level themes in each group. This thematic mapping offers a structured overview of the enabling and inhibiting forces shaping organizational readiness for agentic transformation. Positioned as a feasibility assessment, the study represents an early phase of a broader research initiative aimed at developing and validating a layered maturity model grounded in CMMI model with the software architectural three dimensions possibly Data, Business Logic, and Presentation. Ultimately, this work seeks to provide a practical framework to help software-driven organizations assess, structure, and advance their agent-first capabilities in alignment with the demands of 6G.
comment: 6 pages, 3 figures and FIT'25 Conference
☆ Data Dependency Inference for Industrial Code Generation Based on UML Sequence Diagrams
Large language models (LLMs) excel at generating code from natural language (NL) descriptions. However, the plain textual descriptions are inherently ambiguous and often fail to capture complex requirements like intricate system behaviors, conditional logic, and architectural constraints; implicit data dependencies in service-oriented architectures are difficult to infer and handle correctly. To bridge this gap, we propose a novel step-by-step code generation framework named UML2Dep by leveraging unambiguous formal specifications of complex requirements. First, we introduce an enhanced Unified Modeling Language (UML) sequence diagram tailored for service-oriented architectures. This diagram extends traditional visual syntax by integrating decision tables and API specifications, explicitly formalizing structural relationships and business logic flows in service interactions to rigorously eliminate linguistic ambiguity. Second, recognizing the critical role of data flow, we introduce a dedicated data dependency inference (DDI) task. DDI systematically constructs an explicit data dependency graph prior to actual code synthesis. To ensure reliability, we formalize DDI as a constrained mathematical reasoning task through novel prompting strategies, aligning with LLMs' excellent mathematical strengths. Additional static parsing and dependency pruning further reduce context complexity and cognitive load associated with intricate specifications, thereby enhancing reasoning accuracy and efficiency.
☆ Board Game Arena: A Framework and Benchmark for Assessing Large Language Models via Strategic Play
The Board Game Arena library provides a framework for evaluating the decision making abilities of large language models (LLMs) through strategic board games implemented in Google OpenSpiel library. The framework enables systematic comparisons between LLM based agents and other agents (random, human, reinforcement learning agents, etc.) in various game scenarios by wrapping multiple board and matrix games and supporting different agent types. It integrates API access to models via LiteLLM, local model deployment via vLLM, and offers distributed execution through Ray. Additionally it provides extensive analysis tools for the LLM reasoning traces. This paper summarizes the structure, key characteristics, and motivation of the repository, highlighting how it contributes to the empirical evaluation of the reasoning of LLM and game-theoretic behavior
☆ A Comparative Study of Neurosymbolic AI Approaches to Interpretable Logical Reasoning
General logical reasoning, defined as the ability to reason deductively on domain-agnostic tasks, continues to be a challenge for large language models (LLMs). Current LLMs fail to reason deterministically and are not interpretable. As such, there has been a recent surge in interest in neurosymbolic AI, which attempts to incorporate logic into neural networks. We first identify two main neurosymbolic approaches to improving logical reasoning: (i) the integrative approach comprising models where symbolic reasoning is contained within the neural network, and (ii) the hybrid approach comprising models where a symbolic solver, separate from the neural network, performs symbolic reasoning. Both contain AI systems with promising results on domain-specific logical reasoning benchmarks. However, their performance on domain-agnostic benchmarks is understudied. To the best of our knowledge, there has not been a comparison of the contrasting approaches that answers the following question: Which approach is more promising for developing general logical reasoning? To analyze their potential, the following best-in-class domain-agnostic models are introduced: Logic Neural Network (LNN), which uses the integrative approach, and LLM-Symbolic Solver (LLM-SS), which uses the hybrid approach. Using both models as case studies and representatives of each approach, our analysis demonstrates that the hybrid approach is more promising for developing general logical reasoning because (i) its reasoning chain is more interpretable, and (ii) it retains the capabilities and advantages of existing LLMs. To support future works using the hybrid approach, we propose a generalizable framework based on LLM-SS that is modular by design, model-agnostic, domain-agnostic, and requires little to no human input.
comment: Accepted to NeSy 2025
☆ When Good Sounds Go Adversarial: Jailbreaking Audio-Language Models with Benign Inputs
As large language models become increasingly integrated into daily life, audio has emerged as a key interface for human-AI interaction. However, this convenience also introduces new vulnerabilities, making audio a potential attack surface for adversaries. Our research introduces WhisperInject, a two-stage adversarial audio attack framework that can manipulate state-of-the-art audio language models to generate harmful content. Our method uses imperceptible perturbations in audio inputs that remain benign to human listeners. The first stage uses a novel reward-based optimization method, Reinforcement Learning with Projected Gradient Descent (RL-PGD), to guide the target model to circumvent its own safety protocols and generate harmful native responses. This native harmful response then serves as the target for Stage 2, Payload Injection, where we use Projected Gradient Descent (PGD) to optimize subtle perturbations that are embedded into benign audio carriers, such as weather queries or greeting messages. Validated under the rigorous StrongREJECT, LlamaGuard, as well as Human Evaluation safety evaluation framework, our experiments demonstrate a success rate exceeding 86% across Qwen2.5-Omni-3B, Qwen2.5-Omni-7B, and Phi-4-Multimodal. Our work demonstrates a new class of practical, audio-native threats, moving beyond theoretical exploits to reveal a feasible and covert method for manipulating AI behavior.
☆ CogBench: A Large Language Model Benchmark for Multilingual Speech-Based Cognitive Impairment Assessment
Automatic assessment of cognitive impairment from spontaneous speech offers a promising, non-invasive avenue for early cognitive screening. However, current approaches often lack generalizability when deployed across different languages and clinical settings, limiting their practical utility. In this study, we propose CogBench, the first benchmark designed to evaluate the cross-lingual and cross-site generalizability of large language models (LLMs) for speech-based cognitive impairment assessment. Using a unified multimodal pipeline, we evaluate model performance on three speech datasets spanning English and Mandarin: ADReSSo, NCMMSC2021-AD, and a newly collected test set, CIR-E. Our results show that conventional deep learning models degrade substantially when transferred across domains. In contrast, LLMs equipped with chain-of-thought prompting demonstrate better adaptability, though their performance remains sensitive to prompt design. Furthermore, we explore lightweight fine-tuning of LLMs via Low-Rank Adaptation (LoRA), which significantly improves generalization in target domains. These findings offer a critical step toward building clinically useful and linguistically robust speech-based cognitive assessment tools.
comment: 19 pages, 9 figures, 12 tables
☆ VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
comment: 13 pages, 5 figures
☆ Compressing Chain-of-Thought in LLMs via Step Entropy
Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel at complex reasoning but generate verbose thought processes with considerable redundancy, leading to increased inference costs and reduced efficiency. We introduce a novel CoT compression framework based on step entropy, a metric that quantifies the informational contribution of individual reasoning steps to identify redundancy. Through theoretical analysis and extensive empirical validation on mathematical reasoning benchmarks, we demonstrate that steps with low entropy are indeed highly redundant. Our experiments reveal that an astonishing 80\% of low-entropy intermediate steps can be pruned with minor degradation in the final answer accuracy across DeepSeek-R1-7B, 14B and Qwen3-8B. This finding sharply contrasts with random or high-entropy pruning, which severely impairs reasoning performance. Building on this, we propose a novel two-stage training strategy combining Supervised Fine-Tuning (SFT) and Group Relative Policy Optimization (GRPO) reinforcement learning. This approach enables LLMs to autonomously learn to generate compressed COTs during inference by strategically incorporating [SKIP] tokens. Our method significantly enhances LLM inference efficiency while rigorously preserving accuracy, offering profound implications for practical LLM deployment and a deeper understanding of reasoning structures.
☆ Adaptive AI Agent Placement and Migration in Edge Intelligence Systems
The rise of LLMs such as ChatGPT and Claude fuels the need for AI agents capable of real-time task handling. However, migrating data-intensive, multi-modal edge workloads to cloud data centers, traditionally used for agent deployment, introduces significant latency. Deploying AI agents at the edge improves efficiency and reduces latency. However, edge environments present challenges due to limited and heterogeneous resources. Maintaining QoS for mobile users necessitates agent migration, which is complicated by the complexity of AI agents coordinating LLMs, task planning, memory, and external tools. This paper presents the first systematic deployment and management solution for LLM-based AI agents in dynamic edge environments. We propose a novel adaptive framework for AI agent placement and migration in edge intelligence systems. Our approach models resource constraints and latency/cost, leveraging ant colony algorithms and LLM-based optimization for efficient decision-making. It autonomously places agents to optimize resource utilization and QoS and enables lightweight agent migration by transferring only essential state. Implemented on a distributed system using AgentScope and validated across globally distributed edge servers, our solution significantly reduces deployment latency and migration costs.
☆ From Legacy to Standard: LLM-Assisted Transformation of Cybersecurity Playbooks into CACAO Format
Existing cybersecurity playbooks are often written in heterogeneous, non-machine-readable formats, which limits their automation and interoperability across Security Orchestration, Automation, and Response platforms. This paper explores the suitability of Large Language Models, combined with Prompt Engineering, to automatically translate legacy incident response playbooks into the standardized, machine-readable CACAO format. We systematically examine various Prompt Engineering techniques and carefully design prompts aimed at maximizing syntactic accuracy and semantic fidelity for control flow preservation. Our modular transformation pipeline integrates a syntax checker to ensure syntactic correctness and features an iterative refinement mechanism that progressively reduces syntactic errors. We evaluate the proposed approach on a custom-generated dataset comprising diverse legacy playbooks paired with manually created CACAO references. The results demonstrate that our method significantly improves the accuracy of playbook transformation over baseline models, effectively captures complex workflow structures, and substantially reduces errors. It highlights the potential for practical deployment in automated cybersecurity playbook transformation tasks.
comment: 20 pages, including appendices, 32 references, 4 tables, 7 main figures (some of them has sub-figures)
☆ Nemori: Self-Organizing Agent Memory Inspired by Cognitive Science
Large Language Models (LLMs) demonstrate remarkable capabilities, yet their inability to maintain persistent memory in long contexts limits their effectiveness as autonomous agents in long-term interactions. While existing memory systems have made progress, their reliance on arbitrary granularity for defining the basic memory unit and passive, rule-based mechanisms for knowledge extraction limits their capacity for genuine learning and evolution. To address these foundational limitations, we present Nemori, a novel self-organizing memory architecture inspired by human cognitive principles. Nemori's core innovation is twofold: First, its Two-Step Alignment Principle, inspired by Event Segmentation Theory, provides a principled, top-down method for autonomously organizing the raw conversational stream into semantically coherent episodes, solving the critical issue of memory granularity. Second, its Predict-Calibrate Principle, inspired by the Free-energy Principle, enables the agent to proactively learn from prediction gaps, moving beyond pre-defined heuristics to achieve adaptive knowledge evolution. This offers a viable path toward handling the long-term, dynamic workflows of autonomous agents. Extensive experiments on the LoCoMo and LongMemEval benchmarks demonstrate that Nemori significantly outperforms prior state-of-the-art systems, with its advantage being particularly pronounced in longer contexts.
☆ CTTS: Collective Test-Time Scaling
Test-time scaling (TTS) has emerged as a promising research field for enhancing the effectiveness of large language models (LLMs) without extra training. However, most existing approaches, e.g., Best-of-N and Self-Consistency rely on a single agent interacting with a reward model (SA-SR), constrained by limited capabilities of a single test-time scaling (STTS) paradigm. On the other hand, recent works demonstrate that collective-agent methods can break through the upper bound of single-agent systems by orchestrating diverse models. Thus, in this paper, we take a first step towards exploring Collective Test-Time Scaling (CTTS). Consider the different interaction types of single and multiple models, we design three primary paradigms to investigate the optimal paradigm of CTTS: (1) single agent to multiple reward models (SA-MR); (2) multiple agents to single reward model (MA-SR); and (3) multiple agents to multiple reward models (MA-MR). Extensive experiments demonstrate that MA-MR consistently achieves the best performance. Based on this, we propose a novel framework named CTTS-MM that effectively leverages both multi-agent and multi-reward-model collaboration for enhanced inference. Specifically, for multi-agent collaboration, we propose an Agent Collaboration Search (ACS), which searches for the most effective combination of LLM agents from a large candidate pool; for multi-reward-model collaboration, we propose Mixture of Reword Models (MoR), which consists of a curated question pool and a Prior Reward model Ensemble Selection (PRES) to select the optimal combinations of reward models via Pair-wise Reward Ranking (PRR) metric. Experiments across seven mainstream benchmarks demonstrate that the proposed CTTS-MM consistently obtains superior performance. Code will be released at https://github.com/magent4aci/CTTS-MM.
☆ Exploring Layer-wise Information Effectiveness for Post-Training Quantization in Small Language Models
Large language models with billions of parameters are often over-provisioned: many layers contribute little unique information yet dominate the memory and energy footprint during inference. We present LieQ, a metric-driven post-training quantization framework that addresses the critical challenge of maintaining accuracy in sub-7B models under extreme low-bit compression. Our method introduces three complementary layer-wise diagnostics-Perplexity Drop, Representational Compactness, and Top-k Energy Gain -that reveal a canonical division of labour across layers, enabling automatic bit-width allocation without gradient updates. Unlike existing approaches that suffer severe accuracy degradation at 2-3 bits precision, LieQ achieves state-of-the-art compression-accuracy trade-offs: on Qwen3-4B, it recovers 95.9% of FP16 baseline performance at 2.05-bit quantization, outperforming GPTQ by 19.7% and AWQ by 18.1% on average across seven zero-shot reasoning tasks. Applied to LLaMA3.2-3B, LieQ maintains 98.2% of baseline accuracy at 2.07-bit precision while enabling 4x memory reduction, establishing new paradigms for deploying small language models on resource-constrained edge devices.
comment: low-bit quantization
☆ Industrial LLM-based Code Optimization under Regulation: A Mixture-of-Agents Approach
Recent advancements in Large Language Models (LLMs) for code optimization have enabled industrial platforms to automate software performance engineering at unprecedented scale and speed. Yet, organizations in regulated industries face strict constraints on which LLMs they can use - many cannot utilize commercial models due to data privacy regulations and compliance requirements, creating a significant challenge for achieving high-quality code optimization while maintaining cost-effectiveness. We address this by implementing a Mixture-of-Agents (MoA) approach that directly synthesizes code from multiple specialized LLMs, comparing it against TurinTech AI's vanilla Genetic Algorithm (GA)-based ensemble system and individual LLM optimizers using real-world industrial codebases. Our key contributions include: (1) First MoA application to industrial code optimization using real-world codebases; (2) Empirical evidence that MoA excels with open-source models, achieving 14.3% to 22.2% cost savings and 28.6% to 32.2% faster optimization times for regulated environments; (3) Deployment guidelines demonstrating GA's advantage with commercial models while both ensembles outperform individual LLMs; and (4) Real-world validation across 50 code snippets and seven LLM combinations, generating over 8,700 variants, addresses gaps in industrial LLM ensemble evaluation. This provides actionable guidance for organizations balancing regulatory compliance with optimization performance in production environments.
comment: Submitted to ASE'25 Industry Showcase
☆ BaroPoser: Real-time Human Motion Tracking from IMUs and Barometers in Everyday Devices
In recent years, tracking human motion using IMUs from everyday devices such as smartphones and smartwatches has gained increasing popularity. However, due to the sparsity of sensor measurements and the lack of datasets capturing human motion over uneven terrain, existing methods often struggle with pose estimation accuracy and are typically limited to recovering movements on flat terrain only. To this end, we present BaroPoser, the first method that combines IMU and barometric data recorded by a smartphone and a smartwatch to estimate human pose and global translation in real time. By leveraging barometric readings, we estimate sensor height changes, which provide valuable cues for both improving the accuracy of human pose estimation and predicting global translation on non-flat terrain. Furthermore, we propose a local thigh coordinate frame to disentangle local and global motion input for better pose representation learning. We evaluate our method on both public benchmark datasets and real-world recordings. Quantitative and qualitative results demonstrate that our approach outperforms the state-of-the-art (SOTA) methods that use IMUs only with the same hardware configuration.
comment: 9 pages, 10 figures
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ NLP Methods May Actually Be Better Than Professors at Estimating Question Difficulty
Estimating the difficulty of exam questions is essential for developing good exams, but professors are not always good at this task. We compare various Large Language Model-based methods with three professors in their ability to estimate what percentage of students will give correct answers on True/False exam questions in the areas of Neural Networks and Machine Learning. Our results show that the professors have limited ability to distinguish between easy and difficult questions and that they are outperformed by directly asking Gemini 2.5 to solve this task. Yet, we obtained even better results using uncertainties of the LLMs solving the questions in a supervised learning setting, using only 42 training samples. We conclude that supervised learning using LLM uncertainty can help professors better estimate the difficulty of exam questions, improving the quality of assessment.
comment: 10 pages, 2 figures, accepted at the 2nd International Workshop on AI in Society, Education and Educational Research (AISEER)
☆ Investigating Gender Bias in LLM-Generated Stories via Psychological Stereotypes
As Large Language Models (LLMs) are increasingly used across different applications, concerns about their potential to amplify gender biases in various tasks are rising. Prior research has often probed gender bias using explicit gender cues as counterfactual, or studied them in sentence completion and short question answering tasks. These formats might overlook more implicit forms of bias embedded in generative behavior of longer content. In this work, we investigate gender bias in LLMs using gender stereotypes studied in psychology (e.g., aggressiveness or gossiping) in an open-ended task of narrative generation. We introduce a novel dataset called StereoBias-Stories containing short stories either unconditioned or conditioned on (one, two, or six) random attributes from 25 psychological stereotypes and three task-related story endings. We analyze how the gender contribution in the overall story changes in response to these attributes and present three key findings: (1) While models, on average, are highly biased towards male in unconditioned prompts, conditioning on attributes independent from gender stereotypes mitigates this bias. (2) Combining multiple attributes associated with the same gender stereotype intensifies model behavior, with male ones amplifying bias and female ones alleviating it. (3) Model biases align with psychological ground-truth used for categorization, and alignment strength increases with model size. Together, these insights highlight the importance of psychology-grounded evaluation of LLMs.
comment: Under Review
☆ ToolVQA: A Dataset for Multi-step Reasoning VQA with External Tools
Integrating external tools into Large Foundation Models (LFMs) has emerged as a promising approach to enhance their problem-solving capabilities. While existing studies have demonstrated strong performance in tool-augmented Visual Question Answering (VQA), recent benchmarks reveal significant gaps in real-world tool-use proficiency, particularly in functionally diverse multimodal settings requiring multi-step reasoning. In this work, we introduce ToolVQA, a large-scale multimodal dataset comprising 23K instances, designed to bridge this gap. Unlike previous datasets that rely on synthetic scenarios and simplified queries, ToolVQA features real-world visual contexts and challenging implicit multi-step reasoning tasks, better aligning with real user interactions. To construct this dataset, we propose ToolEngine, a novel data generation pipeline that employs Depth-First Search (DFS) with a dynamic in-context example matching mechanism to simulate human-like tool-use reasoning. ToolVQA encompasses 10 multimodal tools across 7 diverse task domains, with an average inference length of 2.78 reasoning steps per instance. The fine-tuned 7B LFMs on ToolVQA not only achieve impressive performance on our test set but also surpass the large close-sourced model GPT-3.5-turbo on various out-of-distribution (OOD) datasets, demonstrating strong generalizability to real-world tool-use scenarios.
☆ Artificial Intelligence and Generative Models for Materials Discovery -- A Review
High throughput experimentation tools, machine learning (ML) methods, and open material databases are radically changing the way new materials are discovered. From the experimentally driven approach in the past, we are moving quickly towards the artificial intelligence (AI) driven approach, realizing the 'inverse design' capabilities that allow the discovery of new materials given the desired properties. This review aims to discuss different principles of AI-driven generative models that are applicable for materials discovery, including different materials representations available for this purpose. We will also highlight specific applications of generative models in designing new catalysts, semiconductors, polymers, or crystals while addressing challenges such as data scarcity, computational cost, interpretability, synthesizability, and dataset biases. Emerging approaches to overcome limitations and integrate AI with experimental workflows will be discussed, including multimodal models, physics informed architectures, and closed-loop discovery systems. This review aims to provide insights for researchers aiming to harness AI's transformative potential in accelerating materials discovery for sustainability, healthcare, and energy innovation.
comment: Review Article in the Thematic Issue on Artificial Intelligence for Materials Discovery in World Scientific Annual Review of Functional Materials
☆ Pay What LLM Wants: Can LLM Simulate Economics Experiment with 522 Real-human Persona?
Recent advances in Large Language Models (LLMs) have generated significant interest in their capacity to simulate human-like behaviors, yet most studies rely on fictional personas rather than actual human data. We address this limitation by evaluating LLMs' ability to predict individual economic decision-making using Pay-What-You-Want (PWYW) pricing experiments with real 522 human personas. Our study systematically compares three state-of-the-art multimodal LLMs using detailed persona information from 522 Korean participants in cultural consumption scenarios. We investigate whether LLMs can accurately replicate individual human choices and how persona injection methods affect prediction performance. Results reveal that while LLMs struggle with precise individual-level predictions, they demonstrate reasonable group-level behavioral tendencies. Also, we found that commonly adopted prompting techniques are not much better than naive prompting methods; reconstruction of personal narrative nor retrieval augmented generation have no significant gain against simple prompting method. We believe that these findings can provide the first comprehensive evaluation of LLMs' capabilities on simulating economic behavior using real human data, offering empirical guidance for persona-based simulation in computational social science.
comment: Preprint
☆ V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models ICCV2025
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.
comment: ICCV2025 accepted
☆ Approximate Proportionality in Online Fair Division
We study the online fair division problem, where indivisible goods arrive sequentially and must be allocated immediately and irrevocably to agents. Prior work has established strong impossibility results for approximating classic fairness notions, such as envy-freeness and maximin share fairness, in this setting. In contrast, we focus on proportionality up to one good (PROP1), a natural relaxation of proportionality whose approximability remains unresolved. We begin by showing that three natural greedy algorithms fail to guarantee any positive approximation to PROP1 in general, against an adaptive adversary. This is surprising because greedy algorithms are commonly used in fair division and a natural greedy algorithm is known to be able to achieve PROP1 under additional information assumptions. This hardness result motivates the study of non-adaptive adversaries and the use of side-information, in the spirit of learning-augmented algorithms. For non-adaptive adversaries, we show that the simple uniformly random allocation can achieve a meaningful PROP1 approximation with high probability. Meanwhile, we present an algorithm that obtain robust approximation ratios against PROP1 when given predictions of the maximum item value (MIV). Interestingly, we also show that stronger fairness notions such as EF1, MMS, and PROPX remain inapproximable even with perfect MIV predictions.
☆ Full-History Graphs with Edge-Type Decoupled Networks for Temporal Reasoning
Modeling evolving interactions among entities is critical in many real-world tasks. For example, predicting driver maneuvers in traffic requires tracking how neighboring vehicles accelerate, brake, and change lanes relative to one another over consecutive frames. Likewise, detecting financial fraud hinges on following the flow of funds through successive transactions as they propagate through the network. Unlike classic time-series forecasting, these settings demand reasoning over who interacts with whom and when, calling for a temporal-graph representation that makes both the relations and their evolution explicit. Existing temporal-graph methods typically use snapshot graphs to encode temporal evolution. We introduce a full-history graph that instantiates one node for every entity at every time step and separates two edge sets: (i) intra-time-step edges that capture relations within a single frame and (ii) inter-time-step edges that connect an entity to itself at consecutive steps. To learn on this graph we design an Edge-Type Decoupled Network (ETDNet) with parallel modules: a graph-attention module aggregates information along intra-time-step edges, a multi-head temporal-attention module attends over an entity's inter-time-step history, and a fusion module combines the two messages after every layer. Evaluated on driver-intention prediction (Waymo) and Bitcoin fraud detection (Elliptic++), ETDNet consistently surpasses strong baselines, lifting Waymo joint accuracy to 75.6\% (vs. 74.1\%) and raising Elliptic++ illicit-class F1 to 88.1\% (vs. 60.4\%). These gains demonstrate the benefit of representing structural and temporal relations as distinct edges in a single graph.
comment: European Conference of Artificial Intelligence 2025
☆ RooseBERT: A New Deal For Political Language Modelling
The increasing amount of political debates and politics-related discussions calls for the definition of novel computational methods to automatically analyse such content with the final goal of lightening up political deliberation to citizens. However, the specificity of the political language and the argumentative form of these debates (employing hidden communication strategies and leveraging implicit arguments) make this task very challenging, even for current general-purpose pre-trained Language Models. To address this issue, we introduce a novel pre-trained Language Model for political discourse language called RooseBERT. Pre-training a language model on a specialised domain presents different technical and linguistic challenges, requiring extensive computational resources and large-scale data. RooseBERT has been trained on large political debate and speech corpora (8K debates, each composed of several sub-debates on different topics) in English. To evaluate its performances, we fine-tuned it on four downstream tasks related to political debate analysis, i.e., named entity recognition, sentiment analysis, argument component detection and classification, and argument relation prediction and classification. Our results demonstrate significant improvements over general-purpose Language Models on these four tasks, highlighting how domain-specific pre-training enhances performance in political debate analysis. We release the RooseBERT language model for the research community.
☆ CardiffNLP at CLEARS-2025: Prompting Large Language Models for Plain Language and Easy-to-Read Text Rewriting
This paper details the CardiffNLP team's contribution to the CLEARS shared task on Spanish text adaptation, hosted by IberLEF 2025. The shared task contained two subtasks and the team submitted to both. Our team took an LLM-prompting approach with different prompt variations. While we initially experimented with LLaMA-3.2, we adopted Gemma-3 for our final submission, and landed third place in Subtask 1 and second place in Subtask 2. We detail our numerous prompt variations, examples, and experimental results.
☆ Navigation Pixie: Implementation and Empirical Study Toward On-demand Navigation Agents in Commercial Metaverse
While commercial metaverse platforms offer diverse user-generated content, they lack effective navigation assistance that can dynamically adapt to users' interests and intentions. Although previous research has investigated on-demand agents in controlled environments, implementation in commercial settings with diverse world configurations and platform constraints remains challenging. We present Navigation Pixie, an on-demand navigation agent employing a loosely coupled architecture that integrates structured spatial metadata with LLM-based natural language processing while minimizing platform dependencies, which enables experiments on the extensive user base of commercial metaverse platforms. Our cross-platform experiments on commercial metaverse platform Cluster with 99 PC client and 94 VR-HMD participants demonstrated that Navigation Pixie significantly increased dwell time and free exploration compared to fixed-route and no-agent conditions across both platforms. Subjective evaluations revealed consistent on-demand preferences in PC environments versus context-dependent social perception advantages in VR-HMD. This research contributes to advancing VR interaction design through conversational spatial navigation agents, establishes cross-platform evaluation methodologies revealing environment-dependent effectiveness, and demonstrates empirical experimentation frameworks for commercial metaverse platforms.
comment: 11 pages + supplement 3 pages. To appear in IEEE ISMAR 2025
☆ The Power of Many: Synergistic Unification of Diverse Augmentations for Efficient Adversarial Robustness
Adversarial perturbations pose a significant threat to deep learning models. Adversarial Training (AT), the predominant defense method, faces challenges of high computational costs and a degradation in standard performance. While data augmentation offers an alternative path, existing techniques either yield limited robustness gains or incur substantial training overhead. Therefore, developing a defense mechanism that is both highly efficient and strongly robust is of paramount importance.In this work, we first conduct a systematic analysis of existing augmentation techniques, revealing that the synergy among diverse strategies -- rather than any single method -- is crucial for enhancing robustness. Based on this insight, we propose the Universal Adversarial Augmenter (UAA) framework, which is characterized by its plug-and-play nature and training efficiency. UAA decouples the expensive perturbation generation process from model training by pre-computing a universal transformation offline, which is then used to efficiently generate unique adversarial perturbations for each sample during training.Extensive experiments conducted on multiple benchmarks validate the effectiveness of UAA. The results demonstrate that UAA establishes a new state-of-the-art (SOTA) for data-augmentation-based adversarial defense strategies , without requiring the online generation of adversarial examples during training. This framework provides a practical and efficient pathway for building robust models,Our code is available in the supplementary materials.
comment: 13 pages,2 figures,6 tables
☆ GeoShield: Safeguarding Geolocation Privacy from Vision-Language Models via Adversarial Perturbations
Vision-Language Models (VLMs) such as GPT-4o now demonstrate a remarkable ability to infer users' locations from public shared images, posing a substantial risk to geoprivacy. Although adversarial perturbations offer a potential defense, current methods are ill-suited for this scenario: they often perform poorly on high-resolution images and low perturbation budgets, and may introduce irrelevant semantic content. To address these limitations, we propose GeoShield, a novel adversarial framework designed for robust geoprivacy protection in real-world scenarios. GeoShield comprises three key modules: a feature disentanglement module that separates geographical and non-geographical information, an exposure element identification module that pinpoints geo-revealing regions within an image, and a scale-adaptive enhancement module that jointly optimizes perturbations at both global and local levels to ensure effectiveness across resolutions. Extensive experiments on challenging benchmarks show that GeoShield consistently surpasses prior methods in black-box settings, achieving strong privacy protection with minimal impact on visual or semantic quality. To our knowledge, this work is the first to explore adversarial perturbations for defending against geolocation inference by advanced VLMs, providing a practical and effective solution to escalating privacy concerns.
☆ Spatiotemporal wall pressure forecast of a rectangular cylinder with physics-aware DeepUFNet
The wall pressure is of great importance in understanding the forces and structural responses induced by fluid. Recent works have investigated the potential of deep learning techniques in predicting mean pressure coefficients and fluctuating pressure coefficients, but most of existing deep learning frameworks are limited to predicting a single snapshot using full spatial information. To forecast spatiotemporal wall pressure of flow past a rectangular cylinder, this study develops a physics-aware DeepU-Fourier neural Network (DeepUFNet) deep learning model. DeepUFNet comprises the UNet structure and the Fourier neural network, with physical high-frequency loss control embedded in the model training stage to optimize model performance, where the parameter $\beta$ varies with the development of the training epoch. Wind tunnel testing is performed to collect wall pressures of a two-dimensional rectangular cylinder with a side ratio of 1.5 at an angle of attack of zero using high-frequency pressure scanning, thereby constructing a database for DeepUFNet training and testing. The DeepUFNet model is found to forecast spatiotemporal wall pressure information with high accuracy. The comparison between forecast results and experimental data presents agreement in statistical information, temporal pressure variation, power spectrum density, spatial distribution, and spatiotemporal correlation. It is also found that embedding a physical high-frequency loss control coefficient $\beta$ in the DeepUFNet model can significantly improve model performance in forecasting spatiotemporal wall pressure information, in particular, in forecasting high-order frequency fluctuation and wall pressure variance. Furthermore, the DeepUFNet extrapolation capability is tested with sparse spatial information input, and the model presents a satisfactory extrapolation ability
comment: In total, 26 pages, 21 figures
☆ StoryEnsemble: Enabling Dynamic Exploration & Iteration in the Design Process with AI and Forward-Backward Propagation
Design processes involve exploration, iteration, and movement across interconnected stages such as persona creation, problem framing, solution ideation, and prototyping. However, time and resource constraints often hinder designers from exploring broadly, collecting feedback, and revisiting earlier assumptions-making it difficult to uphold core design principles in practice. To better understand these challenges, we conducted a formative study with 15 participants-comprised of UX practitioners, students, and instructors. Based on the findings, we developed StoryEnsemble, a tool that integrates AI into a node-link interface and leverages forward and backward propagation to support dynamic exploration and iteration across the design process. A user study with 10 participants showed that StoryEnsemble enables rapid, multi-directional iteration and flexible navigation across design stages. This work advances our understanding of how AI can foster more iterative design practices by introducing novel interactions that make exploration and iteration more fluid, accessible, and engaging.
☆ Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following
While advancements in the reasoning abilities of LLMs have significantly enhanced their performance in solving mathematical problems, coding tasks, and general puzzles, their effectiveness in accurately adhering to instructions remains inconsistent, particularly with more complex directives. Our investigation identifies lazy reasoning during the thinking stage as the primary factor contributing to poor instruction adherence. To mitigate this issue, we propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking, essential for satisfying strict instruction constraints. Specifically, we first generate instructions with complex constraints and apply a filtering process to obtain valid prompts, resulting in three distinct prompt datasets categorized as hard, easy, and pass. Then, we employ rejection sampling on the pass prompts to curate a small yet high-quality dataset, enabling a cold-start initialization of the model and facilitating its adaptation to effective reasoning patterns. Subsequently, we employ an entropy-preserving supervised fine-tuning (Entropy-SFT) strategy coupled with token-wise entropy-adaptive (TEA-RL) reinforcement learning guided by rule-based dense rewards. This approach encourages the model to transform its reasoning mechanism, ultimately fostering generalizable reasoning abilities that encompass preview and self-checking. Extensive experiments conducted on instruction-following benchmarks demonstrate remarkable performance improvements across various model scales. Notably, our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
comment: 12 pages, 10 figures, 7 tables
☆ InqEduAgent: Adaptive AI Learning Partners with Gaussian Process Augmentation
Collaborative partnership matters in inquiry-oriented education. However, most study partners are selected either rely on experience-based assignments with little scientific planning or build on rule-based machine assistants, encountering difficulties in knowledge expansion and inadequate flexibility. This paper proposes an LLM-empowered agent model for simulating and selecting learning partners tailored to inquiry-oriented learning, named InqEduAgent. Generative agents are designed to capture cognitive and evaluative features of learners in real-world scenarios. Then, an adaptive matching algorithm with Gaussian process augmentation is formulated to identify patterns within prior knowledge. Optimal learning-partner matches are provided for learners facing different exercises. The experimental results show the optimal performance of InqEduAgent in most knowledge-learning scenarios and LLM environment with different levels of capabilities. This study promotes the intelligent allocation of human-based learning partners and the formulation of AI-based learning partners. The code, data, and appendix are publicly available at https://github.com/InqEduAgent/InqEduAgent.
☆ Geoint-R1: Formalizing Multimodal Geometric Reasoning with Dynamic Auxiliary Constructions
Mathematical geometric reasoning is essential for scientific discovery and educational development, requiring precise logic and rigorous formal verification. While recent advances in Multimodal Large Language Models (MLLMs) have improved reasoning tasks, existing models typically struggle with formal geometric reasoning, particularly when dynamically constructing and verifying auxiliary geometric elements. To address these challenges, we introduce Geoint-R1, a multimodal reasoning framework designed to generate formally verifiable geometric solutions from textual descriptions and visual diagrams. Geoint-R1 uniquely integrates auxiliary elements construction, formal reasoning represented via Lean4, and interactive visualization. To systematically evaluate and advance formal geometric reasoning, we propose the Geoint benchmark, comprising 1,885 rigorously annotated geometry problems across diverse topics such as plane, spatial, and solid geometry. Each problem includes structured textual annotations, precise Lean4 code for auxiliary constructions, and detailed solution steps verified by experts. Extensive experiments demonstrate that Geoint-R1 significantly surpasses existing multimodal and math-specific reasoning models, particularly on challenging problems requiring explicit auxiliary element constructions.
☆ Causal identification with $Y_0$
We present the $Y_0$ Python package, which implements causal identification algorithms that apply interventional, counterfactual, and transportability queries to data from (randomized) controlled trials, observational studies, or mixtures thereof. $Y_0$ focuses on the qualitative investigation of causation, helping researchers determine whether a causal relationship can be estimated from available data before attempting to estimate how strong that relationship is. Furthermore, $Y_0$ provides guidance on how to transform the causal query into a symbolic estimand that can be non-parametrically estimated from the available data. $Y_0$ provides a domain-specific language for representing causal queries and estimands as symbolic probabilistic expressions, tools for representing causal graphical models with unobserved confounders, such as acyclic directed mixed graphs (ADMGs), and implementations of numerous identification algorithms from the recent causal inference literature. The $Y_0$ source code can be found under the MIT License at https://github.com/y0-causal-inference/y0 and it can be installed with pip install y0.
☆ ChartCap: Mitigating Hallucination of Dense Chart Captioning ICCV 2025
Generating accurate, informative, and hallucination-free captions for charts remains challenging for vision language models, primarily due to the lack of large-scale, high-quality datasets of real-world charts. However, existing real-world chart datasets suffer from the inclusion of extraneous information that cannot be inferred from the chart and failure to sufficiently capture structural elements and key insights. Therefore, we introduce ChartCap, a large-scale dataset of 565K real-world chart images paired with type-specific, dense captions that exclude extraneous information and highlight both structural elements and key insights in detail. To build ChartCap, we design a four-stage pipeline that generates captions using only the discernible data from the chart and employ a cycle consistency-based human verification, which accelerates quality control without sacrificing accuracy. Additionally, we propose a novel metric, the Visual Consistency Score, which evaluates caption quality by measuring the similarity between the chart regenerated from a caption and the original chart, independent of reference captions. Extensive experiments confirms that models fine-tuned on ChartCap consistently generate more accurate and informative captions with reduced hallucinations, surpassing both open-source and proprietary models and even human-annotated captions.
comment: ICCV 2025 (Highlight)
☆ CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction
Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.
comment: Under review
♻ ☆ ProRefine: Inference-Time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across nearly all fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
♻ ☆ Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
♻ ☆ $\texttt{Droid}$: A Resource Suite for AI-Generated Code Detection
In this work, we compile $\textbf{$\texttt{DroidCollection}$}$, the most extensive open data suite for training and evaluating machine-generated code detectors, comprising over a million code samples, seven programming languages, outputs from 43 coding models, and over three real-world coding domains. Alongside fully AI-generated samples, our collection includes human-AI co-authored code, as well as adversarial samples explicitly crafted to evade detection. Subsequently, we develop $\textbf{$\texttt{DroidDetect}$}$, a suite of encoder-only detectors trained using a multi-task objective over $\texttt{DroidCollection}$. Our experiments show that existing detectors' performance fails to generalise to diverse coding domains and programming languages outside of their narrow training data. Additionally, we demonstrate that while most detectors are easily compromised by humanising the output distributions using superficial prompting and alignment approaches, this problem can be easily amended by training on a small amount of adversarial data. Finally, we demonstrate the effectiveness of metric learning and uncertainty-based resampling as means to enhance detector training on possibly noisy distributions.
♻ ☆ A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
Image quality plays an important role in the performance of deep neural networks (DNNs) that have been widely shown to exhibit sensitivity to changes in imaging conditions. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but we often need a metric that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. We show theoretically and empirically that conventional IQA metrics are weak predictors of DNN performance for image classification. Using our causal framework, we then develop metrics that exhibit strong correlation with DNN performance, thus enabling us to effectively estimate the quality distribution of large image datasets relative to targeted vision tasks.
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ REALM-Bench: A Benchmark for Evaluating Multi-Agent Systems on Real-world, Dynamic Planning and Scheduling Tasks
This benchmark suite provides a comprehensive evaluation framework for assessing both individual LLMs and multi-agent systems in Real-world planning and scheduling scenarios. The suite encompasses 14 designed planning and scheduling problems that progress from basic to highly complex, incorporating key aspects such as multi-agent coordination, inter-agent dependencies, and dynamic environmental disruptions. Each problem can be scaled along three dimensions: the number of parallel planning threads, the complexity of inter-dependencies, and the frequency of unexpected disruptions requiring Real-time adaptation. The benchmark includes 14 detailed problem specifications, 15 comparison methods including Random, LPT, SPT, STPT, MPSR, DRL-Liu, GP, GEP, LSO, SPT/TWKR, DRL-Chen, DRL-Zhang, 2+ evaluation metrics, and baseline implementations using 3+ LLMs including GPT-4o, Claude-3.7, DeepSeek-R1, and 4 contemporary frameworks including LangGraph, AutoGen, CrewAI, and Swarm, enabling rigorous testing of both single-agent and multi-agent planning capabilities. Through standardized evaluation criteria and scalable complexity, this benchmark aims to be opened to public, and drive progress in developing more adaptable, robust, and scalable AI planning systems for Real-world applications.
comment: 24 pages, 8 figures, 28 tables, 7 listings
♻ ☆ RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization
Reinforcement Learning with Verifiable Reward (RLVR) has significantly advanced the complex reasoning abilities of Large Language Models (LLMs). However, it struggles to break through the inherent capability boundaries of the base LLM, due to its essentially on-policy strategy coupled with LLM's immense action space and sparse reward. Critically, RLVR can lead to the capability boundary collapse, narrowing the LLM's problem-solving scope. To address this problem, we propose RL-PLUS, a novel hybrid-policy optimization approach for LLMs that synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models. RL-PLUS integrates two core components, i.e., Multiple Importance Sampling to address for distributional mismatch from external data, and Exploration-Based Advantage Function to guide the model towards high-value, unexplored reasoning paths. We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach. Compared with existing RLVR methods, RL-PLUS achieves 1) state-of-the-art performance on six math reasoning benchmarks; 2) superior performance on six out-of-distribution reasoning tasks; 3) consistent and significant gains across diverse model families, with average relative improvements up to 69.2\%. Moreover, the analysis of Pass@k curves indicates that RL-PLUS effectively resolves the capability boundary collapse problem.
♻ ☆ Graph Attention-Driven Bayesian Deep Unrolling for Dual-Peak Single-Photon Lidar Imaging
Single-photon Lidar imaging offers a significant advantage in 3D imaging due to its high resolution and long-range capabilities, however it is challenging to apply in noisy environments with multiple targets per pixel. To tackle these challenges, several methods have been proposed. Statistical methods demonstrate interpretability on the inferred parameters, but they are often limited in their ability to handle complex scenes. Deep learning-based methods have shown superior performance in terms of accuracy and robustness, but they lack interpretability or they are limited to a single-peak per pixel. In this paper, we propose a deep unrolling algorithm for dual-peak single-photon Lidar imaging. We introduce a hierarchical Bayesian model for multiple targets and propose a neural network that unrolls the underlying statistical method. To support multiple targets, we adopt a dual depth maps representation and exploit geometric deep learning to extract features from the point cloud. The proposed method takes advantages of statistical methods and learning-based methods in terms of accuracy and quantifying uncertainty. The experimental results on synthetic and real data demonstrate the competitive performance when compared to existing methods, while also providing uncertainty information.
♻ ☆ The Unified Cognitive Consciousness Theory for Language Models: Anchoring Semantics, Thresholds of Activation, and Emergent Reasoning
Unified Cognitive Consciousness Theory} (UCCT) casts them instead as vast unconscious pattern repositories: apparent reasoning arises only when external anchoring mechanisms, few shot prompts, retrieval-augmented context, fine-tuning, or multi-agent debate, activate task-relevant patterns. UCCT formalizes this process as Bayesian competition between statistical priors learned in pre-training and context-driven target patterns, yielding a single quantitative account that unifies existing adaptation techniques. We ground the theory in three principles: threshold crossing, modality universality, and density-distance predictive power, and validate them with (i) cross-domain demonstrations (text QA, image captioning, multi-agent debate) and (ii) two depth-oriented experiments: a controlled numeral-base study (bases 8, 9, 10) that isolates pattern-density effects, and a layer-wise trajectory analysis that reveals phase transitions inside a 7B-parameter model. Both experiments confirm UCCT's predictions of threshold behavior, asymmetric interference, and memory hysteresis. By showing that LLM ``intelligence'' is created through semantic anchoring rather than contained within the model, UCCT offers a principled foundation for interpretable diagnostics and practical guidance for prompt engineering, model selection, and alignment-centric system design.
comment: 14 pages, 6 figure, 2 table
♻ ☆ Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI
Modern automotive infotainment systems necessitate intelligent and adaptive solutions to manage frequent User Interface (UI) updates and diverse design variations. This work introduces a vision-language framework to facilitate the understanding of and interaction with automotive UIs, enabling seamless adaptation across different UI designs. To support research in this field, AutomotiveUI-Bench-4K, an open-source dataset comprising 998 images with 4,208 annotations, is also released. Additionally, a data pipeline for generating training data is presented. A Molmo-7B-based model is fine-tuned using Low-Rank Adaptation (LoRa), incorporating generated reasoning along with visual grounding and evaluation capabilities. The fine-tuned Evaluative Large Action Model (ELAM) achieves strong performance on AutomotiveUI-Bench-4K (model and dataset are available on Hugging Face). The approach demonstrates strong cross-domain generalization, including a +5.6% improvement on ScreenSpot over the baseline model. An average accuracy of 80.8% is achieved on ScreenSpot, closely matching or surpassing specialized models for desktop, mobile, and web, despite being trained primarily on the automotive domain. This research investigates how data collection and subsequent fine-tuning can lead to AI-driven advancements in automotive UI understanding and interaction. The applied method is cost-efficient, and fine-tuned models can be deployed on consumer-grade GPUs.
♻ ☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint, Paper list is available at https://github.com/LightChen233/Awesome-AI4Research
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on restrictive assumptions, such as single-object settings or limited environments, showing constrained generalization. We present DexGraspVLA, a hierarchical framework for robust generalization in language-guided general dexterous grasping and beyond. It utilizes a pre-trained Vision-Language model as the high-level planner and learns a diffusion-based low-level Action controller. The key insight to achieve generalization lies in iteratively transforming diverse language and visual inputs into domain-invariant representations via foundation models, where imitation learning can be effectively applied due to the alleviation of domain shift. Notably, our method achieves a 90+% dexterous grasping success rate under thousands of challenging unseen cluttered scenes. Empirical analysis confirms the consistency of internal model behavior across environmental variations, validating our design. DexGraspVLA also, for the first time, simultaneously demonstrates free-form long-horizon prompt execution, robustness to adversarial objects and human disturbance, and failure recovery. Extended application to nonprehensile grasping further proves its generality. Project website: https://dexgraspvla.github.io.
comment: 19 pages, 11 figures
♻ ☆ TaylorPODA: A Taylor Expansion-Based Method to Improve Post-Hoc Attributions for Opaque Models AAAI 2026
Existing post-hoc model-agnostic methods generate external explanations for opaque models, primarily by locally attributing the model output to its input features. However, they often lack an explicit and systematic framework for quantifying the contribution of individual features. Building on the Taylor expansion framework introduced by Deng et al. (2024) to unify existing local attribution methods, we propose a rigorous set of postulates -- "precision", "federation", and "zero-discrepancy" -- to govern Taylor term-specific attribution. Guided by these postulates, we introduce TaylorPODA (Taylor expansion-derived imPortance-Order aDapted Attribution), which incorporates an additional "adaptation" property. This property enables alignment with task-specific goals, especially in post-hoc settings lacking ground-truth explanations. Empirical evaluations demonstrate that TaylorPODA achieves competitive results against baseline methods, providing principled and visualization-friendly explanations. This work enhances the trustworthy deployment of opaque models by offering explanations with stronger theoretical grounding.
comment: 18 pages, 4 figures. Submitted to AAAI 2026. Re-upload with amended manuscript
♻ ☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
♻ ☆ Large Learning Rates Simultaneously Achieve Robustness to Spurious Correlations and Compressibility ICCV 2025
Robustness and resource-efficiency are two highly desirable properties for modern machine learning models. However, achieving them jointly remains a challenge. In this paper, we identify high learning rates as a facilitator for simultaneously achieving robustness to spurious correlations and network compressibility. We demonstrate that large learning rates also produce desirable representation properties such as invariant feature utilization, class separation, and activation sparsity. Our findings indicate that large learning rates compare favorably to other hyperparameters and regularization methods, in consistently satisfying these properties in tandem. In addition to demonstrating the positive effect of large learning rates across diverse spurious correlation datasets, models, and optimizers, we also present strong evidence that the previously documented success of large learning rates in standard classification tasks is related to addressing hidden/rare spurious correlations in the training dataset. Our investigation of the mechanisms underlying this phenomenon reveals the importance of confident mispredictions of bias-conflicting samples under large learning rates.
comment: Accepted at ICCV 2025, 25 pages
♻ ☆ AdaMCoT: Rethinking Cross-Lingual Factual Reasoning through Adaptive Multilingual Chain-of-Thought
Large language models (LLMs) have shown impressive multilingual capabilities through pretraining on diverse corpora. Although these models show strong reasoning abilities, their performance varies significantly between languages due to the imbalanced distribution of training data. Existing approaches using sample-level translation for extensive multilingual pretraining and cross-lingual tuning face scalability challenges and often fail to capture nuanced reasoning processes across languages. In this paper, we introduce AdaMCOT (Adaptive Multilingual Chain-of-Thought), a framework that enhances multilingual factual reasoning by dynamically routing thought processes in intermediary "thinking languages" before generating target-language responses. AdaMCOT leverages a language-agnostic core and incorporates an adaptive, reward-based mechanism for selecting optimal reasoning pathways without requiring additional pretraining. Our comprehensive evaluation across multiple benchmarks demonstrates substantial improvements in both factual reasoning quality and cross-lingual consistency, with particularly strong performance gains in low-resource language settings. An in-depth analysis of the model's hidden states and semantic space further elucidates the underlying mechanism of our method. The results suggest that adaptive reasoning paths can effectively bridge the performance gap between high and low-resource languages while maintaining cultural and linguistic nuances.
♻ ☆ SANDWICH: Towards an Offline, Differentiable, Fully-Trainable Wireless Neural Ray-Tracing Surrogate ICML
Wireless ray-tracing (RT) is emerging as a key tool for three-dimensional (3D) wireless channel modeling, driven by advances in graphical rendering. Current approaches struggle to accurately model beyond 5G (B5G) network signaling, which often operates at higher frequencies and is more susceptible to environmental conditions and changes. Existing online learning solutions require real-time environmental supervision during training, which is both costly and incompatible with GPU-based processing. In response, we propose a novel approach that redefines ray trajectory generation as a sequential decision-making problem, leveraging generative models to jointly learn the optical, physical, and signal properties within each designated environment. Our work introduces the Scene-Aware Neural Decision Wireless Channel Raytracing Hierarchy (SANDWICH), an innovative offline, fully differentiable approach that can be trained entirely on GPUs. SANDWICH offers superior performance compared to existing online learning methods, outperforms the baseline by 4e^-2 radian in RT accuracy, and only fades 0.5 dB away from toplined channel gain estimation.
comment: Accepted in ICMLCN 2025
♻ ☆ FedSA-GCL: A Semi-Asynchronous Federated Graph Learning Framework with Personalized Aggregation and Cluster-Aware Broadcasting
Federated Graph Learning (FGL) is a distributed learning paradigm that enables collaborative training over large-scale subgraphs located on multiple local systems. However, most existing FGL approaches rely on synchronous communication, which leads to inefficiencies and is often impractical in real-world deployments. Meanwhile, current asynchronous federated learning (AFL) methods are primarily designed for conventional tasks such as image classification and natural language processing, without accounting for the unique topological properties of graph data. Directly applying these methods to graph learning can possibly result in semantic drift and representational inconsistency in the global model. To address these challenges, we propose FedSA-GCL, a semi-asynchronous federated framework that leverages both inter-client label distribution divergence and graph topological characteristics through a novel ClusterCast mechanism for efficient training. We evaluate FedSA-GCL on multiple real-world graph datasets using the Louvain and Metis split algorithms, and compare it against 9 baselines. Extensive experiments demonstrate that our method achieves strong robustness and outstanding efficiency, outperforming the baselines by an average of 2.92% with the Louvain and by 3.4% with the Metis.
♻ ☆ Reasoning or Memorization? Unreliable Results of Reinforcement Learning Due to Data Contamination
Reasoning in large language models has long been a central research focus, and recent studies employing reinforcement learning (RL) have introduced diverse methods that yield substantial performance gains with minimal or even no external supervision. Surprisingly, some studies even suggest that random or incorrect reward signals can enhance performance. However, these breakthroughs are predominantly observed for the mathematically strong Qwen2.5 series on benchmarks such as MATH-500, AMC, and AIME, and seldom transfer to models like Llama, which warrants a more in-depth investigation. In this work, our empirical analysis reveals that pre-training on massive web-scale corpora leaves Qwen2.5 susceptible to data contamination in widely used benchmarks. Consequently, conclusions derived from contaminated benchmarks on Qwen2.5 series may be unreliable. To obtain trustworthy evaluation results, we introduce a generator that creates fully clean arithmetic problems of arbitrary length and difficulty, dubbed RandomCalculation. Using this leakage-free dataset, we show that only accurate reward signals yield steady improvements that surpass the base model's performance boundary in mathematical reasoning, whereas random or incorrect rewards do not. Moreover, we conduct more fine-grained analyses to elucidate the factors underlying the different performance observed on the MATH-500 and RandomCalculation benchmarks. Consequently, we recommend that future studies evaluate models on uncontaminated benchmarks and, when feasible, test various model series to ensure trustworthy conclusions about RL and related methods.
comment: 33 pages
♻ ☆ Modeling Deontic Modal Logic in the s(CASP) Goal-directed Predicate Answer Set Programming System
We consider the problem of implementing deontic modal logic. We show how (deontic) modal operators can be expressed elegantly using default negation (negation-as-failure) and strong negation present in answer set programming (ASP). We propose using global constraints of ASP to represent obligations and impermissibilities of deontic modal logic. We show that our proposed representation results in the various paradoxes of deontic modal logic being elegantly resolved.
♻ ☆ From Entanglement to Alignment: Representation Space Decomposition for Unsupervised Time Series Domain Adaptation
Domain shift poses a fundamental challenge in time series analysis, where models trained on source domain often fail dramatically when applied in target domain with different yet similar distributions. While current unsupervised domain adaptation (UDA) methods attempt to align cross-domain feature distributions, they typically treat features as indivisible entities, ignoring their intrinsic compositions that govern domain adaptation. We introduce DARSD, a novel UDA framework with theoretical explainability that explicitly realizes UDA tasks from the perspective of representation space decomposition. Our core insight is that effective domain adaptation requires not just alignment, but principled disentanglement of transferable knowledge from mixed representations. DARSD consists of three synergistic components: (I) An adversarial learnable common invariant basis that projects original features into a domain-invariant subspace while preserving semantic content; (II) A prototypical pseudo-labeling mechanism that dynamically separates target features based on confidence, hindering error accumulation; (III) A hybrid contrastive optimization strategy that simultaneously enforces feature clustering and consistency while mitigating emerging distribution gaps. Comprehensive experiments conducted on four benchmarks (WISDM, HAR, HHAR, and MFD) demonstrate DARSD's superiority against 12 UDA algorithms, achieving optimal performance in 35 out of 53 scenarios and ranking first across all benchmarks.
comment: 15 pages, 7 figures
♻ ☆ Average-Reward Soft Actor-Critic
The average-reward formulation of reinforcement learning (RL) has drawn increased interest in recent years for its ability to solve temporally-extended problems without relying on discounting. Meanwhile, in the discounted setting, algorithms with entropy regularization have been developed, leading to improvements over deterministic methods. Despite the distinct benefits of these approaches, deep RL algorithms for the entropy-regularized average-reward objective have not been developed. While policy-gradient based approaches have recently been presented for the average-reward literature, the corresponding actor-critic framework remains less explored. In this paper, we introduce an average-reward soft actor-critic algorithm to address these gaps in the field. We validate our method by comparing with existing average-reward algorithms on standard RL benchmarks, achieving superior performance for the average-reward criterion.
comment: Accepted at the 2nd Reinforcement Learning Conference (Journal Track)
♻ ☆ Principled Foundations for Preference Optimization
In this paper, we show that direct preference optimization (DPO) is a very specific form of a connection between two major theories in the ML context of learning from preferences: loss functions (Savage) and stochastic choice (Doignon-Falmagne and Machina). The connection is established for all of Savage's losses and at this level of generality, (i) it includes support for abstention on the choice theory side, (ii) it includes support for non-convex objectives on the ML side, and (iii) it allows to frame for free some notable extensions of the DPO setting, including margins and corrections for length. Getting to understand how DPO operates from a general principled perspective is crucial because of the huge and diverse application landscape of models, because of the current momentum around DPO, but also -- and importantly -- because many state of the art variations on DPO definitely occupy a small region of the map that we cover. It also helps to understand the pitfalls of departing from this map, and figure out workarounds.
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.
♻ ☆ All-optical temporal integration mediated by subwavelength heat antennas
Optical computing systems deliver unrivalled processing speeds for scalar operations. Yet, integrated implementations have been constrained to low-dimensional tensor operations that fall short of the vector dimensions required for modern artificial intelligence. We demonstrate an all-optical neuromorphic computing system based on time division multiplexing, capable of processing input vectors exceeding 250,000 elements within a unified framework. The platform harnesses optically driven thermo-optic modulation in standing wave optical fields, with titanium nano-antennas functioning as wavelength-selective absorbers. Counterintuitively, the thermal time dynamics of the system enable simultaneous time integration of ultra-fast (50GHz) signals and the application of programmable, non-linear activation functions, entirely within the optical domain. This unified framework constitutes a leap towards large-scale photonic computing that satisfies the dimensional requirements of AI workloads.
♻ ☆ Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems
Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``$m$-out-of-$n$ multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.
♻ ☆ Managing Escalation in Off-the-Shelf Large Language Models
U.S. national security customers have begun to utilize large language models, including enterprise versions of ``off-the-shelf'' models (e.g., ChatGPT) familiar to the public. This uptake will likely accelerate. However, recent studies suggest that off-the-shelf large language models frequently suggest escalatory actions when prompted with geopolitical or strategic scenarios. We demonstrate two simple, non-technical interventions to control these tendencies. Introducing these interventions into the experimental wargame design of a recent study, we substantially reduce escalation throughout the game. Calls to restrict the use of large language models in national security applications are thus premature. The U.S. government is already, and will continue, employing large language models for scenario planning and suggesting courses of action. Rather than warning against such applications, this study acknowledges the imminent adoption of large language models, and provides actionable measures to align them with national security goals, including escalation management.
♻ ☆ Spectral Architecture Search for Neural Network Models
Architecture design and optimization are challenging problems in the field of artificial neural networks. Working in this context, we here present SPARCS (SPectral ARchiteCture Search), a novel architecture search protocol which exploits the spectral attributes of the inter-layer transfer matrices. SPARCS allows one to explore the space of possible architectures by spanning continuous and differentiable manifolds, thus enabling for gradient-based optimization algorithms to be eventually employed. With reference to simple benchmark models, we show that the newly proposed method yields a self-emerging architecture with a minimal degree of expressivity to handle the task under investigation and with a reduced parameter count as compared to other viable alternatives.
♻ ☆ Equivariant Volumetric Grasping
We propose a new volumetric grasp model that is equivariant to rotations around the vertical axis, leading to a significant improvement in sample efficiency. Our model employs a tri-plane volumetric feature representation -- i.e., the projection of 3D features onto three canonical planes. We introduce a novel tri-plane feature design in which features on the horizontal plane are equivariant to 90{\deg} rotations, while the sum of features from the other two planes remains invariant to the same transformations. This design is enabled by a new deformable steerable convolution, which combines the adaptability of deformable convolutions with the rotational equivariance of steerable ones. This allows the receptive field to adapt to local object geometry while preserving equivariance properties. We further develop equivariant adaptations of two state-of-the-art volumetric grasp planners, GIGA and IGD. Specifically, we derive a new equivariant formulation of IGD's deformable attention mechanism and propose an equivariant generative model of grasp orientations based on flow matching. We provide a detailed analytical justification of the proposed equivariance properties and validate our approach through extensive simulated and real-world experiments. Our results demonstrate that the proposed projection-based design significantly reduces both computational and memory costs. Moreover, the equivariant grasp models built on top of our tri-plane features consistently outperform their non-equivariant counterparts, achieving higher performance with only a modest computational overhead. Video and code can be viewed in: https://mousecpn.github.io/evg-page/
comment: 19 pages
♻ ☆ Talking to DINO: Bridging Self-Supervised Vision Backbones with Language for Open-Vocabulary Segmentation
Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form textual concepts without predefined training classes. While existing vision-language models such as CLIP can generate segmentation masks by leveraging coarse spatial information from Vision Transformers, they face challenges in spatial localization due to their global alignment of image and text features. Conversely, self-supervised visual models like DINO excel in fine-grained visual encoding but lack integration with language. To bridge this gap, we present Talk2DINO, a novel hybrid approach that combines the spatial accuracy of DINOv2 with the language understanding of CLIP. Our approach aligns the textual embeddings of CLIP to the patch-level features of DINOv2 through a learned mapping function without the need to fine-tune the underlying backbones. At training time, we exploit the attention maps of DINOv2 to selectively align local visual patches with textual embeddings. We show that the powerful semantic and localization abilities of Talk2DINO can enhance the segmentation process, resulting in more natural and less noisy segmentations, and that our approach can also effectively distinguish foreground objects from the background. Experimental results demonstrate that Talk2DINO achieves state-of-the-art performance across several unsupervised OVS benchmarks. Source code and models are publicly available at: https://lorebianchi98.github.io/Talk2DINO/.
♻ ☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
♻ ☆ A Survey of WebAgents: Towards Next-Generation AI Agents for Web Automation with Large Foundation Models KDD 2025
With the advancement of web techniques, they have significantly revolutionized various aspects of people's lives. Despite the importance of the web, many tasks performed on it are repetitive and time-consuming, negatively impacting overall quality of life. To efficiently handle these tedious daily tasks, one of the most promising approaches is to advance autonomous agents based on Artificial Intelligence (AI) techniques, referred to as AI Agents, as they can operate continuously without fatigue or performance degradation. In the context of the web, leveraging AI Agents -- termed WebAgents -- to automatically assist people in handling tedious daily tasks can dramatically enhance productivity and efficiency. Recently, Large Foundation Models (LFMs) containing billions of parameters have exhibited human-like language understanding and reasoning capabilities, showing proficiency in performing various complex tasks. This naturally raises the question: `Can LFMs be utilized to develop powerful AI Agents that automatically handle web tasks, providing significant convenience to users?' To fully explore the potential of LFMs, extensive research has emerged on WebAgents designed to complete daily web tasks according to user instructions, significantly enhancing the convenience of daily human life. In this survey, we comprehensively review existing research studies on WebAgents across three key aspects: architectures, training, and trustworthiness. Additionally, several promising directions for future research are explored to provide deeper insights.
comment: This is the long version of the corresponding survey paper accepted by KDD 2025. The tutorial and corresponding slides are available at https://biglemon-ning.github.io/WebAgents/
♻ ☆ Towards Revealing the Effectiveness of Small-Scale Fine-tuning in R1-style Reinforcement Learning
R1-style Reinforcement Learning (RL) significantly enhances Large Language Models' reasoning capabilities, yet the mechanism behind rule-based RL remains unclear. We found that small-scale SFT has substantial influence on RL but shows poor efficiency. To explain our observations, we propose an analytical framework and compare the efficiency of SFT and RL by measuring \textbf{sample effect}. Our hypothetical analysis shows the potential to improve SFT efficiency. Guided by our analysis, we propose \textbf{Re-distillation}, a technique that aims to boost the effectiveness of small-scale distillation by sampling from the RL-trained policy. Re-distillation shows consistent surprising efficiency on three datasets and both Qwen\&Llama models: Re-distilled models matched RL performance with far fewer samples and less computation. As a result, on K\&K dataset, our re-distilled Qwen-2.5-1.5B model surpasses DeepSeek-V3-0324 with only 1K SFT samples. We demonstrate that re-distillation can be used to efficiently balance multiple goals in RL. Our work explains several interesting phenomena in R1-style RL, shedding light on the mechanisms behind its empirical success. Code is available at: https://github.com/on1262/deep-reasoning.
comment: preprint
♻ ☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Large Language Models (LLMs) offer powerful capabilities in code generation, natural language understanding, and domain-specific reasoning. Their application to quantum software development remains limited, in part because of the lack of high-quality datasets both for LLM training and as dependable knowledge sources. To bridge this gap, we introduce PennyLang, an off-the-shelf, high-quality dataset of 3,347 PennyLane-specific quantum code samples with contextual descriptions, curated from textbooks, official documentation, and open-source repositories. Our contributions are threefold: (1) the creation and open-source release of PennyLang, a purpose-built dataset for quantum programming with PennyLane; (2) a framework for automated quantum code dataset construction that systematizes curation, annotation, and formatting to maximize downstream LLM usability; and (3) a baseline evaluation of the dataset across multiple open-source models, including ablation studies, all conducted within a retrieval-augmented generation (RAG) pipeline. Using PennyLang with RAG substantially improves performance: for example, Qwen 7B's success rate rises from 8.7% without retrieval to 41.7% with full-context augmentation, and LLaMa 4 improves from 78.8% to 84.8%, while also reducing hallucinations and enhancing quantum code correctness. Moving beyond Qiskit-focused studies, we bring LLM-based tools and reproducible methods to PennyLane for advancing AI-assisted quantum development.
comment: 8 pages, 6 figures, 7 tables
♻ ☆ KCR: Resolving Long-Context Knowledge Conflicts via Reasoning in LLMs
Knowledge conflicts commonly arise across diverse sources, and their prevalence has increased with the advent of LLMs. When dealing with conflicts between multiple contexts, also known as \emph{inter-context knowledge conflicts}, LLMs are often confused by lengthy and conflicting contexts. To address this challenge, we propose the Knowledge Conflict Reasoning (KCR) framework, which enhances the ability of LLMs to resolve conflicting knowledge. The key idea of KCR is to train backbone LLMs to establish a correct reasoning process by rewarding them for selecting and adhering to the context with stronger logical consistency when presented with conflicting contexts. Specifically, we first extract reasoning paths, represented by either text or local knowledge graphs, from the conflicting long contexts. Subsequently, we employ Reinforcement Learning to encourage the model to learn the paradigm of reasoning process that follows correct reasoning paths rather than the incorrect counterparts. This enables the backbone models to genuinely acquire the capability to resolve inter-context knowledge conflicts within long contexts. Experimental results demonstrate that our framework significantly improves the ability of various backbone models to resolve knowledge conflicts in long-context scenarios, yielding substantial performance gains.
♻ ☆ BriLLM: Brain-inspired Large Language Model
We introduce BriLLM, a brain-inspired large language model that redefines the foundations of generative language modeling. Departing from Transformer architectures, GPT frameworks, and traditional input-output constrained paradigms, BriLLM is built on the Signal Fully-connected flowing (SiFu) mechanism - a directed graph-based neural network design that enables full interpretability across all nodes, in contrast to conventional models limited to input-output interpretability. In this framework, tokens are represented as graph nodes, with signal flows - either randomly initialized or user-defined - propagating along paths following a "least resistance" principle. The next token to be generated emerges as the target of this signal flow. Theoretically, BriLLM supports infinitely long n-gram modeling, with model size decoupled from input and prediction length. Its signal propagation dynamics mimic human-like cognitive patterns, enabling recall activation and inherent multi-modal compatibility. We release initial Chinese and English BriLLM versions (4000 tokens, 32-dimensional nodes, 32-token sequence prediction capacity) with sizes ~2B and ~1B parameters, respectively, achieving performance comparable to GPT-1.
♻ ☆ LLM-Generated Heuristics for AI Planning: Do We Even Need Domain-Independence Anymore?
Domain-independent heuristics have long been a cornerstone of AI planning, offering general solutions applicable across a wide range of tasks without requiring domain-specific engineering. However, the advent of large language models (LLMs) presents an opportunity to generate heuristics tailored to specific planning problems, potentially challenging the necessity of domain independence as a strict design principle. In this paper, we explore the use of LLMs to automatically derive planning heuristics from task descriptions represented as successor generators and goal tests written in general purpose programming language. We investigate the trade-offs between domain-specific LLM-generated heuristics and traditional domain-independent methods in terms of computational efficiency and explainability. Our experiments demonstrate that LLMs can create heuristics that achieve state-of-the-art performance on some standard IPC domains, as well as their ability to solve problems that lack an adequate Planning Domain Definition Language ({\sc pddl}) representation. We discuss whether these results signify a paradigm shift and how they can complement existing approaches.
♻ ☆ Ensemble Learning for Large Language Models in Text and Code Generation: A Survey
Generative Pretrained Transformers (GPTs) are foundational Large Language Models (LLMs) for text generation. However, individual LLMs often produce inconsistent outputs and exhibit biases, limiting their representation of diverse language patterns. The closed-source nature of many powerful LLMs further restricts industry applications due to data privacy concerns. Inspired by successes in text generation, LLM ensemble techniques are now increasingly explored for code generation. This article reviews these emerging ensemble approaches to enhance understanding, encourage further research, and promote practical implementation in both text and code generation. We categorize LLM ensembles into seven main methods - weight merging, knowledge fusion, mixture-of-experts, reward ensemble, output ensemble, routing, and cascading - analyzing capabilities of those approaches. Our findings highlight key benefits such as improved diversity representation, enhanced output quality, and greater application flexibility. These insights aid model selection for real-world tasks and crucially, lay groundwork for extending ensemble strategies to multimodal LLMs.
comment: Under review by IEEE TAI
♻ ☆ Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
The ensemble average of physical properties of molecules is closely related to the distribution of molecular conformations, and sampling such distributions is a fundamental challenge in physics and chemistry. Traditional methods like molecular dynamics (MD) simulations and Markov chain Monte Carlo (MCMC) sampling are commonly used but can be time-consuming and costly. Recently, diffusion models have emerged as efficient alternatives by learning the distribution of training data. Obtaining an unbiased target distribution is still an expensive task, primarily because it requires satisfying ergodicity. To tackle these challenges, we propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models. PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data. Our method outperforms existing state-of-the-art (SOTA) models on the Lennard-Jones (LJ) potential, a commonly used toy model. Furthermore, we extend the evaluation of PSM to high-dimensional problems using the MD17 and MD22 datasets. The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
♻ ☆ Entropy-Lens: The Information Signature of Transformer Computations
Transformer models map input token sequences to output token distributions, layer by layer. While most interpretability work focuses on internal latent representations, we study the evolution of these token-level distributions directly in vocabulary space. However, such distributions are high-dimensional and defined on an unordered support, making common descriptors like moments or cumulants ill-suited. We address this by computing the Shannon entropy of each intermediate predicted distribution, yielding one interpretable scalar per layer. The resulting sequence, the entropy profile, serves as a compact, information-theoretic signature of the model's computation. We introduce Entropy-Lens, a model-agnostic framework that extracts entropy profiles from frozen, off-the-shelf transformers. We show that these profiles (i) reveal family-specific computation patterns invariant under depth rescaling, (ii) are predictive of prompt type and task format, and (iii) correlate with output correctness. We further show that R\'enyi entropies yield similar results within a broad range of $\alpha$ values, justifying the use of Shannon entropy as a stable and principled summary. Our results hold across different transformers, without requiring gradients, fine-tuning, or access to model internals.
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems ACM MM 2025
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit/blob/main/examples/ADSEdit.md.
comment: ACM MM 2025
♻ ☆ A Foundational Schema.org Mapping for a Legal Knowledge Graph: Representing Brazilian Legal Norms as FRBR Works
Structuring legal norms for machine readability is a critical prerequisite for building advanced AI and information retrieval systems, such as Legal Knowledge Graphs (LKGs). Grounded in the Functional Requirements for Bibliographic Records (FRBR) model, this paper proposes a foundational mapping for the abstract legal Work - which is materialized as the Norm node in our legal Graph RAG framework - to the interoperable schema.org/Legislation vocabulary. Using the Normas.leg.br portal as a practical case study, we demonstrate how to describe this Work entity via JSON-LD, considering stable URN identifiers, inter-norm relationships, and lifecycle properties. This structured, formal approach provides the essential first step toward creating a deterministic and verifiable knowledge graph, which can serve as a formalized "ground truth" for Legal AI applications, overcoming the limitations of purely probabilistic models.
comment: Substantial revision. Now grounded in the FRBR model, mapping the legal norm as an abstract Work. Scope narrowed to the Work -> sdo:Legislation mapping (LegislationObject section removed). Emphasizes creating a deterministic 'ground truth' for Legal AI and Graph RAG
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ CADDesigner: Conceptual Design of CAD Models Based on General-Purpose Agent
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing but typically requires a high level of expertise from designers. To lower the entry barrier and improve design efficiency, we present an agent for CAD conceptual design powered by large language models (LLMs). The agent accepts both abstract textual descriptions and freehand sketches as input, engaging in interactive dialogue with users to refine and clarify design requirements through comprehensive requirement analysis. Built upon a novel Context-Independent Imperative Paradigm (CIP), the agent generates high-quality CAD modeling code. During the generation process, the agent incorporates iterative visual feedback to improve model quality. Generated design cases are stored in a structured knowledge base, enabling continuous improvement of the agent's code generation capabilities. Experimental results demonstrate that our method achieves state-of-the-art performance in CAD code generation.
♻ ☆ SMART-Editor: A Multi-Agent Framework for Human-Like Design Editing with Structural Integrity
We present SMART-Editor, a framework for compositional layout and content editing across structured (posters, websites) and unstructured (natural images) domains. Unlike prior models that perform local edits, SMART-Editor preserves global coherence through two strategies: Reward-Refine, an inference-time rewardguided refinement method, and RewardDPO, a training-time preference optimization approach using reward-aligned layout pairs. To evaluate model performance, we introduce SMARTEdit-Bench, a benchmark covering multi-domain, cascading edit scenarios. SMART-Editor outperforms strong baselines like InstructPix2Pix and HIVE, with RewardDPO achieving up to 15% gains in structured settings and Reward-Refine showing advantages on natural images. Automatic and human evaluations confirm the value of reward-guided planning in producing semantically consistent and visually aligned edits.
comment: This requires some internal approval before the public release
♻ ☆ Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
♻ ☆ Causally Steered Diffusion for Automated Video Counterfactual Generation
Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships inherent to the video data generating process. Edits affecting causally dependent attributes often generate unrealistic or misleading outcomes if these relationships are ignored. In this work, we introduce a causally faithful framework for counterfactual video generation, formulated as an Out-of-Distribution (OOD) prediction problem. We embed prior causal knowledge by encoding the relationships specified in a causal graph into text prompts and guide the generation process by optimizing these prompts using a vision-language model (VLM)-based textual loss. This loss encourages the latent space of the LDMs to capture OOD variations in the form of counterfactuals, effectively steering generation toward causally meaningful alternatives. The proposed framework, dubbed CSVC, is agnostic to the underlying video editing system and does not require access to its internal mechanisms or fine-tuning. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Experimental results show that CSVC generates causally faithful video counterfactuals within the LDM distribution via prompt-based causal steering, achieving state-of-the-art causal effectiveness without compromising temporal consistency or visual quality on real-world facial videos. Due to its compatibility with any black-box video editing system, our framework has significant potential to generate realistic 'what if' hypothetical video scenarios in diverse areas such as digital media and healthcare.
♻ ☆ NoWag: A Unified Framework for Shape Preserving Compression of Large Language Models
Large language models (LLMs) exhibit remarkable performance across various natural language processing tasks but suffer from immense computational and memory demands, limiting their deployment in resource-constrained environments. To address this challenge, we propose NoWag: (Normalized Weight and Activation Guided Compression), a unified framework for zero-shot shape preserving compression algorithms. We compressed Llama-2 7B/13B/70B and Llama-3 8/70BB models, using two popular forms of shape-preserving compression, vector quantization NoWag-VQ (NoWag for Vector Quantization), and unstructured/semi-structured pruning NoWag-P (NoWag for Pruning). We found that NoWag-VQ significantly outperforms state-of-the-art zero shot VQ, and that NoWag-P performs competitively against state-of-the-art methods. These results suggest commonalities between these compression paradigms that could inspire future work. Our code is available at https://github.com/LawrenceRLiu/NoWag
♻ ☆ Shaping Sparse Rewards in Reinforcement Learning: A Semi-supervised Approach
In many real-world scenarios, reward signal for agents are exceedingly sparse, making it challenging to learn an effective reward function for reward shaping. To address this issue, the proposed approach in this paper performs reward shaping not only by utilizing non-zero-reward transitions but also by employing the \emph{Semi-Supervised Learning} (SSL) technique combined with a novel data augmentation to learn trajectory space representations from the majority of transitions, {i.e}., zero-reward transitions, thereby improving the efficacy of reward shaping. Experimental results in Atari and robotic manipulation demonstrate that our method outperforms supervised-based approaches in reward inference, leading to higher agent scores. Notably, in more sparse-reward environments, our method achieves up to twice the peak scores compared to supervised baselines. The proposed double entropy data augmentation enhances performance, showcasing a 15.8\% increase in best score over other augmentation methods
♻ ☆ Multilingual Performance Biases of Large Language Models in Education
Large language models (LLMs) are increasingly being adopted in educational settings. These applications expand beyond English, though current LLMs remain primarily English-centric. In this work, we ascertain if their use in education settings in non-English languages is warranted. We evaluated the performance of popular LLMs on four educational tasks: identifying student misconceptions, providing targeted feedback, interactive tutoring, and grading translations in eight languages (Mandarin, Hindi, Arabic, German, Farsi, Telugu, Ukrainian, Czech) in addition to English. We find that the performance on these tasks somewhat corresponds to the amount of language represented in training data, with lower-resource languages having poorer task performance. Although the models perform reasonably well in most languages, the frequent performance drop from English is significant. Thus, we recommend that practitioners first verify that the LLM works well in the target language for their educational task before deployment.
♻ ☆ From Text to Trajectory: Exploring Complex Constraint Representation and Decomposition in Safe Reinforcement Learning NeurIPS 2024
Safe reinforcement learning (RL) requires the agent to finish a given task while obeying specific constraints. Giving constraints in natural language form has great potential for practical scenarios due to its flexible transfer capability and accessibility. Previous safe RL methods with natural language constraints typically need to design cost functions manually for each constraint, which requires domain expertise and lacks flexibility. In this paper, we harness the dual role of text in this task, using it not only to provide constraint but also as a training signal. We introduce the Trajectory-level Textual Constraints Translator (TTCT) to replace the manually designed cost function. Our empirical results demonstrate that TTCT effectively comprehends textual constraint and trajectory, and the policies trained by TTCT can achieve a lower violation rate than the standard cost function. Extra studies are conducted to demonstrate that the TTCT has zero-shot transfer capability to adapt to constraint-shift environments.
comment: Accepted by NeurIPS 2024
♻ ☆ Tiny-BioMoE: a Lightweight Embedding Model for Biosignal Analysis
Pain is a complex and pervasive condition that affects a significant portion of the population. Accurate and consistent assessment is essential for individuals suffering from pain, as well as for developing effective management strategies in a healthcare system. Automatic pain assessment systems enable continuous monitoring, support clinical decision-making, and help minimize patient distress while mitigating the risk of functional deterioration. Leveraging physiological signals offers objective and precise insights into a person's state, and their integration in a multimodal framework can further enhance system performance. This study has been submitted to the \textit{Second Multimodal Sensing Grand Challenge for Next-Gen Pain Assessment (AI4PAIN)}. The proposed approach introduces \textit{Tiny-BioMoE}, a lightweight pretrained embedding model for biosignal analysis. Trained on $4.4$ million biosignal image representations and consisting of only $7.3$ million parameters, it serves as an effective tool for extracting high-quality embeddings for downstream tasks. Extensive experiments involving electrodermal activity, blood volume pulse, respiratory signals, peripheral oxygen saturation, and their combinations highlight the model's effectiveness across diverse modalities in automatic pain recognition tasks. \textit{\textcolor{blue}{The model's architecture (code) and weights are available at https://github.com/GkikasStefanos/Tiny-BioMoE.
♻ ☆ Dynaword: From One-shot to Continuously Developed Datasets
Large-scale datasets are foundational for research and development in natural language processing. However, current approaches face three key challenges: (1) reliance on ambiguously licensed sources restricting use, sharing, and derivative works; (2) static dataset releases that prevent community contributions and diminish longevity; and (3) quality assurance processes restricted to publishing teams rather than leveraging community expertise. To address these limitations, we introduce two contributions: the Dynaword approach and Danish Dynaword. The Dynaword approach is a framework for creating large-scale, open datasets that can be continuously updated through community collaboration. Danish Dynaword is a concrete implementation that validates this approach and demonstrates its potential. Danish Dynaword contains over four times as many tokens as comparable releases, is exclusively openly licensed, and has received multiple contributions across industry and research. The repository includes light-weight tests to ensure data formatting, quality, and documentation, establishing a sustainable framework for ongoing community contributions and dataset evolution.
♻ ☆ Scalable Attribute-Missing Graph Clustering via Neighborhood Differentiation
Deep graph clustering (DGC), which aims to unsupervisedly separate the nodes in an attribute graph into different clusters, has seen substantial potential in various industrial scenarios like community detection and recommendation. However, the real-world attribute graphs, e.g., social networks interactions, are usually large-scale and attribute-missing. To solve these two problems, we propose a novel DGC method termed \underline{\textbf{C}}omplementary \underline{\textbf{M}}ulti-\underline{\textbf{V}}iew \underline{\textbf{N}}eighborhood \underline{\textbf{D}}ifferentiation (\textit{CMV-ND}), which preprocesses graph structural information into multiple views in a complete but non-redundant manner. First, to ensure completeness of the structural information, we propose a recursive neighborhood search that recursively explores the local structure of the graph by completely expanding node neighborhoods across different hop distances. Second, to eliminate the redundancy between neighborhoods at different hops, we introduce a neighborhood differential strategy that ensures no overlapping nodes between the differential hop representations. Then, we construct $K+1$ complementary views from the $K$ differential hop representations and the features of the target node. Last, we apply existing multi-view clustering or DGC methods to the views. Experimental results on six widely used graph datasets demonstrate that CMV-ND significantly improves the performance of various methods.
♻ ☆ BlockA2A: Towards Secure and Verifiable Agent-to-Agent Interoperability
The rapid adoption of agentic AI, powered by large language models (LLMs), is transforming enterprise ecosystems with autonomous agents that execute complex workflows. Yet we observe several key security vulnerabilities in LLM-driven multi-agent systems (MASes): fragmented identity frameworks, insecure communication channels, and inadequate defenses against Byzantine agents or adversarial prompts. In this paper, we present the first systematic analysis of these emerging multi-agent risks and explain why the legacy security strategies cannot effectively address these risks. Afterwards, we propose BlockA2A, the first unified multi-agent trust framework that enables secure and verifiable and agent-to-agent interoperability. At a high level, BlockA2A adopts decentralized identifiers (DIDs) to enable fine-grained cross-domain agent authentication, blockchain-anchored ledgers to enable immutable auditability, and smart contracts to dynamically enforce context-aware access control policies. BlockA2A eliminates centralized trust bottlenecks, ensures message authenticity and execution integrity, and guarantees accountability across agent interactions. Furthermore, we propose a Defense Orchestration Engine (DOE) that actively neutralizes attacks through real-time mechanisms, including Byzantine agent flagging, reactive execution halting, and instant permission revocation. Empirical evaluations demonstrate BlockA2A's effectiveness in neutralizing prompt-based, communication-based, behavioral and systemic MAS attacks. We formalize its integration into existing MAS and showcase a practical implementation for Google's A2A protocol. Experiments confirm that BlockA2A and DOE operate with sub-second overhead, enabling scalable deployment in production LLM-based MAS environments.
comment: 43 pages
♻ ☆ Divide-Then-Rule: A Cluster-Driven Hierarchical Interpolator for Attribute-Missing Graphs
Deep graph clustering (DGC) for attribute-missing graphs is an unsupervised task aimed at partitioning nodes with incomplete attributes into distinct clusters. Addressing this challenging issue is vital for practical applications. However, research in this area remains underexplored. Existing imputation methods for attribute-missing graphs often fail to account for the varying amounts of information available across node neighborhoods, leading to unreliable results, especially for nodes with insufficient known neighborhood. To address this issue, we propose a novel method named Divide-Then-Rule Graph Completion (DTRGC). This method first addresses nodes with sufficient known neighborhood information and treats the imputed results as new knowledge to iteratively impute more challenging nodes, while leveraging clustering information to correct imputation errors. Specifically, Dynamic Cluster-Aware Feature Propagation (DCFP) initializes missing node attributes by adjusting propagation weights based on the clustering structure. Subsequently, Hierarchical Neighborhood-aware Imputation (HNAI) categorizes attribute-missing nodes into three groups based on the completeness of their neighborhood attributes. The imputation is performed hierarchically, prioritizing the groups with nodes that have the most available neighborhood information. The cluster structure is then used to refine the imputation and correct potential errors. Finally, Hop-wise Representation Enhancement (HRE) integrates information across multiple hops, thereby enriching the expressiveness of node representations. Experimental results on six widely used graph datasets show that DTRGC significantly improves the clustering performance of various DGC methods under attribute-missing graphs.
♻ ☆ Mind the Gap: The Divergence Between Human and LLM-Generated Tasks
Humans constantly generate a diverse range of tasks guided by internal motivations. While generative agents powered by large language models (LLMs) aim to simulate this complex behavior, it remains uncertain whether they operate on similar cognitive principles. To address this, we conducted a task-generation experiment comparing human responses with those of an LLM agent (GPT-4o). We find that human task generation is consistently influenced by psychological drivers, including personal values (e.g., Openness to Change) and cognitive style. Even when these psychological drivers are explicitly provided to the LLM, it fails to reflect the corresponding behavioral patterns. They produce tasks that are markedly less social, less physical, and thematically biased toward abstraction. Interestingly, while the LLM's tasks were perceived as more fun and novel, this highlights a disconnect between its linguistic proficiency and its capacity to generate human-like, embodied goals. We conclude that there is a core gap between the value-driven, embodied nature of human cognition and the statistical patterns of LLMs, highlighting the necessity of incorporating intrinsic motivation and physical grounding into the design of more human-aligned agents.
♻ ☆ What Makes a Good Speech Tokenizer for LLM-Centric Speech Generation? A Systematic Study
Speech-language models (SLMs) offer a promising path toward unifying speech and text understanding and generation. However, challenges remain in achieving effective cross-modal alignment and high-quality speech generation. In this work, we systematically investigate the role of speech tokenizer designs in LLM-centric SLMs, augmented by speech heads and speaker modeling. We compare coupled, semi-decoupled, and fully decoupled speech tokenizers under a fair SLM framework and find that decoupled tokenization significantly improves alignment and synthesis quality. To address the information density mismatch between speech and text, we introduce multi-token prediction (MTP) into SLMs, enabling each hidden state to decode multiple speech tokens. This leads to up to 12$\times$ faster decoding and a substantial drop in word error rate (from 6.07 to 3.01). Furthermore, we propose a speaker-aware generation paradigm and introduce RoleTriviaQA, a large-scale role-playing knowledge QA benchmark with diverse speaker identities. Experiments demonstrate that our methods enhance both knowledge understanding and speaker consistency.
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ Memorization in Fine-Tuned Large Language Models
This study investigates the mechanisms and factors influencing memorization in fine-tuned large language models (LLMs), with a focus on the medical domain due to its privacy-sensitive nature. We examine how different aspects of the fine-tuning process affect a model's propensity to memorize training data, using the PHEE dataset of pharmacovigilance events. Our research employs two main approaches: a membership inference attack to detect memorized data, and a generation task with prompted prefixes to assess verbatim reproduction. We analyze the impact of adapting different weight matrices in the transformer architecture, the relationship between perplexity and memorization, and the effect of increasing the rank in low-rank adaptation (LoRA) fine-tuning. Key findings include: (1) Value and Output matrices contribute more significantly to memorization compared to Query and Key matrices; (2) Lower perplexity in the fine-tuned model correlates with increased memorization; (3) Higher LoRA ranks lead to increased memorization, but with diminishing returns at higher ranks. These results provide insights into the trade-offs between model performance and privacy risks in fine-tuned LLMs. Our findings have implications for developing more effective and responsible strategies for adapting large language models while managing data privacy concerns.
♻ ☆ Beyond Images: Adaptive Fusion of Visual and Textual Data for Food Classification
This study introduces a novel multimodal food recognition framework that effectively combines visual and textual modalities to enhance classification accuracy and robustness. The proposed approach employs a dynamic multimodal fusion strategy that adaptively integrates features from unimodal visual inputs and complementary textual metadata. This fusion mechanism is designed to maximize the use of informative content, while mitigating the adverse impact of missing or inconsistent modality data. The framework was rigorously evaluated on the UPMC Food-101 dataset and achieved unimodal classification accuracies of 73.60% for images and 88.84% for text. When both modalities were fused, the model achieved an accuracy of 97.84%, outperforming several state-of-the-art methods. Extensive experimental analysis demonstrated the robustness, adaptability, and computational efficiency of the proposed settings, highlighting its practical applicability to real-world multimodal food-recognition scenarios.
♻ ☆ SALAD: Systematic Assessment of Machine Unlearning on LLM-Aided Hardware Design
Large Language Models (LLMs) offer transformative capabilities for hardware design automation, particularly in Verilog code generation. However, they also pose significant data security challenges, including Verilog evaluation data contamination, intellectual property (IP) design leakage, and the risk of malicious Verilog generation. We introduce SALAD, a comprehensive assessment that leverages machine unlearning to mitigate these threats. Our approach enables the selective removal of contaminated benchmarks, sensitive IP and design artifacts, or malicious code patterns from pre-trained LLMs, all without requiring full retraining. Through detailed case studies, we demonstrate how machine unlearning techniques effectively reduce data security risks in LLM-aided hardware design.
♻ ☆ M2S: Multi-turn to Single-turn jailbreak in Red Teaming for LLMs ACL 2025
We introduce a novel framework for consolidating multi-turn adversarial ``jailbreak'' prompts into single-turn queries, significantly reducing the manual overhead required for adversarial testing of large language models (LLMs). While multi-turn human jailbreaks have been shown to yield high attack success rates, they demand considerable human effort and time. Our multi-turn-to-single-turn (M2S) methods -- Hyphenize, Numberize, and Pythonize -- systematically reformat multi-turn dialogues into structured single-turn prompts. Despite removing iterative back-and-forth interactions, these prompts preserve and often enhance adversarial potency: in extensive evaluations on the Multi-turn Human Jailbreak (MHJ) dataset, M2S methods achieve attack success rates from 70.6 percent to 95.9 percent across several state-of-the-art LLMs. Remarkably, the single-turn prompts outperform the original multi-turn attacks by as much as 17.5 percentage points while cutting token usage by more than half on average. Further analysis shows that embedding malicious requests in enumerated or code-like structures exploits ``contextual blindness'', bypassing both native guardrails and external input-output filters. By converting multi-turn conversations into concise single-turn prompts, the M2S framework provides a scalable tool for large-scale red teaming and reveals critical weaknesses in contemporary LLM defenses.
comment: Accepted to ACL 2025 (Main Track). Camera-ready version
♻ ☆ SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation CIKM 2025
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
comment: Accepted by CIKM 2025. The code is available at https://github.com/bakqui/semi-seg-ecg
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ Collaborative Chain-of-Agents for Parametric-Retrieved Knowledge Synergy
Retrieval-Augmented Generation (RAG) has emerged as a promising framework for enhancing the capabilities of Large Language Models (LLMs), especially in knowledge-intensive tasks. Despite its advantages, current RAG methods often struggle to *fully exploit knowledge during generation*. In particular, the synergy between the model's internal parametric knowledge and external retrieved knowledge remains limited. Retrieved contents may sometimes mislead generation, while certain generated content can guide the model toward more accurate outputs. In this work, we propose Collaborative Chain-of-Agents, a framework designed to enhance explicitly synergy over both parametric and retrieved knowledge. Specifically, we first introduce CoCoA-zero, a multi-agent RAG framework that first performs conditional knowledge induction and then reasons answers. Building on this, we develop CoCoA, a long-chain training strategy that synthesizes extended multi-agent reasoning trajectories from CoCoA-zero to fine-tune the LLM. This strategy enhances the model's capability to explicitly integrate and jointly leverage parametric and retrieved knowledge. Experiments results show that CoCoA-zero and CoCoA achieve superior performance on open-domain and multi-hop QA tasks.
comment: code available at https://github.com/liunian-Jay/CoCoA
♻ ☆ JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers ICCV
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, namely, adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timesteps of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a viable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://byungki-k.github.io/JointDiT/ Code: https://github.com/kaist-ami/JointDiT
♻ ☆ Long-term Traffic Simulation with Interleaved Autoregressive Motion and Scenario Generation ICCV 2025
An ideal traffic simulator replicates the realistic long-term point-to-point trip that a self-driving system experiences during deployment. Prior models and benchmarks focus on closed-loop motion simulation for initial agents in a scene. This is problematic for long-term simulation. Agents enter and exit the scene as the ego vehicle enters new regions. We propose InfGen, a unified next-token prediction model that performs interleaved closed-loop motion simulation and scene generation. InfGen automatically switches between closed-loop motion simulation and scene generation mode. It enables stable long-term rollout simulation. InfGen performs at the state-of-the-art in short-term (9s) traffic simulation, and significantly outperforms all other methods in long-term (30s) simulation. The code and model of InfGen will be released at https://orangesodahub.github.io/InfGen
comment: ICCV 2025. Project page: https://orangesodahub.github.io/InfGen Code: https://github.com/OrangeSodahub/infgen
Computer Vision and Pattern Recognition 150
☆ LongVie: Multimodal-Guided Controllable Ultra-Long Video Generation
Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.
comment: Project page: https://vchitect.github.io/LongVie-project/
☆ Trokens: Semantic-Aware Relational Trajectory Tokens for Few-Shot Action Recognition ICCV 2025
Video understanding requires effective modeling of both motion and appearance information, particularly for few-shot action recognition. While recent advances in point tracking have been shown to improve few-shot action recognition, two fundamental challenges persist: selecting informative points to track and effectively modeling their motion patterns. We present Trokens, a novel approach that transforms trajectory points into semantic-aware relational tokens for action recognition. First, we introduce a semantic-aware sampling strategy to adaptively distribute tracking points based on object scale and semantic relevance. Second, we develop a motion modeling framework that captures both intra-trajectory dynamics through the Histogram of Oriented Displacements (HoD) and inter-trajectory relationships to model complex action patterns. Our approach effectively combines these trajectory tokens with semantic features to enhance appearance features with motion information, achieving state-of-the-art performance across six diverse few-shot action recognition benchmarks: Something-Something-V2 (both full and small splits), Kinetics, UCF101, HMDB51, and FineGym. For project page see https://trokens-iccv25.github.io
comment: Accepted at ICCV 2025; First two authors contributed equally
☆ LiDARCrafter: Dynamic 4D World Modeling from LiDAR Sequences
Generative world models have become essential data engines for autonomous driving, yet most existing efforts focus on videos or occupancy grids, overlooking the unique LiDAR properties. Extending LiDAR generation to dynamic 4D world modeling presents challenges in controllability, temporal coherence, and evaluation standardization. To this end, we present LiDARCrafter, a unified framework for 4D LiDAR generation and editing. Given free-form natural language inputs, we parse instructions into ego-centric scene graphs, which condition a tri-branch diffusion network to generate object structures, motion trajectories, and geometry. These structured conditions enable diverse and fine-grained scene editing. Additionally, an autoregressive module generates temporally coherent 4D LiDAR sequences with smooth transitions. To support standardized evaluation, we establish a comprehensive benchmark with diverse metrics spanning scene-, object-, and sequence-level aspects. Experiments on the nuScenes dataset using this benchmark demonstrate that LiDARCrafter achieves state-of-the-art performance in fidelity, controllability, and temporal consistency across all levels, paving the way for data augmentation and simulation. The code and benchmark are released to the community.
comment: Preprint; 28 pages, 18 figures, 12 tables; Project Page at https://lidarcrafter.github.io
☆ La La LiDAR: Large-Scale Layout Generation from LiDAR Data
Controllable generation of realistic LiDAR scenes is crucial for applications such as autonomous driving and robotics. While recent diffusion-based models achieve high-fidelity LiDAR generation, they lack explicit control over foreground objects and spatial relationships, limiting their usefulness for scenario simulation and safety validation. To address these limitations, we propose Large-scale Layout-guided LiDAR generation model ("La La LiDAR"), a novel layout-guided generative framework that introduces semantic-enhanced scene graph diffusion with relation-aware contextual conditioning for structured LiDAR layout generation, followed by foreground-aware control injection for complete scene generation. This enables customizable control over object placement while ensuring spatial and semantic consistency. To support our structured LiDAR generation, we introduce Waymo-SG and nuScenes-SG, two large-scale LiDAR scene graph datasets, along with new evaluation metrics for layout synthesis. Extensive experiments demonstrate that La La LiDAR achieves state-of-the-art performance in both LiDAR generation and downstream perception tasks, establishing a new benchmark for controllable 3D scene generation.
comment: Preprint; 10 pages, 6 figures, 7 tables
☆ Veila: Panoramic LiDAR Generation from a Monocular RGB Image
Realistic and controllable panoramic LiDAR data generation is critical for scalable 3D perception in autonomous driving and robotics. Existing methods either perform unconditional generation with poor controllability or adopt text-guided synthesis, which lacks fine-grained spatial control. Leveraging a monocular RGB image as a spatial control signal offers a scalable and low-cost alternative, which remains an open problem. However, it faces three core challenges: (i) semantic and depth cues from RGB are vary spatially, complicating reliable conditioning generation; (ii) modality gaps between RGB appearance and LiDAR geometry amplify alignment errors under noisy diffusion; and (iii) maintaining structural coherence between monocular RGB and panoramic LiDAR is challenging, particularly in non-overlap regions between images and LiDAR. To address these challenges, we propose Veila, a novel conditional diffusion framework that integrates: a Confidence-Aware Conditioning Mechanism (CACM) that strengthens RGB conditioning by adaptively balancing semantic and depth cues according to their local reliability; a Geometric Cross-Modal Alignment (GCMA) for robust RGB-LiDAR alignment under noisy diffusion; and a Panoramic Feature Coherence (PFC) for enforcing global structural consistency across monocular RGB and panoramic LiDAR. Additionally, we introduce two metrics, Cross-Modal Semantic Consistency and Cross-Modal Depth Consistency, to evaluate alignment quality across modalities. Experiments on nuScenes, SemanticKITTI, and our proposed KITTI-Weather benchmark demonstrate that Veila achieves state-of-the-art generation fidelity and cross-modal consistency, while enabling generative data augmentation that improves downstream LiDAR semantic segmentation.
comment: Preprint; 10 pages, 6 figures, 7 tables
☆ OmniShape: Zero-Shot Multi-Hypothesis Shape and Pose Estimation in the Real World ICRA 2025
We would like to estimate the pose and full shape of an object from a single observation, without assuming known 3D model or category. In this work, we propose OmniShape, the first method of its kind to enable probabilistic pose and shape estimation. OmniShape is based on the key insight that shape completion can be decoupled into two multi-modal distributions: one capturing how measurements project into a normalized object reference frame defined by the dataset and the other modelling a prior over object geometries represented as triplanar neural fields. By training separate conditional diffusion models for these two distributions, we enable sampling multiple hypotheses from the joint pose and shape distribution. OmniShape demonstrates compelling performance on challenging real world datasets. Project website: https://tri-ml.github.io/omnishape
comment: 8 pages, 5 figures. This version has typo fixes on top of the version published at ICRA 2025
☆ Can Large Vision-Language Models Understand Multimodal Sarcasm? CIKM 2025
Sarcasm is a complex linguistic phenomenon that involves a disparity between literal and intended meanings, making it challenging for sentiment analysis and other emotion-sensitive tasks. While traditional sarcasm detection methods primarily focus on text, recent approaches have incorporated multimodal information. However, the application of Large Visual Language Models (LVLMs) in Multimodal Sarcasm Analysis (MSA) remains underexplored. In this paper, we evaluate LVLMs in MSA tasks, specifically focusing on Multimodal Sarcasm Detection and Multimodal Sarcasm Explanation. Through comprehensive experiments, we identify key limitations, such as insufficient visual understanding and a lack of conceptual knowledge. To address these issues, we propose a training-free framework that integrates in-depth object extraction and external conceptual knowledge to improve the model's ability to interpret and explain sarcasm in multimodal contexts. The experimental results on multiple models show the effectiveness of our proposed framework. The code is available at https://github.com/cp-cp/LVLM-MSA.
comment: Accepted by CIKM 2025
☆ DiWA: Diffusion Policy Adaptation with World Models
Fine-tuning diffusion policies with reinforcement learning (RL) presents significant challenges. The long denoising sequence for each action prediction impedes effective reward propagation. Moreover, standard RL methods require millions of real-world interactions, posing a major bottleneck for practical fine-tuning. Although prior work frames the denoising process in diffusion policies as a Markov Decision Process to enable RL-based updates, its strong dependence on environment interaction remains highly inefficient. To bridge this gap, we introduce DiWA, a novel framework that leverages a world model for fine-tuning diffusion-based robotic skills entirely offline with reinforcement learning. Unlike model-free approaches that require millions of environment interactions to fine-tune a repertoire of robot skills, DiWA achieves effective adaptation using a world model trained once on a few hundred thousand offline play interactions. This results in dramatically improved sample efficiency, making the approach significantly more practical and safer for real-world robot learning. On the challenging CALVIN benchmark, DiWA improves performance across eight tasks using only offline adaptation, while requiring orders of magnitude fewer physical interactions than model-free baselines. To our knowledge, this is the first demonstration of fine-tuning diffusion policies for real-world robotic skills using an offline world model. We make the code publicly available at https://diwa.cs.uni-freiburg.de.
comment: Accepted at the 2025 Conference on Robot Learning (CoRL)
☆ Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
comment: In submission. Project website: https://double-bench.github.io/
☆ Uni3R: Unified 3D Reconstruction and Semantic Understanding via Generalizable Gaussian Splatting from Unposed Multi-View Images
Reconstructing and semantically interpreting 3D scenes from sparse 2D views remains a fundamental challenge in computer vision. Conventional methods often decouple semantic understanding from reconstruction or necessitate costly per-scene optimization, thereby restricting their scalability and generalizability. In this paper, we introduce Uni3R, a novel feed-forward framework that jointly reconstructs a unified 3D scene representation enriched with open-vocabulary semantics, directly from unposed multi-view images. Our approach leverages a Cross-View Transformer to robustly integrate information across arbitrary multi-view inputs, which then regresses a set of 3D Gaussian primitives endowed with semantic feature fields. This unified representation facilitates high-fidelity novel view synthesis, open-vocabulary 3D semantic segmentation, and depth prediction, all within a single, feed-forward pass. Extensive experiments demonstrate that Uni3R establishes a new state-of-the-art across multiple benchmarks, including 25.07 PSNR on RE10K and 55.84 mIoU on ScanNet. Our work signifies a novel paradigm towards generalizable, unified 3D scene reconstruction and understanding. The code is available at https://github.com/HorizonRobotics/Uni3R.
comment: The code is available at https://github.com/HorizonRobotics/Uni3R
☆ AttZoom: Attention Zoom for Better Visual Features ICCV
We present Attention Zoom, a modular and model-agnostic spatial attention mechanism designed to improve feature extraction in convolutional neural networks (CNNs). Unlike traditional attention approaches that require architecture-specific integration, our method introduces a standalone layer that spatially emphasizes high-importance regions in the input. We evaluated Attention Zoom on multiple CNN backbones using CIFAR-100 and TinyImageNet, showing consistent improvements in Top-1 and Top-5 classification accuracy. Visual analyses using Grad-CAM and spatial warping reveal that our method encourages fine-grained and diverse attention patterns. Our results confirm the effectiveness and generality of the proposed layer for improving CCNs with minimal architectural overhead.
comment: Accepted at ICCVw HiCV
☆ FPG-NAS: FLOPs-Aware Gated Differentiable Neural Architecture Search for Efficient 6DoF Pose Estimation SP
We introduce FPG-NAS, a FLOPs-aware Gated Differentiable Neural Architecture Search framework for efficient 6DoF object pose estimation. Estimating 3D rotation and translation from a single image has been widely investigated yet remains computationally demanding, limiting applicability in resource-constrained scenarios. FPG-NAS addresses this by proposing a specialized differentiable NAS approach for 6DoF pose estimation, featuring a task-specific search space and a differentiable gating mechanism that enables discrete multi-candidate operator selection, thus improving architectural diversity. Additionally, a FLOPs regularization term ensures a balanced trade-off between accuracy and efficiency. The framework explores a vast search space of approximately 10\textsuperscript{92} possible architectures. Experiments on the LINEMOD and SPEED+ datasets demonstrate that FPG-NAS-derived models outperform previous methods under strict FLOPs constraints. To the best of our knowledge, FPG-NAS is the first differentiable NAS framework specifically designed for 6DoF object pose estimation.
comment: Accepted to the 27th IEEE International Workshop on Multimedia Signal Processing (MMSP) 2025
☆ evTransFER: A Transfer Learning Framework for Event-based Facial Expression Recognition
Event-based cameras are bio-inspired vision sensors that asynchronously capture per-pixel intensity changes with microsecond latency, high temporal resolution, and high dynamic range, providing valuable information about the spatio-temporal dynamics of the scene. In the present work, we propose evTransFER, a transfer learning-based framework and architecture for face expression recognition using event-based cameras. The main contribution is a feature extractor designed to encode the spatio-temporal dynamics of faces, built by training an adversarial generative method on a different problem (facial reconstruction) and then transferring the trained encoder weights to the face expression recognition system. We show that this proposed transfer learning method greatly improves the ability to recognize facial expressions compared to training a network from scratch. In addition, we propose an architecture that incorporates an LSTM to capture longer-term facial expression dynamics, and we introduce a new event-based representation, referred to as TIE, both of which further improve the results. We evaluate the proposed framework on the event-based facial expression database e-CK+ and compare it to state-of-the-art methods. The results show that the proposed framework evTransFER achieves a 93.6\% recognition rate on the e-CK+ database, significantly improving the accuracy (25.9\% points or more) when compared to state-of-the-art performance for similar problems.
☆ CloudBreaker: Breaking the Cloud Covers of Sentinel-2 Images using Multi-Stage Trained Conditional Flow Matching on Sentinel-1
Cloud cover and nighttime conditions remain significant limitations in satellite-based remote sensing, often restricting the availability and usability of multi-spectral imagery. In contrast, Sentinel-1 radar images are unaffected by cloud cover and can provide consistent data regardless of weather or lighting conditions. To address the challenges of limited satellite imagery, we propose CloudBreaker, a novel framework that generates high-quality multi-spectral Sentinel-2 signals from Sentinel-1 data. This includes the reconstruction of optical (RGB) images as well as critical vegetation and water indices such as NDVI and NDWI.We employed a novel multi-stage training approach based on conditional latent flow matching and, to the best of our knowledge, are the first to integrate cosine scheduling with flow matching. CloudBreaker demonstrates strong performance, achieving a Frechet Inception Distance (FID) score of 0.7432, indicating high fidelity and realism in the generated optical imagery. The model also achieved Structural Similarity Index Measure (SSIM) of 0.6156 for NDWI and 0.6874 for NDVI, indicating a high degree of structural similarity. This establishes CloudBreaker as a promising solution for a wide range of remote sensing applications where multi-spectral data is typically unavailable or unreliable
☆ DyCAF-Net: Dynamic Class-Aware Fusion Network
Recent advancements in object detection rely on modular architectures with multi-scale fusion and attention mechanisms. However, static fusion heuristics and class-agnostic attention limit performance in dynamic scenes with occlusions, clutter, and class imbalance. We introduce Dynamic Class-Aware Fusion Network (DyCAF-Net) that addresses these challenges through three innovations: (1) an input-conditioned equilibrium-based neck that iteratively refines multi-scale features via implicit fixed-point modeling, (2) a dual dynamic attention mechanism that adaptively recalibrates channel and spatial responses using input- and class-dependent cues, and (3) class-aware feature adaptation that modulates features to prioritize discriminative regions for rare classes. Through comprehensive ablation studies with YOLOv8 and related architectures, alongside benchmarking against nine state-of-the-art baselines, DyCAF-Net achieves significant improvements in precision, mAP@50, and mAP@50-95 across 13 diverse benchmarks, including occlusion-heavy and long-tailed datasets. The framework maintains computational efficiency ($\sim$11.1M parameters) and competitive inference speeds, while its adaptability to scale variance, semantic overlaps, and class imbalance positions it as a robust solution for real-world detection tasks in medical imaging, surveillance, and autonomous systems.
comment: Accepted to IEEE DSAA 2025 (10 pages, 5 figures)
☆ MetaScope: Optics-Driven Neural Network for Ultra-Micro Metalens Endoscopy ICCV 2025
Miniaturized endoscopy has advanced accurate visual perception within the human body. Prevailing research remains limited to conventional cameras employing convex lenses, where the physical constraints with millimetre-scale thickness impose serious impediments on the micro-level clinical. Recently, with the emergence of meta-optics, ultra-micro imaging based on metalenses (micron-scale) has garnered great attention, serving as a promising solution. However, due to the physical difference of metalens, there is a large gap in data acquisition and algorithm research. In light of this, we aim to bridge this unexplored gap, advancing the novel metalens endoscopy. First, we establish datasets for metalens endoscopy and conduct preliminary optical simulation, identifying two derived optical issues that physically adhere to strong optical priors. Second, we propose MetaScope, a novel optics-driven neural network tailored for metalens endoscopy driven by physical optics. MetaScope comprises two novel designs: Optics-informed Intensity Adjustment (OIA), rectifying intensity decay by learning optical embeddings, and Optics-informed Chromatic Correction (OCC), mitigating chromatic aberration by learning spatial deformations informed by learned Point Spread Function (PSF) distributions. To enhance joint learning, we further deploy a gradient-guided distillation to transfer knowledge from the foundational model adaptively. Extensive experiments demonstrate that MetaScope not only outperforms state-of-the-art methods in both metalens segmentation and restoration but also achieves impressive generalized ability in real biomedical scenes.
comment: ICCV 2025 (Highlight); Project Page: https://cuhk-aim-group.github.io/MetaScope/
☆ CADD: Context aware disease deviations via restoration of brain images using normative conditional diffusion models
Applying machine learning to real-world medical data, e.g. from hospital archives, has the potential to revolutionize disease detection in brain images. However, detecting pathology in such heterogeneous cohorts is a difficult challenge. Normative modeling, a form of unsupervised anomaly detection, offers a promising approach to studying such cohorts where the ``normal'' behavior is modeled and can be used at subject level to detect deviations relating to disease pathology. Diffusion models have emerged as powerful tools for anomaly detection due to their ability to capture complex data distributions and generate high-quality images. Their performance relies on image restoration; differences between the original and restored images highlight potential abnormalities. However, unlike normative models, these diffusion model approaches do not incorporate clinical information which provides important context to guide the disease detection process. Furthermore, standard approaches often poorly restore healthy regions, resulting in poor reconstructions and suboptimal detection performance. We present CADD, the first conditional diffusion model for normative modeling in 3D images. To guide the healthy restoration process, we propose a novel inference inpainting strategy which balances anomaly removal with retention of subject-specific features. Evaluated on three challenging datasets, including clinical scans, which may have lower contrast, thicker slices, and motion artifacts, CADD achieves state-of-the-art performance in detecting neurological abnormalities in heterogeneous cohorts.
☆ RadProPoser: A Framework for Human Pose Estimation with Uncertainty Quantification from Raw Radar Data
Radar-based human pose estimation (HPE) provides a privacy-preserving, illumination-invariant sensing modality but is challenged by noisy, multipath-affected measurements. We introduce RadProPoser, a probabilistic encoder-decoder architecture that processes complex-valued radar tensors from a compact 3-transmitter, 4-receiver MIMO radar. By incorporating variational inference into keypoint regression, RadProPoser jointly predicts 26 three-dimensional joint locations alongside heteroscedastic aleatoric uncertainties and can be recalibrated to predict total uncertainty. We explore different probabilistic formulations using both Gaussian and Laplace distributions for latent priors and likelihoods. On our newly released dataset with optical motion-capture ground truth, RadProPoser achieves an overall mean per-joint position error (MPJPE) of 6.425 cm, with 5.678 cm at the 45 degree aspect angle. The learned uncertainties exhibit strong alignment with actual pose errors and can be calibrated to produce reliable prediction intervals, with our best configuration achieving an expected calibration error of 0.021. As an additional demonstration, sampling from these latent distributions enables effective data augmentation for downstream activity classification, resulting in an F1 score of 0.870. To our knowledge, this is the first end-to-end radar tensor-based HPE system to explicitly model and quantify per-joint uncertainty from raw radar tensor data, establishing a foundation for explainable and reliable human motion analysis in radar applications.
☆ SAM2-UNeXT: An Improved High-Resolution Baseline for Adapting Foundation Models to Downstream Segmentation Tasks
Recent studies have highlighted the potential of adapting the Segment Anything Model (SAM) for various downstream tasks. However, constructing a more powerful and generalizable encoder to further enhance performance remains an open challenge. In this work, we propose SAM2-UNeXT, an advanced framework that builds upon the core principles of SAM2-UNet while extending the representational capacity of SAM2 through the integration of an auxiliary DINOv2 encoder. By incorporating a dual-resolution strategy and a dense glue layer, our approach enables more accurate segmentation with a simple architecture, relaxing the need for complex decoder designs. Extensive experiments conducted on four benchmarks, including dichotomous image segmentation, camouflaged object detection, marine animal segmentation, and remote sensing saliency detection, demonstrate the superior performance of our proposed method. The code is available at https://github.com/WZH0120/SAM2-UNeXT.
comment: Technical Report
☆ A Scalable Machine Learning Pipeline for Building Footprint Detection in Historical Maps
Historical maps offer a valuable lens through which to study past landscapes and settlement patterns. While prior research has leveraged machine learning based techniques to extract building footprints from historical maps, such approaches have largely focused on urban areas and tend to be computationally intensive. This presents a challenge for research questions requiring analysis across extensive rural regions, such as verifying historical census data or locating abandoned settlements. In this paper, this limitation is addressed by proposing a scalable and efficient pipeline tailored to rural maps with sparse building distributions. The method described employs a hierarchical machine learning based approach: convolutional neural network (CNN) classifiers are first used to progressively filter out map sections unlikely to contain buildings, significantly reducing the area requiring detailed analysis. The remaining high probability sections are then processed using CNN segmentation algorithms to extract building features. The pipeline is validated using test sections from the Ordnance Survey Ireland historical 25 inch map series and 6 inch map series, demonstrating both high performance and improved efficiency compared to conventional segmentation-only approaches. Application of the technique to both map series, covering the same geographic region, highlights its potential for historical and archaeological discovery. Notably, the pipeline identified a settlement of approximately 22 buildings in Tully, Co. Galway, present in the 6 inch map, produced in 1839, but absent from the 25 inch map, produced in 1899, suggesting it may have been abandoned during the Great Famine period.
comment: 15 pages, 11 figures
☆ Beyond Meme Templates: Limitations of Visual Similarity Measures in Meme Matching
Internet memes, now a staple of digital communication, play a pivotal role in how users engage within online communities and allow researchers to gain insight into contemporary digital culture. These engaging user-generated content are characterised by their reuse of visual elements also found in other memes. Matching instances of memes via these shared visual elements, called Meme Matching, is the basis of a wealth of meme analysis approaches. However, most existing methods assume that every meme consists of a shared visual background, called a Template, with some overlaid text, thereby limiting meme matching to comparing the background image alone. Current approaches exclude the many memes that are not template-based and limit the effectiveness of automated meme analysis and would not be effective at linking memes to contemporary web-based meme dictionaries. In this work, we introduce a broader formulation of meme matching that extends beyond template matching. We show that conventional similarity measures, including a novel segment-wise computation of the similarity measures, excel at matching template-based memes but fall short when applied to non-template-based meme formats. However, the segment-wise approach was found to consistently outperform the whole-image measures on matching non-template-based memes. Finally, we explore a prompting-based approach using a pretrained Multimodal Large Language Model for meme matching. Our results highlight that accurately matching memes via shared visual elements, not just background templates, remains an open challenge that requires more sophisticated matching techniques.
comment: Accepted for publication at IEEE International Conference on Image Processing Theory, Tools and Applications (IPTA) 2025
☆ Advancing Wildlife Monitoring: Drone-Based Sampling for Roe Deer Density Estimation
We use unmanned aerial drones to estimate wildlife density in southeastern Austria and compare these estimates to camera trap data. Traditional methods like capture-recapture, distance sampling, or camera traps are well-established but labour-intensive or spatially constrained. Using thermal (IR) and RGB imagery, drones enable efficient, non-intrusive animal counting. Our surveys were conducted during the leafless period on single days in October and November 2024 in three areas of a sub-Illyrian hill and terrace landscape. Flight transects were based on predefined launch points using a 350 m grid and an algorithm that defined the direction of systematically randomized transects. This setup allowed surveying large areas in one day using multiple drones, minimizing double counts. Flight altitude was set at 60 m to avoid disturbing roe deer (Capreolus capreolus) while ensuring detection. Animals were manually annotated in the recorded imagery and extrapolated to densities per square kilometer. We applied three extrapolation methods with increasing complexity: naive area-based extrapolation, bootstrapping, and zero-inflated negative binomial modelling. For comparison, a Random Encounter Model (REM) estimate was calculated using camera trap data from the flight period. The drone-based methods yielded similar results, generally showing higher densities than REM, except in one area in October. We hypothesize that drone-based density reflects daytime activity in open and forested areas, while REM estimates average activity over longer periods within forested zones. Although both approaches estimate density, they offer different perspectives on wildlife presence. Our results show that drones offer a promising, scalable method for wildlife density estimation.
comment: 6 pages, 1 figure, 1 table, International Wildlife Congress 2025
☆ Speech-to-LaTeX: New Models and Datasets for Converting Spoken Equations and Sentences
Conversion of spoken mathematical expressions is a challenging task that involves transcribing speech into a strictly structured symbolic representation while addressing the ambiguity inherent in the pronunciation of equations. Although significant progress has been achieved in automatic speech recognition (ASR) and language models (LM), the problem of converting spoken mathematics into LaTeX remains underexplored. This task directly applies to educational and research domains, such as lecture transcription or note creation. Based on ASR post-correction, prior work requires 2 transcriptions, focuses only on isolated equations, has a limited test set, and provides neither training data nor multilingual coverage. To address these issues, we present the first fully open-source large-scale dataset, comprising over 66,000 human-annotated audio samples of mathematical equations and sentences in both English and Russian, drawn from diverse scientific domains. In addition to the ASR post-correction models and few-shot prompting, we apply audio language models, demonstrating comparable character error rate (CER) results on the MathSpeech benchmark (28% vs. 30%) for the equations conversion. In contrast, on the proposed S2L-equations benchmark, our models outperform the MathSpeech model by a substantial margin of more than 40 percentage points, even after accounting for LaTeX formatting artifacts (27% vs. 64%). We establish the first benchmark for mathematical sentence recognition (S2L-sentences) and achieve an equation CER of 40%. This work lays the groundwork for future advances in multimodal AI, with a particular focus on mathematical content recognition.
☆ Quality-Aware Language-Conditioned Local Auto-Regressive Anomaly Synthesis and Detection
Despite substantial progress in anomaly synthesis methods, existing diffusion-based and coarse inpainting pipelines commonly suffer from structural deficiencies such as micro-structural discontinuities, limited semantic controllability, and inefficient generation. To overcome these limitations, we introduce ARAS, a language-conditioned, auto-regressive anomaly synthesis approach that precisely injects local, text-specified defects into normal images via token-anchored latent editing. Leveraging a hard-gated auto-regressive operator and a training-free, context-preserving masked sampling kernel, ARAS significantly enhances defect realism, preserves fine-grained material textures, and provides continuous semantic control over synthesized anomalies. Integrated within our Quality-Aware Re-weighted Anomaly Detection (QARAD) framework, we further propose a dynamic weighting strategy that emphasizes high-quality synthetic samples by computing an image-text similarity score with a dual-encoder model. Extensive experiments across three benchmark datasets-MVTec AD, VisA, and BTAD, demonstrate that our QARAD outperforms SOTA methods in both image- and pixel-level anomaly detection tasks, achieving improved accuracy, robustness, and a 5 times synthesis speedup compared to diffusion-based alternatives. Our complete code and synthesized dataset will be publicly available.
☆ Retinal Lipidomics Associations as Candidate Biomarkers for Cardiovascular Health
Retinal microvascular imaging is increasingly recognised as a non invasive method for evaluating systemic vascular and metabolic health. However, the association between lipidomics and retinal vasculature remains inadequate. This study investigates the relationships between serum lipid subclasses, free fatty acids (FA), diacylglycerols (DAG), triacylglycerols (TAG), and cholesteryl esters (CE), and retinal microvascular characteristics in a large population-based cohort. Using Spearman correlation analysis, we examined the interconnection between lipid subclasses and ten retinal microvascular traits, applying the Benjamini-Hochberg false discovery rate (BH-FDR) to adjust for statistical significance. Results indicated that FA were linked to retinal vessel twistiness, while CE correlated with the average widths of arteries and veins. Conversely, DAG and TAG showed negative correlations with the width and complexity of arterioles and venules. These findings suggest that retinal vascular architecture reflects distinct circulating lipid profiles, supporting its role as a non-invasive marker of systemic metabolic health. This study is the first to integrate deep learning (DL)derived retinal traits with lipidomic subclasses in a healthy cohort, thereby providing insights into microvascular structural changes independent of disease status or treatment effects.
☆ CoEmoGen: Towards Semantically-Coherent and Scalable Emotional Image Content Generation
Emotional Image Content Generation (EICG) aims to generate semantically clear and emotionally faithful images based on given emotion categories, with broad application prospects. While recent text-to-image diffusion models excel at generating concrete concepts, they struggle with the complexity of abstract emotions. There have also emerged methods specifically designed for EICG, but they excessively rely on word-level attribute labels for guidance, which suffer from semantic incoherence, ambiguity, and limited scalability. To address these challenges, we propose CoEmoGen, a novel pipeline notable for its semantic coherence and high scalability. Specifically, leveraging multimodal large language models (MLLMs), we construct high-quality captions focused on emotion-triggering content for context-rich semantic guidance. Furthermore, inspired by psychological insights, we design a Hierarchical Low-Rank Adaptation (HiLoRA) module to cohesively model both polarity-shared low-level features and emotion-specific high-level semantics. Extensive experiments demonstrate CoEmoGen's superiority in emotional faithfulness and semantic coherence from quantitative, qualitative, and user study perspectives. To intuitively showcase scalability, we curate EmoArt, a large-scale dataset of emotionally evocative artistic images, providing endless inspiration for emotion-driven artistic creation. The dataset and code are available at https://github.com/yuankaishen2001/CoEmoGen.
comment: 10 pages, 9 figures
☆ Semantic Mosaicing of Histo-Pathology Image Fragments using Visual Foundation Models
In histopathology, tissue samples are often larger than a standard microscope slide, making stitching of multiple fragments necessary to process entire structures such as tumors. Automated stitching is a prerequisite for scaling analysis, but is challenging due to possible tissue loss during preparation, inhomogeneous morphological distortion, staining inconsistencies, missing regions due to misalignment on the slide, or frayed tissue edges. This limits state-of-the-art stitching methods using boundary shape matching algorithms to reconstruct artificial whole mount slides (WMS). Here, we introduce SemanticStitcher using latent feature representations derived from a visual histopathology foundation model to identify neighboring areas in different fragments. Robust pose estimation based on a large number of semantic matching candidates derives a mosaic of multiple fragments to form the WMS. Experiments on three different histopathology datasets demonstrate that SemanticStitcher yields robust WMS mosaicing and consistently outperforms the state of the art in correct boundary matches.
☆ Distribution-aware Knowledge Unification and Association for Non-exemplar Lifelong Person Re-identification
Lifelong person re-identification (LReID) encounters a key challenge: balancing the preservation of old knowledge with adaptation to new information. Existing LReID methods typically employ knowledge distillation to enforce representation alignment. However, these approaches ignore two crucial aspects: specific distribution awareness and cross-domain unified knowledge learning, both of which are essential for addressing this challenge. To overcome these limitations, we propose a novel distribution-aware knowledge unification and association (DKUA) framework where domain-style modeling is performed for each instance to propagate domain-specific representations, enhancing anti-forgetting and generalization capacity. Specifically, we design a distribution-aware model to transfer instance-level representations of the current domain into the domain-specific representations with the different domain styles, preserving learned knowledge without storing old samples. Next, we propose adaptive knowledge consolidation (AKC) to dynamically generate the unified representation as a cross-domain representation center. To further mitigate forgetting, we develop a unified knowledge association (UKA) mechanism, which explores the unified representation as a bridge to explicitly model inter-domain associations, reducing inter-domain gaps. Finally, distribution-based knowledge transfer (DKT) is proposed to prevent the current domain distribution from deviating from the cross-domain distribution center, improving adaptation capacity. Experimental results show our DKUA outperforms the existing methods by 7.6%/5.3% average mAP/R@1 improvement on anti-forgetting and generalization capacity, respectively. Our code will be publicly released.
comment: 9 papges, 6 figures
☆ MAUP: Training-free Multi-center Adaptive Uncertainty-aware Prompting for Cross-domain Few-shot Medical Image Segmentation MICCAI 2025
Cross-domain Few-shot Medical Image Segmentation (CD-FSMIS) is a potential solution for segmenting medical images with limited annotation using knowledge from other domains. The significant performance of current CD-FSMIS models relies on the heavily training procedure over other source medical domains, which degrades the universality and ease of model deployment. With the development of large visual models of natural images, we propose a training-free CD-FSMIS model that introduces the Multi-center Adaptive Uncertainty-aware Prompting (MAUP) strategy for adapting the foundation model Segment Anything Model (SAM), which is trained with natural images, into the CD-FSMIS task. To be specific, MAUP consists of three key innovations: (1) K-means clustering based multi-center prompts generation for comprehensive spatial coverage, (2) uncertainty-aware prompts selection that focuses on the challenging regions, and (3) adaptive prompt optimization that can dynamically adjust according to the target region complexity. With the pre-trained DINOv2 feature encoder, MAUP achieves precise segmentation results across three medical datasets without any additional training compared with several conventional CD-FSMIS models and training-free FSMIS model. The source code is available at: https://github.com/YazhouZhu19/MAUP.
comment: Accepted by MICCAI 2025
☆ EditGarment: An Instruction-Based Garment Editing Dataset Constructed with Automated MLLM Synthesis and Semantic-Aware Evaluation
Instruction-based garment editing enables precise image modifications via natural language, with broad applications in fashion design and customization. Unlike general editing tasks, it requires understanding garment-specific semantics and attribute dependencies. However, progress is limited by the scarcity of high-quality instruction-image pairs, as manual annotation is costly and hard to scale. While MLLMs have shown promise in automated data synthesis, their application to garment editing is constrained by imprecise instruction modeling and a lack of fashion-specific supervisory signals. To address these challenges, we present an automated pipeline for constructing a garment editing dataset. We first define six editing instruction categories aligned with real-world fashion workflows to guide the generation of balanced and diverse instruction-image triplets. Second, we introduce Fashion Edit Score, a semantic-aware evaluation metric that captures semantic dependencies between garment attributes and provides reliable supervision during construction. Using this pipeline, we construct a total of 52,257 candidate triplets and retain 20,596 high-quality triplets to build EditGarment, the first instruction-based dataset tailored to standalone garment editing. The project page is https://yindq99.github.io/EditGarment-project/.
☆ Prototype-Enhanced Confidence Modeling for Cross-Modal Medical Image-Report Retrieval
In cross-modal retrieval tasks, such as image-to-report and report-to-image retrieval, accurately aligning medical images with relevant text reports is essential but challenging due to the inherent ambiguity and variability in medical data. Existing models often struggle to capture the nuanced, multi-level semantic relationships in radiology data, leading to unreliable retrieval results. To address these issues, we propose the Prototype-Enhanced Confidence Modeling (PECM) framework, which introduces multi-level prototypes for each modality to better capture semantic variability and enhance retrieval robustness. PECM employs a dual-stream confidence estimation that leverages prototype similarity distributions and an adaptive weighting mechanism to control the impact of high-uncertainty data on retrieval rankings. Applied to radiology image-report datasets, our method achieves significant improvements in retrieval precision and consistency, effectively handling data ambiguity and advancing reliability in complex clinical scenarios. We report results on multiple different datasets and tasks including fully supervised and zero-shot retrieval obtaining performance gains of up to 10.17%, establishing in new state-of-the-art.
☆ Quality Versus Sparsity in Image Recovery by Dictionary Learning Using Iterative Shrinkage
Sparse dictionary learning (SDL) is a fundamental technique that is useful for many image processing tasks. As an example we consider here image recovery, where SDL can be cast as a nonsmooth optimization problem. For this kind of problems, iterative shrinkage methods represent a powerful class of algorithms that are subject of ongoing research. Sparsity is an important property of the learned solutions, as exactly the sparsity enables efficient further processing or storage. The sparsity implies that a recovered image is determined as a combination of a number of dictionary elements that is as low as possible. Therefore, the question arises, to which degree sparsity should be enforced in SDL in order to not compromise recovery quality. In this paper we focus on the sparsity of solutions that can be obtained using a variety of optimization methods. It turns out that there are different sparsity regimes depending on the method in use. Furthermore, we illustrate that high sparsity does in general not compromise recovery quality, even if the recovered image is quite different from the learning database.
comment: 6 pages, 4 figures, 3 tables, IEEE-IPTA,2025
☆ ParticleSAM: Small Particle Segmentation for Material Quality Monitoring in Recycling Processes
The construction industry represents a major sector in terms of resource consumption. Recycled construction material has high reuse potential, but quality monitoring of the aggregates is typically still performed with manual methods. Vision-based machine learning methods could offer a faster and more efficient solution to this problem, but existing segmentation methods are by design not directly applicable to images with hundreds of small particles. In this paper, we propose ParticleSAM, an adaptation of the segmentation foundation model to images with small and dense objects such as the ones often encountered in construction material particles. Moreover, we create a new dense multi-particle dataset simulated from isolated particle images with the assistance of an automated data generation and labeling pipeline. This dataset serves as a benchmark for visual material quality control automation while our segmentation approach has the potential to be valuable in application areas beyond construction where small-particle segmentation is needed. Our experimental results validate the advantages of our method by comparing to the original SAM method both in quantitative and qualitative experiments.
comment: 12 pages, 4 figures. Accepted for presentation at EUSIPCO 2025, September 8-12, 2025. List of accepted papers available at http://cmsworkshops.com/EUSIPCO2025/papers/accepted_papers.php
☆ LRQ-DiT: Log-Rotation Post-Training Quantization of Diffusion Transformers for Text-to-Image Generation
Diffusion Transformers (DiTs) have achieved impressive performance in text-to-image generation. However, their high computational cost and large parameter sizes pose significant challenges for usage in resource-constrained scenarios. Post-training quantization (PTQ) is a promising solution to reduce memory usage and accelerate inference, but existing PTQ methods suffer from severe performance degradation under extreme low-bit settings. We identify two key obstacles to low-bit post-training quantization for DiT models: (1) model weights follow a Gaussian-like distribution with long tails, causing uniform quantization to poorly allocate intervals and leading to significant errors; (2) two types of activation outliers: (i) Mild Outliers with slightly elevated values, and (ii) Salient Outliers with large magnitudes concentrated in specific channels, which disrupt activation quantization. To address these issues, we propose LRQ-DiT, an efficient and accurate PTQ framework. We introduce Twin-Log Quantization (TLQ), a log-based method that aligns well with the weight distribution and reduces quantization errors. We also propose an Adaptive Rotation Scheme (ARS) that dynamically applies Hadamard or outlier-aware rotations based on activation fluctuation, effectively mitigating the impact of both types of outliers. We evaluate LRQ-DiT on PixArt and FLUX under various bit-width settings, and validate the performance on COCO, MJHQ, and sDCI datasets. LRQ-DiT achieves low-bit quantization of DiT models while preserving image quality, outperforming existing PTQ baselines.
☆ When Cars Have Stereotypes: Auditing Demographic Bias in Objects from Text-to-Image Models
While prior research on text-to-image generation has predominantly focused on biases in human depictions, we investigate a more subtle yet pervasive phenomenon: demographic bias in generated objects (e.g., cars). We introduce SODA (Stereotyped Object Diagnostic Audit), a novel framework for systematically measuring such biases. Our approach compares visual attributes of objects generated with demographic cues (e.g., "for young people'') to those from neutral prompts, across 2,700 images produced by three state-of-the-art models (GPT Image-1, Imagen 4, and Stable Diffusion) in five object categories. Through a comprehensive analysis, we uncover strong associations between specific demographic groups and visual attributes, such as recurring color patterns prompted by gender or ethnicity cues. These patterns reflect and reinforce not only well-known stereotypes but also more subtle and unintuitive biases. We also observe that some models generate less diverse outputs, which in turn amplifies the visual disparities compared to neutral prompts. Our proposed auditing framework offers a practical approach for testing, revealing how stereotypes still remain embedded in today's generative models. We see this as an essential step toward more systematic and responsible AI development.
☆ Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models ICCV 2025
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
comment: Accepted at ICCV 2025
☆ VideoGuard: Protecting Video Content from Unauthorized Editing
With the rapid development of generative technology, current generative models can generate high-fidelity digital content and edit it in a controlled manner. However, there is a risk that malicious individuals might misuse these capabilities for misleading activities. Although existing research has attempted to shield photographic images from being manipulated by generative models, there remains a significant disparity in the protection offered to video content editing. To bridge the gap, we propose a protection method named VideoGuard, which can effectively protect videos from unauthorized malicious editing. This protection is achieved through the subtle introduction of nearly unnoticeable perturbations that interfere with the functioning of the intended generative diffusion models. Due to the redundancy between video frames, and inter-frame attention mechanism in video diffusion models, simply applying image-based protection methods separately to every video frame can not shield video from unauthorized editing. To tackle the above challenge, we adopt joint frame optimization, treating all video frames as an optimization entity. Furthermore, we extract video motion information and fuse it into optimization objectives. Thus, these alterations can effectively force the models to produce outputs that are implausible and inconsistent. We provide a pipeline to optimize this perturbation. Finally, we use both objective metrics and subjective metrics to demonstrate the efficacy of our method, and the results show that the protection performance of VideoGuard is superior to all the baseline methods.
comment: ai security, 10pages, 5 figures
☆ IKOD: Mitigating Visual Attention Degradation in Large Vision-Language Models
Recent advancements in Large Vision-Language Models (LVLMs) have demonstrated significant progress across multiple domains. However, these models still face the inherent challenge of integrating vision and language for collaborative inference, which often leads to "hallucinations", outputs that are not grounded in the corresponding images. Many efforts have been made to address these issues, but each comes with its own limitations, such as high computational cost or expensive dataset annotation. Recent research shows that LVLMs exhibit a long-term bias where hallucinations increase as the sequence length grows, yet the underlying cause remains poorly understood. Building on extensive research into attention mechanisms in LVLMs, we analyze the relationship between this long-term bias and visual attention. In our research, we identify a consistent phenomenon in current LVLMs: the model's attention to visual input diminishes as the generated sequence grows, which we hypothesize to be a key factor contributing to observed increasing hallucinations. Based on these insights, we propose Image attention-guided Key-value merging cOllaborative Decoding (IKOD), a collaborative decoding strategy generating more image-focused sequences. This method derives logits from shorter sequences with higher image attention through key-value merging and combines them with those from the original decoding, effectively mitigating attention degradation and suppressing hallucinations while not incurring too much inference cost. Extensive experiments on both hallucination and comprehensive benchmarks demonstrate IKOD's superior effectiveness in mitigating hallucinations and improving comprehensive capacities for LVLMs. Importantly, IKOD requires no additional training or external tools, making it a lightweight and efficient framework applicable to various models.
☆ Evaluating the Predictive Value of Preoperative MRI for Erectile Dysfunction Following Radical Prostatectomy MICCAI 2025
Accurate preoperative prediction of erectile dysfunction (ED) is important for counseling patients undergoing radical prostatectomy. While clinical features are established predictors, the added value of preoperative MRI remains underexplored. We investigate whether MRI provides additional predictive value for ED at 12 months post-surgery, evaluating four modeling strategies: (1) a clinical-only baseline, representing current state-of-the-art; (2) classical models using handcrafted anatomical features derived from MRI; (3) deep learning models trained directly on MRI slices; and (4) multimodal fusion of imaging and clinical inputs. Imaging-based models (maximum AUC 0.569) slightly outperformed handcrafted anatomical approaches (AUC 0.554) but fell short of the clinical baseline (AUC 0.663). Fusion models offered marginal gains (AUC 0.586) but did not exceed clinical-only performance. SHAP analysis confirmed that clinical features contributed most to predictive performance. Saliency maps from the best-performing imaging model suggested a predominant focus on anatomically plausible regions, such as the prostate and neurovascular bundles. While MRI-based models did not improve predictive performance over clinical features, our findings suggest that they try to capture patterns in relevant anatomical structures and may complement clinical predictors in future multimodal approaches.
comment: 13 pages, 5 figures, 2 tables. Accepted at PRedictive Intelligence in MEdicine workshop @ MICCAI 2025 (PRIME-MICCAI). This is the submitted manuscript with added link to github repo, funding acknowledgements and authors' names and affiliations. No further post submission improvements or corrections were integrated. Final version not published yet
☆ AVPDN: Learning Motion-Robust and Scale-Adaptive Representations for Video-Based Polyp Detection
Accurate detection of polyps is of critical importance for the early and intermediate stages of colorectal cancer diagnosis. Compared to static images, dynamic colonoscopy videos provide more comprehensive visual information, which can facilitate the development of effective treatment plans. However, unlike fixed-camera recordings, colonoscopy videos often exhibit rapid camera movement, introducing substantial background noise that disrupts the structural integrity of the scene and increases the risk of false positives. To address these challenges, we propose the Adaptive Video Polyp Detection Network (AVPDN), a robust framework for multi-scale polyp detection in colonoscopy videos. AVPDN incorporates two key components: the Adaptive Feature Interaction and Augmentation (AFIA) module and the Scale-Aware Context Integration (SACI) module. The AFIA module adopts a triple-branch architecture to enhance feature representation. It employs dense self-attention for global context modeling, sparse self-attention to mitigate the influence of low query-key similarity in feature aggregation, and channel shuffle operations to facilitate inter-branch information exchange. In parallel, the SACI module is designed to strengthen multi-scale feature integration. It utilizes dilated convolutions with varying receptive fields to capture contextual information at multiple spatial scales, thereby improving the model's denoising capability. Experiments conducted on several challenging public benchmarks demonstrate the effectiveness and generalization ability of the proposed method, achieving competitive performance in video-based polyp detection tasks.
☆ READ: Real-time and Efficient Asynchronous Diffusion for Audio-driven Talking Head Generation
The introduction of diffusion models has brought significant advances to the field of audio-driven talking head generation. However, the extremely slow inference speed severely limits the practical implementation of diffusion-based talking head generation models. In this study, we propose READ, the first real-time diffusion-transformer-based talking head generation framework. Our approach first learns a spatiotemporal highly compressed video latent space via a temporal VAE, significantly reducing the token count to accelerate generation. To achieve better audio-visual alignment within this compressed latent space, a pre-trained Speech Autoencoder (SpeechAE) is proposed to generate temporally compressed speech latent codes corresponding to the video latent space. These latent representations are then modeled by a carefully designed Audio-to-Video Diffusion Transformer (A2V-DiT) backbone for efficient talking head synthesis. Furthermore, to ensure temporal consistency and accelerated inference in extended generation, we propose a novel asynchronous noise scheduler (ANS) for both the training and inference process of our framework. The ANS leverages asynchronous add-noise and asynchronous motion-guided generation in the latent space, ensuring consistency in generated video clips. Experimental results demonstrate that READ outperforms state-of-the-art methods by generating competitive talking head videos with significantly reduced runtime, achieving an optimal balance between quality and speed while maintaining robust metric stability in long-time generation.
comment: 9 pages
☆ Video Demoireing using Focused-Defocused Dual-Camera System
Moire patterns, unwanted color artifacts in images and videos, arise from the interference between spatially high-frequency scene contents and the spatial discrete sampling of digital cameras. Existing demoireing methods primarily rely on single-camera image/video processing, which faces two critical challenges: 1) distinguishing moire patterns from visually similar real textures, and 2) preserving tonal consistency and temporal coherence while removing moire artifacts. To address these issues, we propose a dual-camera framework that captures synchronized videos of the same scene: one in focus (retaining high-quality textures but may exhibit moire patterns) and one defocused (with significantly reduced moire patterns but blurred textures). We use the defocused video to help distinguish moire patterns from real texture, so as to guide the demoireing of the focused video. We propose a frame-wise demoireing pipeline, which begins with an optical flow based alignment step to address any discrepancies in displacement and occlusion between the focused and defocused frames. Then, we leverage the aligned defocused frame to guide the demoireing of the focused frame using a multi-scale CNN and a multi-dimensional training loss. To maintain tonal and temporal consistency, our final step involves a joint bilateral filter to leverage the demoireing result from the CNN as the guide to filter the input focused frame to obtain the final output. Experimental results demonstrate that our proposed framework largely outperforms state-of-the-art image and video demoireing methods.
☆ CoPS: Conditional Prompt Synthesis for Zero-Shot Anomaly Detection
Recently, large pre-trained vision-language models have shown remarkable performance in zero-shot anomaly detection (ZSAD). With fine-tuning on a single auxiliary dataset, the model enables cross-category anomaly detection on diverse datasets covering industrial defects and medical lesions. Compared to manually designed prompts, prompt learning eliminates the need for expert knowledge and trial-and-error. However, it still faces the following challenges: (i) static learnable tokens struggle to capture the continuous and diverse patterns of normal and anomalous states, limiting generalization to unseen categories; (ii) fixed textual labels provide overly sparse category information, making the model prone to overfitting to a specific semantic subspace. To address these issues, we propose Conditional Prompt Synthesis (CoPS), a novel framework that synthesizes dynamic prompts conditioned on visual features to enhance ZSAD performance. Specifically, we extract representative normal and anomaly prototypes from fine-grained patch features and explicitly inject them into prompts, enabling adaptive state modeling. Given the sparsity of class labels, we leverage a variational autoencoder to model semantic image features and implicitly fuse varied class tokens into prompts. Additionally, integrated with our spatially-aware alignment mechanism, extensive experiments demonstrate that CoPS surpasses state-of-the-art methods by 2.5% AUROC in both classification and segmentation across 13 industrial and medical datasets. Code will be available at https://github.com/cqylunlun/CoPS.
comment: 19 pages, 33 figures, 14 tables
☆ RAAG: Ratio Aware Adaptive Guidance
Flow-based generative models have recently achieved remarkable progress in image and video synthesis, with classifier-free guidance (CFG) becoming the standard tool for high-fidelity, controllable generation. However, despite their practical success, little is known about how guidance interacts with different stages of the sampling process-especially in the fast, low-step regimes typical of modern flow-based pipelines. In this work, we uncover and analyze a fundamental instability: the earliest reverse steps are acutely sensitive to the guidance scale, owing to a pronounced spike in the relative strength (RATIO) of conditional to unconditional predictions. Through rigorous theoretical analysis and empirical validation, we show that this RATIO spike is intrinsic to the data distribution, independent of the model architecture, and causes exponential error amplification when paired with strong guidance. To address this, we propose a simple, theoretically grounded, RATIO-aware adaptive guidance schedule that automatically dampens the guidance scale at early steps based on the evolving RATIO, using a closed-form exponential decay. Our method is lightweight, requires no additional inference overhead, and is compatible with standard flow frameworks. Experiments across state-of-the-art image (SD3.5, Lumina) and video (WAN2.1) models demonstrate that our approach enables up to 3x faster sampling while maintaining or improving generation quality, robustness, and semantic alignment. Extensive ablation studies further confirm the generality and stability of our schedule across models, datasets, and hyperparameters. Our findings highlight the critical role of stepwise guidance adaptation in unlocking the full potential of fast flow-based generative models.
☆ MedCAL-Bench: A Comprehensive Benchmark on Cold-Start Active Learning with Foundation Models for Medical Image Analysis
Cold-Start Active Learning (CSAL) aims to select informative samples for annotation without prior knowledge, which is important for improving annotation efficiency and model performance under a limited annotation budget in medical image analysis. Most existing CSAL methods rely on Self-Supervised Learning (SSL) on the target dataset for feature extraction, which is inefficient and limited by insufficient feature representation. Recently, pre-trained Foundation Models (FMs) have shown powerful feature extraction ability with a potential for better CSAL. However, this paradigm has been rarely investigated, with a lack of benchmarks for comparison of FMs in CSAL tasks. To this end, we propose MedCAL-Bench, the first systematic FM-based CSAL benchmark for medical image analysis. We evaluate 14 FMs and 7 CSAL strategies across 7 datasets under different annotation budgets, covering classification and segmentation tasks from diverse medical modalities. It is also the first CSAL benchmark that evaluates both the feature extraction and sample selection stages. Our experimental results reveal that: 1) Most FMs are effective feature extractors for CSAL, with DINO family performing the best in segmentation; 2) The performance differences of these FMs are large in segmentation tasks, while small for classification; 3) Different sample selection strategies should be considered in CSAL on different datasets, with Active Learning by Processing Surprisal (ALPS) performing the best in segmentation while RepDiv leading for classification. The code is available at https://github.com/HiLab-git/MedCAL-Bench.
comment: 23 pages, 6 figures, 10 tables
☆ Spatial Imputation Drives Cross-Domain Alignment for EEG Classification
Electroencephalogram (EEG) signal classification faces significant challenges due to data distribution shifts caused by heterogeneous electrode configurations, acquisition protocols, and hardware discrepancies across domains. This paper introduces IMAC, a novel channel-dependent mask and imputation self-supervised framework that formulates the alignment of cross-domain EEG data shifts as a spatial time series imputation task. To address heterogeneous electrode configurations in cross-domain scenarios, IMAC first standardizes different electrode layouts using a 3D-to-2D positional unification mapping strategy, establishing unified spatial representations. Unlike previous mask-based self-supervised representation learning methods, IMAC introduces spatio-temporal signal alignment. This involves constructing a channel-dependent mask and reconstruction task framed as a low-to-high resolution EEG spatial imputation problem. Consequently, this approach simulates cross-domain variations such as channel omissions and temporal instabilities, thus enabling the model to leverage the proposed imputer for robust signal alignment during inference. Furthermore, IMAC incorporates a disentangled structure that separately models the temporal and spatial information of the EEG signals separately, reducing computational complexity while enhancing flexibility and adaptability. Comprehensive evaluations across 10 publicly available EEG datasets demonstrate IMAC's superior performance, achieving state-of-the-art classification accuracy in both cross-subject and cross-center validation scenarios. Notably, IMAC shows strong robustness under both simulated and real-world distribution shifts, surpassing baseline methods by up to $35$\% in integrity scores while maintaining consistent classification accuracy.
comment: ACMMM 2025 poster
☆ R2GenKG: Hierarchical Multi-modal Knowledge Graph for LLM-based Radiology Report Generation
X-ray medical report generation is one of the important applications of artificial intelligence in healthcare. With the support of large foundation models, the quality of medical report generation has significantly improved. However, challenges such as hallucination and weak disease diagnostic capability still persist. In this paper, we first construct a large-scale multi-modal medical knowledge graph (termed M3KG) based on the ground truth medical report using the GPT-4o. It contains 2477 entities, 3 kinds of relations, 37424 triples, and 6943 disease-aware vision tokens for the CheXpert Plus dataset. Then, we sample it to obtain multi-granularity semantic graphs and use an R-GCN encoder for feature extraction. For the input X-ray image, we adopt the Swin-Transformer to extract the vision features and interact with the knowledge using cross-attention. The vision tokens are fed into a Q-former and retrieved the disease-aware vision tokens using another cross-attention. Finally, we adopt the large language model to map the semantic knowledge graph, input X-ray image, and disease-aware vision tokens into language descriptions. Extensive experiments on multiple datasets fully validated the effectiveness of our proposed knowledge graph and X-ray report generation framework. The source code of this paper will be released on https://github.com/Event-AHU/Medical_Image_Analysis.
☆ Learning Latent Representations for Image Translation using Frequency Distributed CycleGAN
This paper presents Fd-CycleGAN, an image-to-image (I2I) translation framework that enhances latent representation learning to approximate real data distributions. Building upon the foundation of CycleGAN, our approach integrates Local Neighborhood Encoding (LNE) and frequency-aware supervision to capture fine-grained local pixel semantics while preserving structural coherence from the source domain. We employ distribution-based loss metrics, including KL/JS divergence and log-based similarity measures, to explicitly quantify the alignment between real and generated image distributions in both spatial and frequency domains. To validate the efficacy of Fd-CycleGAN, we conduct experiments on diverse datasets -- Horse2Zebra, Monet2Photo, and a synthetically augmented Strike-off dataset. Compared to baseline CycleGAN and other state-of-the-art methods, our approach demonstrates superior perceptual quality, faster convergence, and improved mode diversity, particularly in low-data regimes. By effectively capturing local and global distribution characteristics, Fd-CycleGAN achieves more visually coherent and semantically consistent translations. Our results suggest that frequency-guided latent learning significantly improves generalization in image translation tasks, with promising applications in document restoration, artistic style transfer, and medical image synthesis. We also provide comparative insights with diffusion-based generative models, highlighting the advantages of our lightweight adversarial approach in terms of training efficiency and qualitative output.
comment: This paper is currently under review for publication in an IEEE Transactions. If accepted, the copyright will be transferred to IEEE
☆ SlotMatch: Distilling Temporally Consistent Object-Centric Representations for Unsupervised Video Segmentation
Unsupervised video segmentation is a challenging computer vision task, especially due to the lack of supervisory signals coupled with the complexity of visual scenes. To overcome this challenge, state-of-the-art models based on slot attention often have to rely on large and computationally expensive neural architectures. To this end, we propose a simple knowledge distillation framework that effectively transfers object-centric representations to a lightweight student. The proposed framework, called SlotMatch, aligns corresponding teacher and student slots via the cosine similarity, requiring no additional distillation objectives or auxiliary supervision. The simplicity of SlotMatch is confirmed via theoretical and empirical evidence, both indicating that integrating additional losses is redundant. We conduct experiments on two datasets to compare the state-of-the-art teacher model, SlotContrast, with our distilled student. The results show that our student based on SlotMatch matches and even outperforms its teacher, while using 3.6x less parameters and running 1.9x faster. Moreover, our student surpasses previous unsupervised video segmentation models.
☆ Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling
Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.
☆ Sparsity and Total Variation Constrained Multilayer Linear Unmixing for Hyperspectral Imagery
Hyperspectral unmixing aims at estimating material signatures (known as endmembers) and the corresponding proportions (referred to abundances), which is a critical preprocessing step in various hyperspectral imagery applications. This study develops a novel approach called sparsity and total variation (TV) constrained multilayer linear unmixing (STVMLU) for hyperspectral imagery. Specifically, based on a multilayer matrix factorization model, to improve the accuracy of unmixing, a TV constraint is incorporated to consider adjacent spatial similarity. Additionally, a L1/2-norm sparse constraint is adopted to effectively characterize the sparsity of the abundance matrix. For optimizing the STVMLU model, the method of alternating direction method of multipliers (ADMM) is employed, which allows for the simultaneous extraction of endmembers and their corresponding abundance matrix. Experimental results illustrate the enhanced performance of the proposed STVMLU when compared to other algorithms.
☆ SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models ICCV 2025
Explicitly disentangling style and content in vision models remains challenging due to their semantic overlap and the subjectivity of human perception. Existing methods propose separation through generative or discriminative objectives, but they still face the inherent ambiguity of disentangling intertwined concepts. Instead, we ask: Can we bypass explicit disentanglement by learning to merge style and content invertibly, allowing separation to emerge naturally? We propose SCFlow, a flow-matching framework that learns bidirectional mappings between entangled and disentangled representations. Our approach is built upon three key insights: 1) Training solely to merge style and content, a well-defined task, enables invertible disentanglement without explicit supervision; 2) flow matching bridges on arbitrary distributions, avoiding the restrictive Gaussian priors of diffusion models and normalizing flows; and 3) a synthetic dataset of 510,000 samples (51 styles $\times$ 10,000 content samples) was curated to simulate disentanglement through systematic style-content pairing. Beyond controllable generation tasks, we demonstrate that SCFlow generalizes to ImageNet-1k and WikiArt in zero-shot settings and achieves competitive performance, highlighting that disentanglement naturally emerges from the invertible merging process.
comment: ICCV 2025, Project Page: https://compvis.github.io/SCFlow/
☆ DepthGait: Multi-Scale Cross-Level Feature Fusion of RGB-Derived Depth and Silhouette Sequences for Robust Gait Recognition
Robust gait recognition requires highly discriminative representations, which are closely tied to input modalities. While binary silhouettes and skeletons have dominated recent literature, these 2D representations fall short of capturing sufficient cues that can be exploited to handle viewpoint variations, and capture finer and meaningful details of gait. In this paper, we introduce a novel framework, termed DepthGait, that incorporates RGB-derived depth maps and silhouettes for enhanced gait recognition. Specifically, apart from the 2D silhouette representation of the human body, the proposed pipeline explicitly estimates depth maps from a given RGB image sequence and uses them as a new modality to capture discriminative features inherent in human locomotion. In addition, a novel multi-scale and cross-level fusion scheme has also been developed to bridge the modality gap between depth maps and silhouettes. Extensive experiments on standard benchmarks demonstrate that the proposed DepthGait achieves state-of-the-art performance compared to peer methods and attains an impressive mean rank-1 accuracy on the challenging datasets.
☆ Neutralizing Token Aggregation via Information Augmentation for Efficient Test-Time Adaptation
Test-Time Adaptation (TTA) has emerged as an effective solution for adapting Vision Transformers (ViT) to distribution shifts without additional training data. However, existing TTA methods often incur substantial computational overhead, limiting their applicability in resource-constrained real-world scenarios. To reduce inference cost, plug-and-play token aggregation methods merge redundant tokens in ViTs to reduce total processed tokens. Albeit efficient, it suffers from significant performance degradation when directly integrated with existing TTA methods. We formalize this problem as Efficient Test-Time Adaptation (ETTA), seeking to preserve the adaptation capability of TTA while reducing inference latency. In this paper, we first provide a theoretical analysis from a novel mutual information perspective, showing that token aggregation inherently leads to information loss, which cannot be fully mitigated by conventional norm-tuning-based TTA methods. Guided by this insight, we propose to \textbf{N}eutralize Token \textbf{A}ggregation \textbf{v}ia \textbf{I}nformation \textbf{A}ugmentation (\textbf{NAVIA}). Specifically, we directly augment the [CLS] token embedding and incorporate adaptive biases into the [CLS] token in shallow layers of ViTs. We theoretically demonstrate that these augmentations, when optimized via entropy minimization, recover the information lost due to token aggregation. Extensive experiments across various out-of-distribution benchmarks demonstrate that NAVIA significantly outperforms state-of-the-art methods by over 2.5\%, while achieving an inference latency reduction of more than 20\%, effectively addressing the ETTA challenge.
comment: 9 pages, 7 figures
☆ GaitAdapt: Continual Learning for Evolving Gait Recognition
Current gait recognition methodologies generally necessitate retraining when encountering new datasets. Nevertheless, retrained models frequently encounter difficulties in preserving knowledge from previous datasets, leading to a significant decline in performance on earlier test sets. To tackle these challenges, we present a continual gait recognition task, termed GaitAdapt, which supports the progressive enhancement of gait recognition capabilities over time and is systematically categorized according to various evaluation scenarios. Additionally, we propose GaitAdapter, a non-replay continual learning approach for gait recognition. This approach integrates the GaitPartition Adaptive Knowledge (GPAK) module, employing graph neural networks to aggregate common gait patterns from current data into a repository constructed from graph vectors. Subsequently, this repository is used to improve the discriminability of gait features in new tasks, thereby enhancing the model's ability to effectively recognize gait patterns. We also introduce a Euclidean Distance Stability Method (EDSN) based on negative pairs, which ensures that newly added gait samples from different classes maintain similar relative spatial distributions across both previous and current gait tasks, thereby alleviating the impact of task changes on the distinguishability of original domain features. Extensive evaluations demonstrate that GaitAdapter effectively retains gait knowledge acquired from diverse tasks, exhibiting markedly superior discriminative capability compared to alternative methods.
☆ GRASPing Anatomy to Improve Pathology Segmentation MICCAI
Radiologists rely on anatomical understanding to accurately delineate pathologies, yet most current deep learning approaches use pure pattern recognition and ignore the anatomical context in which pathologies develop. To narrow this gap, we introduce GRASP (Guided Representation Alignment for the Segmentation of Pathologies), a modular plug-and-play framework that enhances pathology segmentation models by leveraging existing anatomy segmentation models through pseudolabel integration and feature alignment. Unlike previous approaches that obtain anatomical knowledge via auxiliary training, GRASP integrates into standard pathology optimization regimes without retraining anatomical components. We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework's inner workings. We find that GRASP consistently achieves top rankings across multiple evaluation metrics and diverse architectures. The framework's dual anatomy injection strategy, combining anatomical pseudo-labels as input channels with transformer-guided anatomical feature fusion, effectively incorporates anatomical context.
comment: Accepted at 16th MICCAI Workshop on Machine Learning in Medical Imaging (MLMI2025)
☆ Diffusion Once and Done: Degradation-Aware LoRA for Efficient All-in-One Image Restoration
Diffusion models have revealed powerful potential in all-in-one image restoration (AiOIR), which is talented in generating abundant texture details. The existing AiOIR methods either retrain a diffusion model or fine-tune the pretrained diffusion model with extra conditional guidance. However, they often suffer from high inference costs and limited adaptability to diverse degradation types. In this paper, we propose an efficient AiOIR method, Diffusion Once and Done (DOD), which aims to achieve superior restoration performance with only one-step sampling of Stable Diffusion (SD) models. Specifically, multi-degradation feature modulation is first introduced to capture different degradation prompts with a pretrained diffusion model. Then, parameter-efficient conditional low-rank adaptation integrates the prompts to enable the fine-tuning of the SD model for adapting to different degradation types. Besides, a high-fidelity detail enhancement module is integrated into the decoder of SD to improve structural and textural details. Experiments demonstrate that our method outperforms existing diffusion-based restoration approaches in both visual quality and inference efficiency.
☆ GL-LCM: Global-Local Latent Consistency Models for Fast High-Resolution Bone Suppression in Chest X-Ray Images MICCAI 2025
Chest X-Ray (CXR) imaging for pulmonary diagnosis raises significant challenges, primarily because bone structures can obscure critical details necessary for accurate diagnosis. Recent advances in deep learning, particularly with diffusion models, offer significant promise for effectively minimizing the visibility of bone structures in CXR images, thereby improving clarity and diagnostic accuracy. Nevertheless, existing diffusion-based methods for bone suppression in CXR imaging struggle to balance the complete suppression of bones with preserving local texture details. Additionally, their high computational demand and extended processing time hinder their practical use in clinical settings. To address these limitations, we introduce a Global-Local Latent Consistency Model (GL-LCM) architecture. This model combines lung segmentation, dual-path sampling, and global-local fusion, enabling fast high-resolution bone suppression in CXR images. To tackle potential boundary artifacts and detail blurring in local-path sampling, we further propose Local-Enhanced Guidance, which addresses these issues without additional training. Comprehensive experiments on a self-collected dataset SZCH-X-Rays, and the public dataset JSRT, reveal that our GL-LCM delivers superior bone suppression and remarkable computational efficiency, significantly outperforming several competitive methods. Our code is available at https://github.com/diaoquesang/GL-LCM.
comment: 11 pages, 3 figures, accepted by MICCAI 2025
☆ FedPromo: Federated Lightweight Proxy Models at the Edge Bring New Domains to Foundation Models AAAI 2026
Federated Learning (FL) is an established paradigm for training deep learning models on decentralized data. However, as the size of the models grows, conventional FL approaches often require significant computational resources on client devices, which may not be feasible. We introduce FedPromo, a novel framework that enables efficient adaptation of large-scale foundation models stored on a central server to new domains encountered only by remote clients. Instead of directly training the large model on client devices, FedPromo optimizes lightweight proxy models via FL, significantly reducing computational overhead while maintaining privacy. Our method follows a two-stage process: first, server-side knowledge distillation aligns the representations of a large-scale foundation model (e.g., a transformer) with those of a compact counterpart (e.g., a CNN). Then, the compact model encoder is deployed to client devices, where trainable classifiers are learned locally. These classifiers are subsequently aggregated and seamlessly transferred back to the foundation model, facilitating personalized adaptation without requiring direct access to user data. Through novel regularization strategies, our framework enables decentralized multi-domain learning, balancing performance, privacy, and resource efficiency. Extensive experiments on five image classification benchmarks demonstrate that FedPromo outperforms existing methods while assuming limited-resource clients.
comment: 7 pages (main document) + 12 pages (appendix), 3 figures (main) + 12 figures (appendix), 5 tables (main) + 6 tables (appendix), submitted to AAAI 2026
☆ VLMQ: Efficient Post-Training Quantization for Large Vision-Language Models via Hessian Augmentation
Post-training quantization (PTQ) has emerged as an effective approach for compressing large models and accelerating their inference without retraining. While PTQ has been extensively studied in the context of large language models (LLMs), its applicability to vision-language models (VLMs) remains underexplored. In this paper, we identify a modality discrepancy (\emph{i.e.}, limited text tokens \emph{vs.} excessive and redundant vision tokens) of VLMs. However, existing Hessian-based LLM PTQ methods treat all tokens equally during quantization, resulting in severe performance drops when applied to VLMs. Motivated by this observation, we propose a novel importance-aware PTQ framework tailored for VLMs, dubbed VLMQ. Specifically, to address vision token redundancy, VLMQ 1) optimizes an importance-aware objective that yields an enhanced Hessian with token-level importance factors, while retaining compatibility with parallelized weight updates, and 2) ensures efficiency and effectiveness by computing these factors via a single lightweight block-wise backward pass, guided by a theoretical connection to token-level perturbations. Extensive evaluations on 8 benchmarks across 0.5B$\sim$32B VLMs demonstrate the state-of-the-art (SOTA) performance of our VLMQ, particularly under low-bit settings. For example, it achieves a substantial \textbf{16.45\%} improvement on MME-RealWorld under 2-bit quantization.
comment: 13 pages, 5 figures
☆ WaMo: Wavelet-Enhanced Multi-Frequency Trajectory Analysis for Fine-Grained Text-Motion Retrieval
Text-Motion Retrieval (TMR) aims to retrieve 3D motion sequences semantically relevant to text descriptions. However, matching 3D motions with text remains highly challenging, primarily due to the intricate structure of human body and its spatial-temporal dynamics. Existing approaches often overlook these complexities, relying on general encoding methods that fail to distinguish different body parts and their dynamics, limiting precise semantic alignment. To address this, we propose WaMo, a novel wavelet-based multi-frequency feature extraction framework. It fully captures part-specific and time-varying motion details across multiple resolutions on body joints, extracting discriminative motion features to achieve fine-grained alignment with texts. WaMo has three key components: (1) Trajectory Wavelet Decomposition decomposes motion signals into frequency components that preserve both local kinematic details and global motion semantics. (2) Trajectory Wavelet Reconstruction uses learnable inverse wavelet transforms to reconstruct original joint trajectories from extracted features, ensuring the preservation of essential spatial-temporal information. (3) Disordered Motion Sequence Prediction reorders shuffled motion sequences to improve the learning of inherent temporal coherence, enhancing motion-text alignment. Extensive experiments demonstrate WaMo's superiority, achieving 17.0\% and 18.2\% improvements in $Rsum$ on HumanML3D and KIT-ML datasets, respectively, outperforming existing state-of-the-art (SOTA) methods.
☆ UniFucGrasp: Human-Hand-Inspired Unified Functional Grasp Annotation Strategy and Dataset for Diverse Dexterous Hands
Dexterous grasp datasets are vital for embodied intelligence, but mostly emphasize grasp stability, ignoring functional grasps needed for tasks like opening bottle caps or holding cup handles. Most rely on bulky, costly, and hard-to-control high-DOF Shadow Hands. Inspired by the human hand's underactuated mechanism, we establish UniFucGrasp, a universal functional grasp annotation strategy and dataset for multiple dexterous hand types. Based on biomimicry, it maps natural human motions to diverse hand structures and uses geometry-based force closure to ensure functional, stable, human-like grasps. This method supports low-cost, efficient collection of diverse, high-quality functional grasps. Finally, we establish the first multi-hand functional grasp dataset and provide a synthesis model to validate its effectiveness. Experiments on the UFG dataset, IsaacSim, and complex robotic tasks show that our method improves functional manipulation accuracy and grasp stability, enables efficient generalization across diverse robotic hands, and overcomes annotation cost and generalization challenges in dexterous grasping. The project page is at https://haochen611.github.io/UFG.
comment: The project page is at https://haochen611.github.io/UFG
☆ CIVQLLIE: Causal Intervention with Vector Quantization for Low-Light Image Enhancement
Images captured in nighttime scenes suffer from severely reduced visibility, hindering effective content perception. Current low-light image enhancement (LLIE) methods face significant challenges: data-driven end-to-end mapping networks lack interpretability or rely on unreliable prior guidance, struggling under extremely dark conditions, while physics-based methods depend on simplified assumptions that often fail in complex real-world scenarios. To address these limitations, we propose CIVQLLIE, a novel framework that leverages the power of discrete representation learning through causal reasoning. We achieve this through Vector Quantization (VQ), which maps continuous image features to a discrete codebook of visual tokens learned from large-scale high-quality images. This codebook serves as a reliable prior, encoding standardized brightness and color patterns that are independent of degradation. However, direct application of VQ to low-light images fails due to distribution shifts between degraded inputs and the learned codebook. Therefore, we propose a multi-level causal intervention approach to systematically correct these shifts. First, during encoding, our Pixel-level Causal Intervention (PCI) module intervenes to align low-level features with the brightness and color distributions expected by the codebook. Second, a Feature-aware Causal Intervention (FCI) mechanism with Low-frequency Selective Attention Gating (LSAG) identifies and enhances channels most affected by illumination degradation, facilitating accurate codebook token matching while enhancing the encoder's generalization performance through flexible feature-level intervention. Finally, during decoding, the High-frequency Detail Reconstruction Module (HDRM) leverages structural information preserved in the matched codebook representations to reconstruct fine details using deformable convolution techniques.
☆ Less is More: Token-Efficient Video-QA via Adaptive Frame-Pruning and Semantic Graph Integration
The practical application of Multimodal Large Language Models (MLLMs) to Video Question Answering (Video-QA) is severely hindered by the high token cost of processing numerous video frames. While increasing the number of sampled frames is a common strategy, we observe a "less is more" phenomenon where excessive frames can paradoxically degrade performance due to context dilution. Concurrently, state-of-the-art keyframe selection methods, while effective, still yield significant temporal redundancy, which we term 'visual echoes'. To address these dual challenges, we propose Adaptive Frame-Pruning (AFP), a novel post-processing method that intelligently prunes the selected keyframes. AFP employs an adaptive hierarchical clustering algorithm on a fused ResNet-50 and CLIP feature space to identify and merge these echoes into single representatives. To compensate for information loss, we then introduce a lightweight, text-based semantic graph that provides critical context with minimal token overhead. Conducting extensive experiments on the LongVideoBench and VideoMME benchmarks across multiple leading MLLMs, our full approach demonstrates a drastic reduction in required frames by up to 86.9% and total input tokens by up to 83.2%. Crucially, by providing a concise, high-quality set of frames, our method not only enhances efficiency but often improves accuracy over baselines that use more frames. The code will be released upon publication.
comment: Corresponding authors: Weiyu Guo, Hui Xiong
☆ Beyond Illumination: Fine-Grained Detail Preservation in Extreme Dark Image Restoration
Recovering fine-grained details in extremely dark images remains challenging due to severe structural information loss and noise corruption. Existing enhancement methods often fail to preserve intricate details and sharp edges, limiting their effectiveness in downstream applications like text and edge detection. To address these deficiencies, we propose an efficient dual-stage approach centered on detail recovery for dark images. In the first stage, we introduce a Residual Fourier-Guided Module (RFGM) that effectively restores global illumination in the frequency domain. RFGM captures inter-stage and inter-channel dependencies through residual connections, providing robust priors for high-fidelity frequency processing while mitigating error accumulation risks from unreliable priors. The second stage employs complementary Mamba modules specifically designed for textural structure refinement: (1) Patch Mamba operates on channel-concatenated non-downsampled patches, meticulously modeling pixel-level correlations to enhance fine-grained details without resolution loss. (2) Grad Mamba explicitly focuses on high-gradient regions, alleviating state decay in state space models and prioritizing reconstruction of sharp edges and boundaries. Extensive experiments on multiple benchmark datasets and downstream applications demonstrate that our method significantly improves detail recovery performance while maintaining efficiency. Crucially, the proposed modules are lightweight and can be seamlessly integrated into existing Fourier-based frameworks with minimal computational overhead. Code is available at https://github.com/bywlzts/RFGM.
☆ Macro-from-Micro Planning for High-Quality and Parallelized Autoregressive Long Video Generation
Current autoregressive diffusion models excel at video generation but are generally limited to short temporal durations. Our theoretical analysis indicates that the autoregressive modeling typically suffers from temporal drift caused by error accumulation and hinders parallelization in long video synthesis. To address these limitations, we propose a novel planning-then-populating framework centered on Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches a global storyline for the entire video through two hierarchical stages: Micro Planning and Macro Planning. Specifically, Micro Planning predicts a sparse set of future keyframes within each short video segment, offering motion and appearance priors to guide high-quality video segment generation. Macro Planning extends the in-segment keyframes planning across the entire video through an autoregressive chain of micro plans, ensuring long-term consistency across video segments. Subsequently, MMPL-based Content Populating generates all intermediate frames in parallel across segments, enabling efficient parallelization of autoregressive generation. The parallelization is further optimized by Adaptive Workload Scheduling for balanced GPU execution and accelerated autoregressive video generation. Extensive experiments confirm that our method outperforms existing long video generation models in quality and stability. Generated videos and comparison results are in our project page.
☆ LRDDv2: Enhanced Long-Range Drone Detection Dataset with Range Information and Comprehensive Real-World Challenges
The exponential growth in Unmanned Aerial Vehicles (UAVs) usage underscores the critical need of detecting them at extended distances to ensure safe operations, especially in densely populated areas. Despite the tremendous advances made in computer vision through deep learning, the detection of these small airborne objects remains a formidable challenge. While several datasets have been developed specifically for drone detection, the need for a more extensive and diverse collection of drone image data persists, particularly for long-range detection under varying environmental conditions. We introduce here the Long Range Drone Detection (LRDD) Version 2 dataset, comprising 39,516 meticulously annotated images, as a second release of the LRDD dataset released previously. The LRDDv2 dataset enhances the LRDDv1 by incorporating a greater variety of images, providing a more diverse and comprehensive resource for drone detection research. What sets LRDDv2 apart is its inclusion of target range information for over 8,000 images, making it possible to develop algorithms for drone range estimation. Tailored for long-range aerial object detection, the majority of LRDDv2's dataset consists of images capturing drones with 50 or fewer pixels in 1080p resolution. For access to the complete Long-Range Drone Detection Dataset (LRDD)v2, please visit https://research.coe.drexel.edu/ece/imaple/lrddv2/ .
comment: Accepted and presented at ISRR 2024
☆ Live Demonstration: Neuromorphic Radar for Gesture Recognition ICASSP 2025
We present a neuromorphic radar framework for real-time, low-power hand gesture recognition (HGR) using an event-driven architecture inspired by biological sensing. Our system comprises a 24 GHz Doppler radar front-end and a custom neuromorphic sampler that converts intermediate-frequency (IF) signals into sparse spike-based representations via asynchronous sigma-delta encoding. These events are directly processed by a lightweight neural network deployed on a Cortex-M0 microcontroller, enabling low-latency inference without requiring spectrogram reconstruction. Unlike conventional radar HGR pipelines that continuously sample and process data, our architecture activates only when meaningful motion is detected, significantly reducing memory, power, and computation overhead. Evaluated on a dataset of five gestures collected from seven users, our system achieves > 85% real-time accuracy. To the best of our knowledge, this is the first work that employs bio-inspired asynchronous sigma-delta encoding and an event-driven processing framework for radar-based HGR.
comment: Neuromorphic Radar, Hand Gesture Recognition, Event-Driven, Sigma-Delta Encoding, Sparse Representation. Presented in ICASSP 2025 at Hyderabad, India
☆ Skywork UniPic: Unified Autoregressive Modeling for Visual Understanding and Generation
We introduce Skywork UniPic, a 1.5 billion-parameter autoregressive model that unifies image understanding, text-to-image generation, and image editing within a single architecture-eliminating the need for task-specific adapters or inter-module connectors-and demonstrate that compact multimodal systems can achieve state-of-the-art performance on commodity hardware. Skywork UniPic achieves a GenEval score of 0.86, surpassing most existing unified models; sets a new DPG-Bench complex-generation record of 85.5; attains 5.83 on GEditBench-EN and 3.49 on ImgEdit-Bench for image editing; and generates 1024 x 1024 images with under 15 GB of GPU memory (e.g., RTX 4090). (1) a decoupled encoding strategy that leverages a masked autoregressive encoder for synthesis and a SigLIP2 encoder for understanding, all feeding a shared autoregressive decoder; (2) a progressive, resolution-aware training schedule scaling from 256 x 256 to 1024 x 1024 while dynamically unfreezing parameters to balance capacity and stability; and (3) meticulously curated, 100 million-scale datasets augmented with task-specific reward models to refine generation and editing objectives. By demonstrating that high-fidelity multimodal integration need not incur prohibitive resource demands, Skywork UniPic establishes a practical paradigm for deployable, high-fidelity multimodal AI. Code and weights are publicly available at https://huggingface.co/Skywork/Skywork-UniPic-1.5B.
☆ Architectural Insights into Knowledge Distillation for Object Detection: A Comprehensive Review
Object detection has achieved remarkable accuracy through deep learning, yet these improvements often come with increased computational cost, limiting deployment on resource-constrained devices. Knowledge Distillation (KD) provides an effective solution by enabling compact student models to learn from larger teacher models. However, adapting KD to object detection poses unique challenges due to its dual objectives-classification and localization-as well as foreground-background imbalance and multi-scale feature representation. This review introduces a novel architecture-centric taxonomy for KD methods, distinguishing between CNN-based detectors (covering backbone-level, neck-level, head-level, and RPN/RoI-level distillation) and Transformer-based detectors (including query-level, feature-level, and logit-level distillation). We further evaluate representative methods using the MS COCO and PASCAL VOC datasets with mAP@0.5 as performance metric, providing a comparative analysis of their effectiveness. The proposed taxonomy and analysis aim to clarify the evolving landscape of KD in object detection, highlight current challenges, and guide future research toward efficient and scalable detection systems.
comment: 20 pages, 11 figures, This paper was submitted to IEEE Transactions on Neural Networks and Learning Systems
☆ BaroPoser: Real-time Human Motion Tracking from IMUs and Barometers in Everyday Devices
In recent years, tracking human motion using IMUs from everyday devices such as smartphones and smartwatches has gained increasing popularity. However, due to the sparsity of sensor measurements and the lack of datasets capturing human motion over uneven terrain, existing methods often struggle with pose estimation accuracy and are typically limited to recovering movements on flat terrain only. To this end, we present BaroPoser, the first method that combines IMU and barometric data recorded by a smartphone and a smartwatch to estimate human pose and global translation in real time. By leveraging barometric readings, we estimate sensor height changes, which provide valuable cues for both improving the accuracy of human pose estimation and predicting global translation on non-flat terrain. Furthermore, we propose a local thigh coordinate frame to disentangle local and global motion input for better pose representation learning. We evaluate our method on both public benchmark datasets and real-world recordings. Quantitative and qualitative results demonstrate that our approach outperforms the state-of-the-art (SOTA) methods that use IMUs only with the same hardware configuration.
comment: 9 pages, 10 figures
☆ Zero Shot Domain Adaptive Semantic Segmentation by Synthetic Data Generation and Progressive Adaptation IROS 2025
Deep learning-based semantic segmentation models achieve impressive results yet remain limited in handling distribution shifts between training and test data. In this paper, we present SDGPA (Synthetic Data Generation and Progressive Adaptation), a novel method that tackles zero-shot domain adaptive semantic segmentation, in which no target images are available, but only a text description of the target domain's style is provided. To compensate for the lack of target domain training data, we utilize a pretrained off-the-shelf text-to-image diffusion model, which generates training images by transferring source domain images to target style. Directly editing source domain images introduces noise that harms segmentation because the layout of source images cannot be precisely maintained. To address inaccurate layouts in synthetic data, we propose a method that crops the source image, edits small patches individually, and then merges them back together, which helps improve spatial precision. Recognizing the large domain gap, SDGPA constructs an augmented intermediate domain, leveraging easier adaptation subtasks to enable more stable model adaptation to the target domain. Additionally, to mitigate the impact of noise in synthetic data, we design a progressive adaptation strategy, ensuring robust learning throughout the training process. Extensive experiments demonstrate that our method achieves state-of-the-art performance in zero-shot semantic segmentation. The code is available at https://github.com/ROUJINN/SDGPA
comment: Accepted to IROS 2025
☆ Investigation on deep learning-based galaxy image translation models
Galaxy image translation is an important application in galaxy physics and cosmology. With deep learning-based generative models, image translation has been performed for image generation, data quality enhancement, information extraction, and generalized for other tasks such as deblending and anomaly detection. However, most endeavors on image translation primarily focus on the pixel-level and morphology-level statistics of galaxy images. There is a lack of discussion on the preservation of complex high-order galaxy physical information, which would be more challenging but crucial for studies that rely on high-fidelity image translation. Therefore, we investigated the effectiveness of generative models in preserving high-order physical information (represented by spectroscopic redshift) along with pixel-level and morphology-level information. We tested four representative models, i.e. a Swin Transformer, an SRGAN, a capsule network, and a diffusion model, using the SDSS and CFHTLS galaxy images. We found that these models show different levels of incapabilities in retaining redshift information, even if the global structures of galaxies and morphology-level statistics can be roughly reproduced. In particular, the cross-band peak fluxes of galaxies were found to contain meaningful redshift information, whereas they are subject to noticeable uncertainties in the translation of images, which may substantially be due to the nature of many-to-many mapping. Nonetheless, imperfect translated images may still contain a considerable amount of information and thus hold promise for downstream applications for which high image fidelity is not strongly required. Our work can facilitate further research on how complex physical information is manifested on galaxy images, and it provides implications on the development of image translation models for scientific use.
comment: Accepted at A&A; 18+6 pages; 12+6 figures
☆ Efficient Multi-Slide Visual-Language Feature Fusion for Placental Disease Classification
Accurate prediction of placental diseases via whole slide images (WSIs) is critical for preventing severe maternal and fetal complications. However, WSI analysis presents significant computational challenges due to the massive data volume. Existing WSI classification methods encounter critical limitations: (1) inadequate patch selection strategies that either compromise performance or fail to sufficiently reduce computational demands, and (2) the loss of global histological context resulting from patch-level processing approaches. To address these challenges, we propose an Efficient multimodal framework for Patient-level placental disease Diagnosis, named EmmPD. Our approach introduces a two-stage patch selection module that combines parameter-free and learnable compression strategies, optimally balancing computational efficiency with critical feature preservation. Additionally, we develop a hybrid multimodal fusion module that leverages adaptive graph learning to enhance pathological feature representation and incorporates textual medical reports to enrich global contextual understanding. Extensive experiments conducted on both a self-constructed patient-level Placental dataset and two public datasets demonstrating that our method achieves state-of-the-art diagnostic performance. The code is available at https://github.com/ECNU-MultiDimLab/EmmPD.
comment: Accepted by ACMMM'25
☆ EgoPrompt: Prompt Pool Learning for Egocentric Action Recognition
Driven by the increasing demand for applications in augmented and virtual reality, egocentric action recognition has emerged as a prominent research area. It is typically divided into two subtasks: recognizing the performed behavior (i.e., verb component) and identifying the objects being acted upon (i.e., noun component) from the first-person perspective. However, most existing approaches treat these two components as independent classification tasks, focusing on extracting component-specific knowledge while overlooking their inherent semantic and contextual relationships, leading to fragmented representations and sub-optimal generalization capability. To address these challenges, we propose a prompt learning-based framework, EgoPrompt, to conduct the egocentric action recognition task. Building on the existing prompting strategy to capture the component-specific knowledge, we construct a Unified Prompt Pool space to establish interaction between the two types of component representations. Specifically, the component representations (from verbs and nouns) are first decomposed into fine-grained patterns with the prompt pair form. Then, these pattern-level representations are fused through an attention-based mechanism to facilitate cross-component interaction. To ensure the prompt pool is informative, we further introduce a novel training objective, Diverse Pool Criteria. This objective realizes our goals from two perspectives: Prompt Selection Frequency Regularization and Prompt Knowledge Orthogonalization. Extensive experiments are conducted on the Ego4D, EPIC-Kitchens, and EGTEA datasets. The results consistently show that EgoPrompt achieves state-of-the-art performance across within-dataset, cross-dataset, and base-to-novel generalization benchmarks.
☆ Beyond Isolated Words: Diffusion Brush for Handwritten Text-Line Generation ICCV2025
Existing handwritten text generation methods primarily focus on isolated words. However, realistic handwritten text demands attention not only to individual words but also to the relationships between them, such as vertical alignment and horizontal spacing. Therefore, generating entire text lines emerges as a more promising and comprehensive task. However, this task poses significant challenges, including the accurate modeling of complex style patterns encompassing both intra- and inter-word relationships, and maintaining content accuracy across numerous characters. To address these challenges, we propose DiffBrush, a novel diffusion-based model for handwritten text-line generation. Unlike existing methods, DiffBrush excels in both style imitation and content accuracy through two key strategies: (1) content-decoupled style learning, which disentangles style from content to better capture intra-word and inter-word style patterns by using column- and row-wise masking; and (2) multi-scale content learning, which employs line and word discriminators to ensure global coherence and local accuracy of textual content. Extensive experiments show that DiffBrush excels in generating high-quality text lines, particularly in style reproduction and content preservation. Code is available at https://github.com/dailenson/DiffBrush.
comment: To appear in ICCV2025
☆ V.I.P. : Iterative Online Preference Distillation for Efficient Video Diffusion Models ICCV2025
With growing interest in deploying text-to-video (T2V) models in resource-constrained environments, reducing their high computational cost has become crucial, leading to extensive research on pruning and knowledge distillation methods while maintaining performance. However, existing distillation methods primarily rely on supervised fine-tuning (SFT), which often leads to mode collapse as pruned models with reduced capacity fail to directly match the teacher's outputs, ultimately resulting in degraded quality. To address this challenge, we propose an effective distillation method, ReDPO, that integrates DPO and SFT. Our approach leverages DPO to guide the student model to focus on recovering only the targeted properties, rather than passively imitating the teacher, while also utilizing SFT to enhance overall performance. We additionally propose V.I.P., a novel framework for filtering and curating high-quality pair datasets, along with a step-by-step online approach for calibrated training. We validate our method on two leading T2V models, VideoCrafter2 and AnimateDiff, achieving parameter reduction of 36.2% and 67.5% each, while maintaining or even surpassing the performance of full models. Further experiments demonstrate the effectiveness of both ReDPO and V.I.P. framework in enabling efficient and high-quality video generation. Our code and videos are available at https://jiiiisoo.github.io/VIP.github.io/.
comment: ICCV2025 accepted
☆ Robust Single-Stage Fully Sparse 3D Object Detection via Detachable Latent Diffusion
Denoising Diffusion Probabilistic Models (DDPMs) have shown success in robust 3D object detection tasks. Existing methods often rely on the score matching from 3D boxes or pre-trained diffusion priors. However, they typically require multi-step iterations in inference, which limits efficiency. To address this, we propose a \textbf{R}obust single-stage fully \textbf{S}parse 3D object \textbf{D}etection \textbf{Net}work with a Detachable Latent Framework (DLF) of DDPMs, named RSDNet. Specifically, RSDNet learns the denoising process in latent feature spaces through lightweight denoising networks like multi-level denoising autoencoders (DAEs). This enables RSDNet to effectively understand scene distributions under multi-level perturbations, achieving robust and reliable detection. Meanwhile, we reformulate the noising and denoising mechanisms of DDPMs, enabling DLF to construct multi-type and multi-level noise samples and targets, enhancing RSDNet robustness to multiple perturbations. Furthermore, a semantic-geometric conditional guidance is introduced to perceive the object boundaries and shapes, alleviating the center feature missing problem in sparse representations, enabling RSDNet to perform in a fully sparse detection pipeline. Moreover, the detachable denoising network design of DLF enables RSDNet to perform single-step detection in inference, further enhancing detection efficiency. Extensive experiments on public benchmarks show that RSDNet can outperform existing methods, achieving state-of-the-art detection.
☆ Ultralight Polarity-Split Neuromorphic SNN for Event-Stream Super-Resolution
Event cameras offer unparalleled advantages such as high temporal resolution, low latency, and high dynamic range. However, their limited spatial resolution poses challenges for fine-grained perception tasks. In this work, we propose an ultra-lightweight, stream-based event-to-event super-resolution method based on Spiking Neural Networks (SNNs), designed for real-time deployment on resource-constrained devices. To further reduce model size, we introduce a novel Dual-Forward Polarity-Split Event Encoding strategy that decouples positive and negative events into separate forward paths through a shared SNN. Furthermore, we propose a Learnable Spatio-temporal Polarity-aware Loss (LearnSTPLoss) that adaptively balances temporal, spatial, and polarity consistency using learnable uncertainty-based weights. Experimental results demonstrate that our method achieves competitive super-resolution performance on multiple datasets while significantly reducing model size and inference time. The lightweight design enables embedding the module into event cameras or using it as an efficient front-end preprocessing for downstream vision tasks.
☆ MVTOP: Multi-View Transformer-based Object Pose-Estimation
We present MVTOP, a novel transformer-based method for multi-view rigid object pose estimation. Through an early fusion of the view-specific features, our method can resolve pose ambiguities that would be impossible to solve with a single view or with a post-processing of single-view poses. MVTOP models the multi-view geometry via lines of sight that emanate from the respective camera centers. While the method assumes the camera interior and relative orientations are known for a particular scene, they can vary for each inference. This makes the method versatile. The use of the lines of sight enables MVTOP to correctly predict the correct pose with the merged multi-view information. To show the model's capabilities, we provide a synthetic data set that can only be solved with such holistic multi-view approaches since the poses in the dataset cannot be solved with just one view. Our method outperforms single-view and all existing multi-view approaches on our dataset and achieves competitive results on the YCB-V dataset. To the best of our knowledge, no holistic multi-view method exists that can resolve such pose ambiguities reliably. Our model is end-to-end trainable and does not require any additional data, e.g., depth.
comment: 9 pages, 7 figures
☆ FFHQ-Makeup: Paired Synthetic Makeup Dataset with Facial Consistency Across Multiple Styles
Paired bare-makeup facial images are essential for a wide range of beauty-related tasks, such as virtual try-on, facial privacy protection, and facial aesthetics analysis. However, collecting high-quality paired makeup datasets remains a significant challenge. Real-world data acquisition is constrained by the difficulty of collecting large-scale paired images, while existing synthetic approaches often suffer from limited realism or inconsistencies between bare and makeup images. Current synthetic methods typically fall into two categories: warping-based transformations, which often distort facial geometry and compromise the precision of makeup; and text-to-image generation, which tends to alter facial identity and expression, undermining consistency. In this work, we present FFHQ-Makeup, a high-quality synthetic makeup dataset that pairs each identity with multiple makeup styles while preserving facial consistency in both identity and expression. Built upon the diverse FFHQ dataset, our pipeline transfers real-world makeup styles from existing datasets onto 18K identities by introducing an improved makeup transfer method that disentangles identity and makeup. Each identity is paired with 5 different makeup styles, resulting in a total of 90K high-quality bare-makeup image pairs. To the best of our knowledge, this is the first work that focuses specifically on constructing a makeup dataset. We hope that FFHQ-Makeup fills the gap of lacking high-quality bare-makeup paired datasets and serves as a valuable resource for future research in beauty-related tasks.
comment: Project: https://yangxingchao.github.io/FFHQ-Makeup-page, Datasets: https://huggingface.co/datasets/cyberagent/FFHQ-Makeup
☆ Zero-shot Shape Classification of Nanoparticles in SEM Images using Vision Foundation Models
Accurate and efficient characterization of nanoparticle morphology in Scanning Electron Microscopy (SEM) images is critical for ensuring product quality in nanomaterial synthesis and accelerating development. However, conventional deep learning methods for shape classification require extensive labeled datasets and computationally demanding training, limiting their accessibility to the typical nanoparticle practitioner in research and industrial settings. In this study, we introduce a zero-shot classification pipeline that leverages two vision foundation models: the Segment Anything Model (SAM) for object segmentation and DINOv2 for feature embedding. By combining these models with a lightweight classifier, we achieve high-precision shape classification across three morphologically diverse nanoparticle datasets - without the need for extensive parameter fine-tuning. Our methodology outperforms a fine-tuned YOLOv11 and ChatGPT o4-mini-high baselines, demonstrating robustness to small datasets, subtle morphological variations, and domain shifts from natural to scientific imaging. Quantitative clustering metrics on PCA plots of the DINOv2 features are discussed as a means of assessing the progress of the chemical synthesis. This work highlights the potential of foundation models to advance automated microscopy image analysis, offering an alternative to traditional deep learning pipelines in nanoparticle research which is both more efficient and more accessible to the user.
☆ Trace3D: Consistent Segmentation Lifting via Gaussian Instance Tracing
We address the challenge of lifting 2D visual segmentation to 3D in Gaussian Splatting. Existing methods often suffer from inconsistent 2D masks across viewpoints and produce noisy segmentation boundaries as they neglect these semantic cues to refine the learned Gaussians. To overcome this, we introduce Gaussian Instance Tracing (GIT), which augments the standard Gaussian representation with an instance weight matrix across input views. Leveraging the inherent consistency of Gaussians in 3D, we use this matrix to identify and correct 2D segmentation inconsistencies. Furthermore, since each Gaussian ideally corresponds to a single object, we propose a GIT-guided adaptive density control mechanism to split and prune ambiguous Gaussians during training, resulting in sharper and more coherent 2D and 3D segmentation boundaries. Experimental results show that our method extracts clean 3D assets and consistently improves 3D segmentation in both online (e.g., self-prompting) and offline (e.g., contrastive lifting) settings, enabling applications such as hierarchical segmentation, object extraction, and scene editing.
☆ BadBlocks: Low-Cost and Stealthy Backdoor Attacks Tailored for Text-to-Image Diffusion Models
In recent years,Diffusion models have achieved remarkable progress in the field of image generation.However,recent studies have shown that diffusion models are susceptible to backdoor attacks,in which attackers can manipulate the output by injecting covert triggers such as specific visual patterns or textual phrases into the training dataset.Fortunately,with the continuous advancement of defense techniques,defenders have become increasingly capable of identifying and mitigating most backdoor attacks using visual inspection and neural network-based detection methods.However,in this paper,we identify a novel type of backdoor threat that is more lightweight and covert than existing approaches,which we name BadBlocks,requires only about 30\% of the computational resources and 20\% GPU time typically needed by previous backdoor attacks,yet it successfully injects backdoors and evades the most advanced defense frameworks.BadBlocks enables attackers to selectively contaminate specific blocks within the UNet architecture of diffusion models while maintaining normal functionality in the remaining components.Experimental results demonstrate that BadBlocks achieves a high attack success rate (ASR) and low perceptual quality loss (as measured by FID Score),even under extremely constrained computational resources and GPU time.Moreover,BadBlocks is able to bypass existing defense frameworks,especially the attention-based backdoor detection method, highlighting it as a novel and noteworthy threat.Ablation studies further demonstrate that effective backdoor injection does not require fine-tuning the entire network and highlight the pivotal role of certain neural network layers in backdoor mapping.Overall,BadBlocks significantly reduces the barrier to conducting backdoor attacks in all aspects.It enables attackers to inject backdoors into large-scale diffusion models even using consumer-grade GPUs.
☆ ActionSink: Toward Precise Robot Manipulation with Dynamic Integration of Action Flow
Language-instructed robot manipulation has garnered significant interest due to the potential of learning from collected data. While the challenges in high-level perception and planning are continually addressed along the progress of general large pre-trained models, the low precision of low-level action estimation has emerged as the key limiting factor in manipulation performance. To this end, this paper introduces a novel robot manipulation framework, i.e., ActionSink, to pave the way toward precise action estimations in the field of learning-based robot manipulation. As the name suggests, ActionSink reformulates the actions of robots as action-caused optical flows from videos, called "action flow", in a self-supervised manner, which are then used to be retrieved and integrated to enhance the action estimation. Specifically, ActionSink incorporates two primary modules. The first module is a coarse-to-fine action flow matcher, which continuously refines the accuracy of action flow via iterative retrieval and denoising process. The second module is a dynamic action flow integrator, which employs a working memory pool that dynamically and efficiently manages the historical action flows that should be used to integrate to enhance the current action estimation. In this module, a multi-layer fusion module is proposed to integrate direct estimation and action flows from both the current and the working memory, achieving highly accurate action estimation through a series of estimation-integration processes. Our ActionSink framework outperformed prior SOTA on the LIBERO benchmark by a 7.9\% success rate, and obtained nearly an 8\% accuracy gain on the challenging long-horizon visual task LIBERO-Long.
☆ The Power of Many: Synergistic Unification of Diverse Augmentations for Efficient Adversarial Robustness
Adversarial perturbations pose a significant threat to deep learning models. Adversarial Training (AT), the predominant defense method, faces challenges of high computational costs and a degradation in standard performance. While data augmentation offers an alternative path, existing techniques either yield limited robustness gains or incur substantial training overhead. Therefore, developing a defense mechanism that is both highly efficient and strongly robust is of paramount importance.In this work, we first conduct a systematic analysis of existing augmentation techniques, revealing that the synergy among diverse strategies -- rather than any single method -- is crucial for enhancing robustness. Based on this insight, we propose the Universal Adversarial Augmenter (UAA) framework, which is characterized by its plug-and-play nature and training efficiency. UAA decouples the expensive perturbation generation process from model training by pre-computing a universal transformation offline, which is then used to efficiently generate unique adversarial perturbations for each sample during training.Extensive experiments conducted on multiple benchmarks validate the effectiveness of UAA. The results demonstrate that UAA establishes a new state-of-the-art (SOTA) for data-augmentation-based adversarial defense strategies , without requiring the online generation of adversarial examples during training. This framework provides a practical and efficient pathway for building robust models,Our code is available in the supplementary materials.
comment: 13 pages,2 figures,6 tables
☆ GeoShield: Safeguarding Geolocation Privacy from Vision-Language Models via Adversarial Perturbations
Vision-Language Models (VLMs) such as GPT-4o now demonstrate a remarkable ability to infer users' locations from public shared images, posing a substantial risk to geoprivacy. Although adversarial perturbations offer a potential defense, current methods are ill-suited for this scenario: they often perform poorly on high-resolution images and low perturbation budgets, and may introduce irrelevant semantic content. To address these limitations, we propose GeoShield, a novel adversarial framework designed for robust geoprivacy protection in real-world scenarios. GeoShield comprises three key modules: a feature disentanglement module that separates geographical and non-geographical information, an exposure element identification module that pinpoints geo-revealing regions within an image, and a scale-adaptive enhancement module that jointly optimizes perturbations at both global and local levels to ensure effectiveness across resolutions. Extensive experiments on challenging benchmarks show that GeoShield consistently surpasses prior methods in black-box settings, achieving strong privacy protection with minimal impact on visual or semantic quality. To our knowledge, this work is the first to explore adversarial perturbations for defending against geolocation inference by advanced VLMs, providing a practical and effective solution to escalating privacy concerns.
☆ Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration
Open Vocabulary Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects while generalizing to novel interaction classes beyond the training set. Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders, as image-level pre-training does not align well with the fine-grained region-level interaction detection required for HOI. Additionally, effectively encoding textual descriptions of visual appearances remains difficult, limiting the model's ability to capture detailed HOI relationships. To address these issues, we propose INteraction-aware Prompting with Concept Calibration (INP-CC), an end-to-end open-vocabulary HOI detector that integrates interaction-aware prompts and concept calibration. Specifically, we propose an interaction-aware prompt generator that dynamically generates a compact set of prompts based on the input scene, enabling selective sharing among similar interactions. This approach directs the model's attention to key interaction patterns rather than generic image-level semantics, enhancing HOI detection. Furthermore, we refine HOI concept representations through language model-guided calibration, which helps distinguish diverse HOI concepts by investigating visual similarities across categories. A negative sampling strategy is also employed to improve inter-modal similarity modeling, enabling the model to better differentiate visually similar but semantically distinct actions. Extensive experimental results demonstrate that INP-CC significantly outperforms state-of-the-art models on the SWIG-HOI and HICO-DET datasets. Code is available at https://github.com/ltttpku/INP-CC.
☆ AlignCAT: Visual-Linguistic Alignment of Category and Attributefor Weakly Supervised Visual Grounding
Weakly supervised visual grounding (VG) aims to locate objects in images based on text descriptions. Despite significant progress, existing methods lack strong cross-modal reasoning to distinguish subtle semantic differences in text expressions due to category-based and attribute-based ambiguity. To address these challenges, we introduce AlignCAT, a novel query-based semantic matching framework for weakly supervised VG. To enhance visual-linguistic alignment, we propose a coarse-grained alignment module that utilizes category information and global context, effectively mitigating interference from category-inconsistent objects. Subsequently, a fine-grained alignment module leverages descriptive information and captures word-level text features to achieve attribute consistency. By exploiting linguistic cues to their fullest extent, our proposed AlignCAT progressively filters out misaligned visual queries and enhances contrastive learning efficiency. Extensive experiments on three VG benchmarks, namely RefCOCO, RefCOCO+, and RefCOCOg, verify the superiority of AlignCAT against existing weakly supervised methods on two VG tasks. Our code is available at: https://github.com/I2-Multimedia-Lab/AlignCAT.
☆ Neovascularization Segmentation via a Multilateral Interaction-Enhanced Graph Convolutional Network
Choroidal neovascularization (CNV), a primary characteristic of wet age-related macular degeneration (wet AMD), represents a leading cause of blindness worldwide. In clinical practice, optical coherence tomography angiography (OCTA) is commonly used for studying CNV-related pathological changes, due to its micron-level resolution and non-invasive nature. Thus, accurate segmentation of CNV regions and vessels in OCTA images is crucial for clinical assessment of wet AMD. However, challenges existed due to irregular CNV shapes and imaging limitations like projection artifacts, noises and boundary blurring. Moreover, the lack of publicly available datasets constraints the CNV analysis. To address these challenges, this paper constructs the first publicly accessible CNV dataset (CNVSeg), and proposes a novel multilateral graph convolutional interaction-enhanced CNV segmentation network (MTG-Net). This network integrates both region and vessel morphological information, exploring semantic and geometric duality constraints within the graph domain. Specifically, MTG-Net consists of a multi-task framework and two graph-based cross-task modules: Multilateral Interaction Graph Reasoning (MIGR) and Multilateral Reinforcement Graph Reasoning (MRGR). The multi-task framework encodes rich geometric features of lesion shapes and surfaces, decoupling the image into three task-specific feature maps. MIGR and MRGR iteratively reason about higher-order relationships across tasks through a graph mechanism, enabling complementary optimization for task-specific objectives. Additionally, an uncertainty-weighted loss is proposed to mitigate the impact of artifacts and noise on segmentation accuracy. Experimental results demonstrate that MTG-Net outperforms existing methods, achieving a Dice socre of 87.21\% for region segmentation and 88.12\% for vessel segmentation.
☆ Unifying Locality of KANs and Feature Drift Compensation for Data-free Continual Face Forgery Detection
The rapid advancements in face forgery techniques necessitate that detectors continuously adapt to new forgery methods, thus situating face forgery detection within a continual learning paradigm. However, when detectors learn new forgery types, their performance on previous types often degrades rapidly, a phenomenon known as catastrophic forgetting. Kolmogorov-Arnold Networks (KANs) utilize locally plastic splines as their activation functions, enabling them to learn new tasks by modifying only local regions of the functions while leaving other areas unaffected. Therefore, they are naturally suitable for addressing catastrophic forgetting. However, KANs have two significant limitations: 1) the splines are ineffective for modeling high-dimensional images, while alternative activation functions that are suitable for images lack the essential property of locality; 2) in continual learning, when features from different domains overlap, the mapping of different domains to distinct curve regions always collapses due to repeated modifications of the same regions. In this paper, we propose a KAN-based Continual Face Forgery Detection (KAN-CFD) framework, which includes a Domain-Group KAN Detector (DG-KD) and a data-free replay Feature Separation strategy via KAN Drift Compensation Projection (FS-KDCP). DG-KD enables KANs to fit high-dimensional image inputs while preserving locality and local plasticity. FS-KDCP avoids the overlap of the KAN input spaces without using data from prior tasks. Experimental results demonstrate that the proposed method achieves superior performance while notably reducing forgetting.
☆ Monocular Depth Estimation with Global-Aware Discretization and Local Context Modeling
Accurate monocular depth estimation remains a challenging problem due to the inherent ambiguity that stems from the ill-posed nature of recovering 3D structure from a single view, where multiple plausible depth configurations can produce identical 2D projections. In this paper, we present a novel depth estimation method that combines both local and global cues to improve prediction accuracy. Specifically, we propose the Gated Large Kernel Attention Module (GLKAM) to effectively capture multi-scale local structural information by leveraging large kernel convolutions with a gated mechanism. To further enhance the global perception of the network, we introduce the Global Bin Prediction Module (GBPM), which estimates the global distribution of depth bins and provides structural guidance for depth regression. Extensive experiments on the NYU-V2 and KITTI dataset demonstrate that our method achieves competitive performance and outperforms existing approaches, validating the effectiveness of each proposed component.
☆ Duplex-GS: Proxy-Guided Weighted Blending for Real-Time Order-Independent Gaussian Splatting
Recent advances in 3D Gaussian Splatting (3DGS) have demonstrated remarkable rendering fidelity and efficiency. However, these methods still rely on computationally expensive sequential alpha-blending operations, resulting in significant overhead, particularly on resource-constrained platforms. In this paper, we propose Duplex-GS, a dual-hierarchy framework that integrates proxy Gaussian representations with order-independent rendering techniques to achieve photorealistic results while sustaining real-time performance. To mitigate the overhead caused by view-adaptive radix sort, we introduce cell proxies for local Gaussians management and propose cell search rasterization for further acceleration. By seamlessly combining our framework with Order-Independent Transparency (OIT), we develop a physically inspired weighted sum rendering technique that simultaneously eliminates "popping" and "transparency" artifacts, yielding substantial improvements in both accuracy and efficiency. Extensive experiments on a variety of real-world datasets demonstrate the robustness of our method across diverse scenarios, including multi-scale training views and large-scale environments. Our results validate the advantages of the OIT rendering paradigm in Gaussian Splatting, achieving high-quality rendering with an impressive 1.5 to 4 speedup over existing OIT based Gaussian Splatting approaches and 52.2% to 86.9% reduction of the radix sort overhead without quality degradation.
♻ ☆ Consistency-based Abductive Reasoning over Perceptual Errors of Multiple Pre-trained Models in Novel Environments
The deployment of pre-trained perception models in novel environments often leads to performance degradation due to distributional shifts. Although recent artificial intelligence approaches for metacognition use logical rules to characterize and filter model errors, improving precision often comes at the cost of reduced recall. This paper addresses the hypothesis that leveraging multiple pre-trained models can mitigate this recall reduction. We formulate the challenge of identifying and managing conflicting predictions from various models as a consistency-based abduction problem, building on the idea of abductive learning (ABL) but applying it to test-time instead of training. The input predictions and the learned error detection rules derived from each model are encoded in a logic program. We then seek an abductive explanation--a subset of model predictions--that maximizes prediction coverage while ensuring the rate of logical inconsistencies (derived from domain constraints) remains below a specified threshold. We propose two algorithms for this knowledge representation task: an exact method based on Integer Programming (IP) and an efficient Heuristic Search (HS). Through extensive experiments on a simulated aerial imagery dataset featuring controlled, complex distributional shifts, we demonstrate that our abduction-based framework outperforms individual models and standard ensemble baselines, achieving, for instance, average relative improvements of approximately 13.6\% in F1-score and 16.6\% in accuracy across 15 diverse test datasets when compared to the best individual model. Our results validate the use of consistency-based abduction as an effective mechanism to robustly integrate knowledge from multiple imperfect models in challenging, novel scenarios.
♻ ☆ A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
Image quality plays an important role in the performance of deep neural networks (DNNs) that have been widely shown to exhibit sensitivity to changes in imaging conditions. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but we often need a metric that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. We show theoretically and empirically that conventional IQA metrics are weak predictors of DNN performance for image classification. Using our causal framework, we then develop metrics that exhibit strong correlation with DNN performance, thus enabling us to effectively estimate the quality distribution of large image datasets relative to targeted vision tasks.
♻ ☆ Prior2Former -- Evidential Modeling of Mask Transformers for Assumption-Free Open-World Panoptic Segmentation
In panoptic segmentation, individual instances must be separated within semantic classes. As state-of-the-art methods rely on a pre-defined set of classes, they struggle with novel categories and out-of-distribution (OOD) data. This is particularly problematic in safety-critical applications, such as autonomous driving, where reliability in unseen scenarios is essential. We address the gap between outstanding benchmark performance and reliability by proposing Prior2Former (P2F), the first approach for segmentation vision transformers rooted in evidential learning. P2F extends the mask vision transformer architecture by incorporating a Beta prior for computing model uncertainty in pixel-wise binary mask assignments. This design enables high-quality uncertainty estimation that effectively detects novel and OOD objects enabling state-of-the-art anomaly instance segmentation and open-world panoptic segmentation. Unlike most segmentation models addressing unknown classes, P2F operates without access to OOD data samples or contrastive training on void (i.e., unlabeled) classes, making it highly applicable in real-world scenarios where such prior information is unavailable. Additionally, P2F can be flexibly applied to anomaly instance and panoptic segmentation. Through comprehensive experiments on the Cityscapes, COCO, SegmentMeIfYouCan, and OoDIS datasets, P2F demonstrates state-of-the-art performance across the board.
♻ ☆ What Changed and What Could Have Changed? State-Change Counterfactuals for Procedure-Aware Video Representation Learning
Understanding a procedural activity requires modeling both how action steps transform the scene, and how evolving scene transformations can influence the sequence of action steps, even those that are accidental or erroneous. Existing work has studied procedure-aware video representations by modeling the temporal order of actions, but has not explicitly learned the state changes (scene transformations). In this work, we study procedure-aware video representation learning by incorporating state-change descriptions generated by Large Language Models (LLMs) as supervision signals for video encoders. Moreover, we generate state-change counterfactuals that simulate hypothesized failure outcomes, allowing models to learn by imagining unseen "What if" scenarios. This counterfactual reasoning facilitates the model's ability to understand the cause and effect of each step in an activity. We conduct extensive experiments on procedure-aware tasks, including temporal action segmentation, error detection, action phase classification, frame retrieval, multi-instance retrieval, and action recognition. Our results demonstrate the effectiveness of the proposed state-change descriptions and their counterfactuals, and achieve significant improvements on multiple tasks. Code is available at https://github.com/HCIS- Lab/counterfactual-video-pretrain.
comment: 16 pages, 4 figures
♻ ☆ Physical Degradation Model-Guided Interferometric Hyperspectral Reconstruction with Unfolding Transformer
Interferometric Hyperspectral Imaging (IHI) is a critical technique for large-scale remote sensing tasks due to its advantages in flux and spectral resolution. However, IHI is susceptible to complex errors arising from imaging steps, and its quality is limited by existing signal processing-based reconstruction algorithms. Two key challenges hinder performance enhancement: 1) the lack of training datasets. 2) the difficulty in eliminating IHI-specific degradation components through learning-based methods. To address these challenges, we propose a novel IHI reconstruction pipeline. First, based on imaging physics and radiometric calibration data, we establish a simplified yet accurate IHI degradation model and a parameter estimation method. This model enables the synthesis of realistic IHI training datasets from hyperspectral images (HSIs), bridging the gap between IHI reconstruction and deep learning. Second, we design the Interferometric Hyperspectral Reconstruction Unfolding Transformer (IHRUT), which achieves effective spectral correction and detail restoration through a stripe-pattern enhancement mechanism and a spatial-spectral transformer architecture. Experimental results demonstrate the superior performance and generalization capability of our method.The code and are available at https://github.com/bit1120203554/IHRUT.
♻ ☆ Graph Attention-Driven Bayesian Deep Unrolling for Dual-Peak Single-Photon Lidar Imaging
Single-photon Lidar imaging offers a significant advantage in 3D imaging due to its high resolution and long-range capabilities, however it is challenging to apply in noisy environments with multiple targets per pixel. To tackle these challenges, several methods have been proposed. Statistical methods demonstrate interpretability on the inferred parameters, but they are often limited in their ability to handle complex scenes. Deep learning-based methods have shown superior performance in terms of accuracy and robustness, but they lack interpretability or they are limited to a single-peak per pixel. In this paper, we propose a deep unrolling algorithm for dual-peak single-photon Lidar imaging. We introduce a hierarchical Bayesian model for multiple targets and propose a neural network that unrolls the underlying statistical method. To support multiple targets, we adopt a dual depth maps representation and exploit geometric deep learning to extract features from the point cloud. The proposed method takes advantages of statistical methods and learning-based methods in terms of accuracy and quantifying uncertainty. The experimental results on synthetic and real data demonstrate the competitive performance when compared to existing methods, while also providing uncertainty information.
♻ ☆ TextMaster: A Unified Framework for Realistic Text Editing via Glyph-Style Dual-Control ICCV 2025
In image editing tasks, high-quality text editing capabilities can significantly reduce both human and material resource costs. Existing methods, however, face significant limitations in terms of stroke accuracy for complex text and controllability of generated text styles. To address these challenges, we propose TextMaster, a solution capable of accurately editing text across various scenarios and image regions, while ensuring proper layout and controllable text style. Our method enhances the accuracy and fidelity of text rendering by incorporating high-resolution standard glyph information and applying perceptual loss within the text editing region. Additionally, we leverage an attention mechanism to compute intermediate layer bounding box regression loss for each character, enabling the model to learn text layout across varying contexts. Furthermore, we propose a novel style injection technique that enables controllable style transfer for the injected text. Through comprehensive experiments, we demonstrate the state-of-the-art performance of our method.
comment: Accepted to ICCV 2025
♻ ☆ Franca: Nested Matryoshka Clustering for Scalable Visual Representation Learning
We present Franca (pronounced Fran-ka): free one; the first fully open-source (data, code, weights) vision foundation model that matches and in many cases surpasses the performance of state-of-the-art proprietary models, e.g., DINOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training pipeline inspired by Web-SSL and uses publicly available data: ImageNet-21K and a subset of ReLAION-2B. Beyond model release, we tackle critical limitations in SSL clustering methods. While modern models rely on assigning image features to large codebooks via clustering algorithms like Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering semantics. To address this, we introduce a parameter-efficient, multi-head clustering projector based on nested Matryoshka representations. This design progressively refines features into increasingly fine-grained clusters without increasing the model size, enabling both performance and memory efficiency. Additionally, we propose a novel positional disentanglement strategy that explicitly removes positional biases from dense representations, thereby improving the encoding of semantic content. This leads to consistent gains on several downstream benchmarks, demonstrating the utility of cleaner feature spaces. Our contributions establish a new standard for transparent, high-performance vision models and open a path toward more reproducible and generalizable foundation models for the broader AI community. The code and model checkpoints are available at https://github.com/valeoai/Franca.
♻ ☆ Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI
Modern automotive infotainment systems necessitate intelligent and adaptive solutions to manage frequent User Interface (UI) updates and diverse design variations. This work introduces a vision-language framework to facilitate the understanding of and interaction with automotive UIs, enabling seamless adaptation across different UI designs. To support research in this field, AutomotiveUI-Bench-4K, an open-source dataset comprising 998 images with 4,208 annotations, is also released. Additionally, a data pipeline for generating training data is presented. A Molmo-7B-based model is fine-tuned using Low-Rank Adaptation (LoRa), incorporating generated reasoning along with visual grounding and evaluation capabilities. The fine-tuned Evaluative Large Action Model (ELAM) achieves strong performance on AutomotiveUI-Bench-4K (model and dataset are available on Hugging Face). The approach demonstrates strong cross-domain generalization, including a +5.6% improvement on ScreenSpot over the baseline model. An average accuracy of 80.8% is achieved on ScreenSpot, closely matching or surpassing specialized models for desktop, mobile, and web, despite being trained primarily on the automotive domain. This research investigates how data collection and subsequent fine-tuning can lead to AI-driven advancements in automotive UI understanding and interaction. The applied method is cost-efficient, and fine-tuned models can be deployed on consumer-grade GPUs.
♻ ☆ FEB-Cache: Frequency-Guided Exposure Bias Reduction for Enhancing Diffusion Transformer Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this issue, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing why caching damage the generation processes. In this paper, we first confirm that the cache greatly amplifies the exposure bias, resulting in a decline in the generation quality. However, directly applying noise scaling is challenging for this issue due to the non-smoothness of exposure bias. We found that this phenomenon stems from the mismatch between its frequency response characteristics and the simple cache of Attention and MLP. Since these two components exhibit unique preferences for frequency signals, which provides us with a caching strategy to separate Attention and MLP to achieve an enhanced fit of exposure bias and reduce it. Based on this, we introduced FEB-Cache, a joint caching strategy that aligns with the non-exposed bias diffusion process (which gives us a higher performance cap) of caching Attention and MLP based on the frequency-guided cache table. Our approach combines a comprehensive understanding of the caching mechanism and offers a new perspective on leveraging caching to accelerate the diffusion process. Empirical results indicate that FEB-Cache optimizes model performance while concurrently facilitating acceleration.
♻ ☆ Large Learning Rates Simultaneously Achieve Robustness to Spurious Correlations and Compressibility ICCV 2025
Robustness and resource-efficiency are two highly desirable properties for modern machine learning models. However, achieving them jointly remains a challenge. In this paper, we identify high learning rates as a facilitator for simultaneously achieving robustness to spurious correlations and network compressibility. We demonstrate that large learning rates also produce desirable representation properties such as invariant feature utilization, class separation, and activation sparsity. Our findings indicate that large learning rates compare favorably to other hyperparameters and regularization methods, in consistently satisfying these properties in tandem. In addition to demonstrating the positive effect of large learning rates across diverse spurious correlation datasets, models, and optimizers, we also present strong evidence that the previously documented success of large learning rates in standard classification tasks is related to addressing hidden/rare spurious correlations in the training dataset. Our investigation of the mechanisms underlying this phenomenon reveals the importance of confident mispredictions of bias-conflicting samples under large learning rates.
comment: Accepted at ICCV 2025, 25 pages
♻ ☆ Dynamic 2D Gaussians: Geometrically Accurate Radiance Fields for Dynamic Objects
Reconstructing objects and extracting high-quality surfaces play a vital role in the real world. Current 4D representations show the ability to render high-quality novel views for dynamic objects, but cannot reconstruct high-quality meshes due to their implicit or geometrically inaccurate representations. In this paper, we propose a novel representation that can reconstruct accurate meshes from sparse image input, named Dynamic 2D Gaussians (D-2DGS). We adopt 2D Gaussians for basic geometry representation and use sparse-controlled points to capture the 2D Gaussian's deformation. By extracting the object mask from the rendered high-quality image and masking the rendered depth map, we remove floaters that are prone to occur during reconstruction and can extract high-quality dynamic mesh sequences of dynamic objects. Experiments demonstrate that our D-2DGS is outstanding in reconstructing detailed and smooth high-quality meshes from sparse inputs. The code is available at https://github.com/hustvl/Dynamic-2DGS.
comment: Accepted by ACMMM 2025
♻ ☆ Neuro-3D: Towards 3D Visual Decoding from EEG Signals
Human's perception of the visual world is shaped by the stereo processing of 3D information. Understanding how the brain perceives and processes 3D visual stimuli in the real world has been a longstanding endeavor in neuroscience. Towards this goal, we introduce a new neuroscience task: decoding 3D visual perception from EEG signals, a neuroimaging technique that enables real-time monitoring of neural dynamics enriched with complex visual cues. To provide the essential benchmark, we first present EEG-3D, a pioneering dataset featuring multimodal analysis data and extensive EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images. Furthermore, we propose Neuro-3D, a 3D visual decoding framework based on EEG signals. This framework adaptively integrates EEG features derived from static and dynamic stimuli to learn complementary and robust neural representations, which are subsequently utilized to recover both the shape and color of 3D objects through the proposed diffusion-based colored point cloud decoder. To the best of our knowledge, we are the first to explore EEG-based 3D visual decoding. Experiments indicate that Neuro-3D not only reconstructs colored 3D objects with high fidelity, but also learns effective neural representations that enable insightful brain region analysis. The dataset and associated code will be made publicly available.
♻ ☆ Low-Frequency First: Eliminating Floating Artifacts in 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) is a powerful and computationally efficient representation for 3D reconstruction. Despite its strengths, 3DGS often produces floating artifacts, which are erroneous structures detached from the actual geometry and significantly degrade visual fidelity. The underlying mechanisms causing these artifacts, particularly in low-quality initialization scenarios, have not been fully explored. In this paper, we investigate the origins of floating artifacts from a frequency-domain perspective and identify under-optimized Gaussians as the primary source. Based on our analysis, we propose \textit{Eliminating-Floating-Artifacts} Gaussian Splatting (EFA-GS), which selectively expands under-optimized Gaussians to prioritize accurate low-frequency learning. Additionally, we introduce complementary depth-based and scale-based strategies to dynamically refine Gaussian expansion, effectively mitigating detail erosion. Extensive experiments on both synthetic and real-world datasets demonstrate that EFA-GS substantially reduces floating artifacts while preserving high-frequency details, achieving an improvement of 1.68 dB in PSNR over baseline method on our RWLQ dataset. Furthermore, we validate the effectiveness of our approach in downstream 3D editing tasks. We provide our implementation in https://jcwang-gh.github.io/EFA-GS.
comment: Project Website: https://jcwang-gh.github.io/EFA-GS
♻ ☆ Uncertainty-aware Medical Diagnostic Phrase Identification and Grounding
Medical phrase grounding is crucial for identifying relevant regions in medical images based on phrase queries, facilitating accurate image analysis and diagnosis. However, current methods rely on manual extraction of key phrases from medical reports, reducing efficiency and increasing the workload for clinicians. Additionally, the lack of model confidence estimation limits clinical trust and usability. In this paper, we introduce a novel task called Medical Report Grounding (MRG), which aims to directly identify diagnostic phrases and their corresponding grounding boxes from medical reports in an end-to-end manner. To address this challenge, we propose uMedGround, a robust and reliable framework that leverages a multimodal large language model to predict diagnostic phrases by embedding a unique token, $<$$\mathtt{BOX}$$>$, into the vocabulary to enhance detection capabilities. A vision encoder-decoder processes the embedded token and input image to generate grounding boxes. Critically, uMedGround incorporates an uncertainty-aware prediction model, significantly improving the robustness and reliability of grounding predictions. Experimental results demonstrate that uMedGround outperforms state-of-the-art medical phrase grounding methods and fine-tuned large visual-language models, validating its effectiveness and reliability. This study represents a pioneering exploration of the MRG task, marking the first-ever endeavor in this domain. Additionally, we demonstrate the applicability of uMedGround in medical visual question answering and class-based localization tasks, where it highlights visual evidence aligned with key diagnostic phrases, supporting clinicians in interpreting various types of textual inputs, including free-text reports, visual question answering queries, and class labels.
comment: 17 pages, 6 figures
♻ ☆ Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs ACM MM2025
The Contrastive Language-Image Pre-training (CLIP) framework has become a widely used approach for multimodal representation learning, particularly in image-text retrieval and clustering. However, its efficacy is constrained by three key limitations: (1) text token truncation, (2) isolated image-text encoding, and (3) deficient compositionality due to bag-of-words behavior. While recent Multimodal Large Language Models (MLLMs) have demonstrated significant advances in generalized vision-language understanding, their potential for learning transferable multimodal representations remains underexplored.In this work, we present UniME (Universal Multimodal Embedding), a novel two-stage framework that leverages MLLMs to learn discriminative representations for diverse downstream tasks. In the first stage, we perform textual discriminative knowledge distillation from a powerful LLM-based teacher model to enhance the embedding capability of the MLLM\'s language component. In the second stage, we introduce hard negative enhanced instruction tuning to further advance discriminative representation learning. Specifically, we initially mitigate false negative contamination and then sample multiple hard negatives per instance within each batch, forcing the model to focus on challenging samples. This approach not only improves discriminative power but also enhances instruction-following ability in downstream tasks. We conduct extensive experiments on the MMEB benchmark and multiple retrieval tasks, including short and long caption retrieval and compositional retrieval. Results demonstrate that UniME achieves consistent performance improvement across all tasks, exhibiting superior discriminative and compositional capabilities.
comment: 13 pages, 8 figures, Accepted by ACM MM2025, Project page: https://garygutc.github.io/UniME
♻ ☆ FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation
Medical image segmentation is challenging due to the diversity of medical images and the lack of labeled data, which motivates recent developments in federated semi-supervised learning (FSSL) to leverage a large amount of unlabeled data from multiple centers for model training without sharing raw data. However, what remains under-explored in FSSL is the domain shift problem which may cause suboptimal model aggregation and low effectivity of the utilization of unlabeled data, eventually leading to unsatisfactory performance in unseen domains. In this paper, we explore this previously ignored scenario, namely domain generalized federated semi-supervised learning (FedSemiDG), which aims to learn a model in a distributed manner from multiple domains with limited labeled data and abundant unlabeled data such that the model can generalize well to unseen domains. We present a novel framework, Federated Generalization-Aware SemiSupervised Learning (FGASL), to address the challenges in FedSemiDG by effectively tackling critical issues at both global and local levels. Globally, we introduce Generalization-Aware Aggregation (GAA), assigning adaptive weights to local models based on their generalization performance. Locally, we use a Dual-Teacher Adaptive Pseudo Label Refinement (DR) strategy to combine global and domain-specific knowledge, generating more reliable pseudo labels. Additionally, Perturbation-Invariant Alignment (PIA) enforces feature consistency under perturbations, promoting domain-invariant learning. Extensive experiments on four medical segmentation tasks (cardiac MRI, spine MRI, bladder cancer MRI and colorectal polyp) demonstrate that our method significantly outperforms state-of-the-art FSSL and domain generalization approaches, achieving robust generalization on unseen domains.
comment: 21 pages
♻ ☆ RealSyn: An Effective and Scalable Multimodal Interleaved Document Transformation Paradigm ACM MM2025
After pre-training on extensive image-text pairs, Contrastive Language-Image Pre-training (CLIP) demonstrates promising performance on a wide variety of benchmarks. However, a substantial volume of multimodal interleaved documents remains underutilized for contrastive vision-language representation learning. To fully leverage these unpaired documents, we initially establish a Real-World Data Extraction pipeline to extract high-quality images and texts. Then we design a hierarchical retrieval method to efficiently associate each image with multiple semantically relevant realistic texts. To further enhance fine-grained visual information, we propose an image semantic augmented generation module for synthetic text production. Furthermore, we employ a semantic balance sampling strategy to improve dataset diversity, enabling better learning of long-tail concepts. Based on these innovations, we construct RealSyn, a dataset combining realistic and synthetic texts, available in three scales: 15M, 30M, and 100M. We compare our dataset with other widely used datasets of equivalent scale for CLIP training. Models pre-trained on RealSyn consistently achieve state-of-the-art performance across various downstream tasks, including linear probe, zero-shot transfer, zero-shot robustness, and zero-shot retrieval. Furthermore, extensive experiments confirm that RealSyn significantly enhances contrastive vision-language representation learning and demonstrates robust scalability. To facilitate future research, the RealSyn dataset and pretrained model weights are released at https://github.com/deepglint/RealSyn.
comment: 15 pages, 12 figures, Accepted by ACM MM2025, Webpage: https://garygutc.github.io/RealSyn
♻ ☆ Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings
Personalizing large-scale diffusion models poses serious privacy risks, especially when adapting to small, sensitive datasets. A common approach is to fine-tune the model using differentially private stochastic gradient descent (DP-SGD), but this suffers from severe utility degradation due to the high noise needed for privacy, particularly in the small data regime. We propose an alternative that leverages Textual Inversion (TI), which learns an embedding vector for an image or set of images, to enable adaptation under differential privacy (DP) constraints. Our approach, Differentially Private Aggregation via Textual Inversion (DPAgg-TI), adds calibrated noise to the aggregation of per-image embeddings to ensure formal DP guarantees while preserving high output fidelity. We show that DPAgg-TI outperforms DP-SGD finetuning in both utility and robustness under the same privacy budget, achieving results closely matching the non-private baseline on style adaptation tasks using private artwork from a single artist and Paris 2024 Olympic pictograms. In contrast, DP-SGD fails to generate meaningful outputs in this setting.
♻ ☆ Open-Attribute Recognition for Person Retrieval: Finding People Through Distinctive and Novel Attributes
Pedestrian Attribute Recognition (PAR) plays a crucial role in various vision tasks such as person retrieval and identification. Most existing attribute-based retrieval methods operate under the closed-set assumption that all attribute classes are consistently available during both training and inference. However, this assumption limits their applicability in real-world scenarios where novel attributes may emerge. Moreover, predefined attributes in benchmark datasets are often generic and shared across individuals, making them less discriminative for retrieving the target person. To address these challenges, we propose the Open-Attribute Recognition for Person Retrieval (OAPR) task, which aims to retrieve individuals based on attribute cues, regardless of whether those attributes were seen during training. To support this task, we introduce a novel framework designed to learn generalizable body part representations that cover a broad range of attribute categories. Furthermore, we reconstruct four widely used datasets for open-attribute recognition. Comprehensive experiments on these datasets demonstrate the necessity of the OAPR task and the effectiveness of our framework. The source code and pre-trained models will be publicly available upon publication.
♻ ☆ IDEATOR: Jailbreaking and Benchmarking Large Vision-Language Models Using Themselves
As large Vision-Language Models (VLMs) gain prominence, ensuring their safe deployment has become critical. Recent studies have explored VLM robustness against jailbreak attacks-techniques that exploit model vulnerabilities to elicit harmful outputs. However, the limited availability of diverse multimodal data has constrained current approaches to rely heavily on adversarial or manually crafted images derived from harmful text datasets, which often lack effectiveness and diversity across different contexts. In this paper, we propose IDEATOR, a novel jailbreak method that autonomously generates malicious image-text pairs for black-box jailbreak attacks. IDEATOR is grounded in the insight that VLMs themselves could serve as powerful red team models for generating multimodal jailbreak prompts. Specifically, IDEATOR leverages a VLM to create targeted jailbreak texts and pairs them with jailbreak images generated by a state-of-the-art diffusion model. Extensive experiments demonstrate IDEATOR's high effectiveness and transferability, achieving a 94% attack success rate (ASR) in jailbreaking MiniGPT-4 with an average of only 5.34 queries, and high ASRs of 82%, 88%, and 75% when transferred to LLaVA, InstructBLIP, and Chameleon, respectively. Building on IDEATOR's strong transferability and automated process, we introduce the VLJailbreakBench, a safety benchmark comprising 3,654 multimodal jailbreak samples. Our benchmark results on 11 recently released VLMs reveal significant gaps in safety alignment. For instance, our challenge set achieves ASRs of 46.31% on GPT-4o and 19.65% on Claude-3.5-Sonnet, underscoring the urgent need for stronger defenses.
♻ ☆ Aether Weaver: Multimodal Affective Narrative Co-Generation with Dynamic Scene Graphs
We introduce Aether Weaver, a novel, integrated framework for multimodal narrative co-generation that overcomes limitations of sequential text-to-visual pipelines. Our system concurrently synthesizes textual narratives, dynamic scene graph representations, visual scenes, and affective soundscapes, driven by a tightly integrated, co-generation mechanism. At its core, the Narrator, a large language model, generates narrative text and multimodal prompts, while the Director acts as a dynamic scene graph manager, and analyzes the text to build and maintain a structured representation of the story's world, ensuring spatio-temporal and relational consistency for visual rendering and subsequent narrative generation. Additionally, a Narrative Arc Controller guides the high-level story structure, influencing multimodal affective consistency, further complemented by an Affective Tone Mapper that ensures congruent emotional expression across all modalities. Through qualitative evaluations on a diverse set of narrative prompts encompassing various genres, we demonstrate that Aether Weaver significantly enhances narrative depth, visual fidelity, and emotional resonance compared to cascaded baseline approaches. This integrated framework provides a robust platform for rapid creative prototyping and immersive storytelling experiences.
♻ ☆ CMIC: Content-Adaptive Mamba for Learned Image Compression
Recent Learned image compression (LIC) leverages Mamba-style state-space models (SSMs) for global receptive fields with linear complexity. However, vanilla Mamba is content-agnostic, relying on fixed and predefined selective scans, which restricts its ability to dynamically and fully exploit content dependencies. We introduce Content-Adaptive Mamba (CAM), a dynamic SSM that addresses two critical limitations. First, it employs content-aware token reorganization, clustering and reordering tokens based on content similarity to prioritize proximity in feature space over Euclidean space. Second, it integrates global priors into SSM via a prompt dictionary, effectively mitigating the strict causality and long-range decay in the token interactions of Mamba. These innovations enable CAM to better capture global dependencies while preserving computational efficiency. Leveraging CAM, our Content-Adaptive Mamba-based LIC model (CMIC) achieves state-of-the-art rate-distortion performance, surpassing VTM-21.0 by -15.91\%, -21.34\%, and -17.58\% BD-rate on Kodak, Tecnick, and CLIC benchmarks, respectively.
♻ ☆ Individual Content and Motion Dynamics Preserved Pruning for Video Diffusion Models ACM MM 2025
The high computational cost and slow inference time are major obstacles to deploying Video Diffusion Models (VDMs). To overcome this, we introduce a new Video Diffusion Model Compression approach using individual content and motion dynamics preserved pruning and consistency loss. First, we empirically observe that deeper VDM layers are crucial for maintaining the quality of \textbf{motion dynamics} (\textit{e.g.,} coherence of the entire video), while shallower layers are more focused on \textbf{individual content} (\textit{e.g.,} individual frames). Therefore, we prune redundant blocks from the shallower layers while preserving more of the deeper layers, resulting in a lightweight VDM variant called VDMini. Moreover, we propose an \textbf{Individual Content and Motion Dynamics (ICMD)} Consistency Loss to gain comparable generation performance as larger VDM to VDMini. In particular, we first use the Individual Content Distillation (ICD) Loss to preserve the consistency in the features of each generated frame between the teacher and student models. Next, we introduce a Multi-frame Content Adversarial (MCA) Loss to enhance the motion dynamics across the generated video as a whole. This method significantly accelerates inference time while maintaining high-quality video generation. Extensive experiments demonstrate the effectiveness of our VDMini on two important video generation tasks, Text-to-Video (T2V) and Image-to-Video (I2V), where we respectively achieve an average 2.5 $\times$, 1.4 $\times$, and 1.25 $\times$ speed up for the I2V method SF-V, the T2V method T2V-Turbo-v2, and the T2V method HunyuanVideo, while maintaining the quality of the generated videos on several benchmarks including UCF101, VBench-T2V, and VBench-I2V.
comment: ACM MM 2025
♻ ☆ 4D Scaffold Gaussian Splatting with Dynamic-Aware Anchor Growing for Efficient and High-Fidelity Dynamic Scene Reconstruction
Modeling dynamic scenes through 4D Gaussians offers high visual fidelity and fast rendering speeds, but comes with significant storage overhead. Recent approaches mitigate this cost by aggressively reducing the number of Gaussians. However, this inevitably removes Gaussians essential for high-quality rendering, leading to severe degradation in dynamic regions. In this paper, we introduce a novel 4D anchor-based framework that tackles the storage cost in different perspective. Rather than reducing the number of Gaussians, our method retains a sufficient quantity to accurately model dynamic contents, while compressing them into compact, grid-aligned 4D anchor features. Each anchor is processed by an MLP to spawn a set of neural 4D Gaussians, which represent a local spatiotemporal region. We design these neural 4D Gaussians to capture temporal changes with minimal parameters, making them well-suited for the MLP-based spawning. Moreover, we introduce a dynamic-aware anchor growing strategy to effectively assign additional anchors to under-reconstructed dynamic regions. Our method adjusts the accumulated gradients with Gaussians' temporal coverage, significantly improving reconstruction quality in dynamic regions. Experimental results highlight that our method achieves state-of-the-art visual quality in dynamic regions, outperforming all baselines by a large margin with practical storage costs.
♻ ☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
♻ ☆ Training Multi-Layer Binary Neural Networks With Local Binary Error Signals
Binary Neural Networks (BNNs) significantly reduce computational complexity and memory usage in machine and deep learning by representing weights and activations with just one bit. However, most existing training algorithms for BNNs rely on quantization-aware floating-point Stochastic Gradient Descent (SGD), limiting the full exploitation of binary operations to the inference phase only. In this work, we propose, for the first time, a fully binary and gradient-free training algorithm for multi-layer BNNs, eliminating the need for back-propagated floating-point gradients. Specifically, the proposed algorithm relies on local binary error signals and binary weight updates, employing integer-valued hidden weights that serve as a synaptic metaplasticity mechanism, thereby enhancing its neurobiological plausibility. Our proposed solution enables the training of binary multi-layer perceptrons by using exclusively XNOR, Popcount, and increment/decrement operations. Experimental results on multi-class classification benchmarks show test accuracy improvements of up to +35.47% over the only existing fully binary single-layer state-of-the-art solution. Compared to full-precision SGD, our solution improves test accuracy by up to +35.30% under the same total memory demand, while also reducing computational cost by two to three orders of magnitude in terms of the total number of Boolean gates. The proposed algorithm is made available to the scientific community as a public repository.
♻ ☆ T-GVC: Trajectory-Guided Generative Video Coding at Ultra-Low Bitrates
Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding for Ultra-Low Bitrate (ULB) scenarios by leveraging powerful generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or excessive dependence on high-level text guidance, which tend to inadequately capture fine-grained motion details, leading to unrealistic or incoherent reconstructions. To address these challenges, we propose Trajectory-Guided Generative Video Coding (dubbed T-GVC), a novel framework that bridges low-level motion tracking with high-level semantic understanding. T-GVC features a semantic-aware sparse motion sampling pipeline that extracts pixel-wise motion as sparse trajectory points based on their semantic importance, significantly reducing the bitrate while preserving critical temporal semantic information. In addition, by integrating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free guidance mechanism in latent space to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that T-GVC outperforms both traditional and neural video codecs under ULB conditions. Furthermore, additional experiments confirm that our framework achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
♻ ☆ FCDM: A Physics-Guided Bidirectional Frequency Aware Convolution and Diffusion-Based Model for Sinogram Inpainting
Computed tomography (CT) is widely used in scientific and medical imaging, but acquiring full-view sinograms requires high radiation dose and long scan times. Sparse-view CT alleviates this burden but yields incomplete sinograms with structured signal loss, hampering accurate reconstruction. Unlike RGB images, sinograms encode overlapping features along projection paths and exhibit directional spectral patterns. Standard inpainting models overlook these properties, treating missing data as local holes and neglecting angular dependencies and physical consistency. We propose~\modelname, a diffusion-based framework tailored for sinograms, which restores global structure through bidirectional frequency reasoning and angular-aware masking, while enforcing physical plausibility via physics-guided constraints and frequency-adaptive noise control. Experiments on synthetic and real-world datasets show that~\modelname~consistently outperforms baselines, achieving SSIM over 0.93 and PSNR above 31 dB across diverse sparse-view scenarios.
♻ ☆ FLUX-Text: A Simple and Advanced Diffusion Transformer Baseline for Scene Text Editing
Scene text editing aims to modify or add texts on images while ensuring text fidelity and overall visual quality consistent with the background. Recent methods are primarily built on UNet-based diffusion models, which have improved scene text editing results, but still struggle with complex glyph structures, especially for non-Latin ones (\eg, Chinese, Korean, Japanese). To address these issues, we present \textbf{FLUX-Text}, a simple and advanced multilingual scene text editing DiT method. Specifically, our FLUX-Text enhances glyph understanding and generation through lightweight Visual and Text Embedding Modules, while preserving the original generative capability of FLUX. We further propose a Regional Text Perceptual Loss tailored for text regions, along with a matching two-stage training strategy to better balance text editing and overall image quality. Benefiting from the DiT-based architecture and lightweight feature injection modules, FLUX-Text can be trained with only $0.1$M training examples, a \textbf{97\%} reduction compared to $2.9$M required by popular methods. Extensive experiments on multiple public datasets, including English and Chinese benchmarks, demonstrate that our method surpasses other methods in visual quality and text fidelity. All the code is available at https://github.com/AMAP-ML/FluxText.
comment: 10 pages, 5 figures
♻ ☆ Talking to DINO: Bridging Self-Supervised Vision Backbones with Language for Open-Vocabulary Segmentation
Open-Vocabulary Segmentation (OVS) aims at segmenting images from free-form textual concepts without predefined training classes. While existing vision-language models such as CLIP can generate segmentation masks by leveraging coarse spatial information from Vision Transformers, they face challenges in spatial localization due to their global alignment of image and text features. Conversely, self-supervised visual models like DINO excel in fine-grained visual encoding but lack integration with language. To bridge this gap, we present Talk2DINO, a novel hybrid approach that combines the spatial accuracy of DINOv2 with the language understanding of CLIP. Our approach aligns the textual embeddings of CLIP to the patch-level features of DINOv2 through a learned mapping function without the need to fine-tune the underlying backbones. At training time, we exploit the attention maps of DINOv2 to selectively align local visual patches with textual embeddings. We show that the powerful semantic and localization abilities of Talk2DINO can enhance the segmentation process, resulting in more natural and less noisy segmentations, and that our approach can also effectively distinguish foreground objects from the background. Experimental results demonstrate that Talk2DINO achieves state-of-the-art performance across several unsupervised OVS benchmarks. Source code and models are publicly available at: https://lorebianchi98.github.io/Talk2DINO/.
♻ ☆ MoCHA: Advanced Vision-Language Reasoning with MoE Connector and Hierarchical Group Attention
Vision large language models (VLLMs) are focusing primarily on handling complex and fine-grained visual information by incorporating advanced vision encoders and scaling up visual models. However, these approaches face high training and inference costs, as well as challenges in extracting visual details, effectively bridging across modalities. In this work, we propose a novel visual framework, MoCHA, to address these issues. Our framework integrates four vision backbones (i.e., CLIP, SigLIP, DINOv2 and ConvNeXt) to extract complementary visual features and is equipped with a sparse Mixture of Experts Connectors (MoECs) module to dynamically select experts tailored to different visual dimensions. To mitigate redundant or insufficient use of the visual information encoded by the MoECs module, we further design a Hierarchical Group Attention (HGA) with intra- and inter-group operations and an adaptive gating strategy for encoded visual features. We train MoCHA on two mainstream LLMs (e.g., Phi2-2.7B and Vicuna-7B) and evaluate their performance across various benchmarks. Notably, MoCHA outperforms state-of-the-art open-weight models on various tasks. For example, compared to CuMo (Mistral-7B), our MoCHA (Phi2-2.7B) presents outstanding abilities to mitigate hallucination by showing improvements of 3.25% in POPE and to follow visual instructions by raising 153 points on MME. Finally, ablation studies further confirm the effectiveness and robustness of the proposed MoECs and HGA in improving the overall performance of MoCHA.
♻ ☆ Multimodal Referring Segmentation: A Survey
Multimodal referring segmentation aims to segment target objects in visual scenes, such as images, videos, and 3D scenes, based on referring expressions in text or audio format. This task plays a crucial role in practical applications requiring accurate object perception based on user instructions. Over the past decade, it has gained significant attention in the multimodal community, driven by advances in convolutional neural networks, transformers, and large language models, all of which have substantially improved multimodal perception capabilities. This paper provides a comprehensive survey of multimodal referring segmentation. We begin by introducing this field's background, including problem definitions and commonly used datasets. Next, we summarize a unified meta architecture for referring segmentation and review representative methods across three primary visual scenes, including images, videos, and 3D scenes. We further discuss Generalized Referring Expression (GREx) methods to address the challenges of real-world complexity, along with related tasks and practical applications. Extensive performance comparisons on standard benchmarks are also provided. We continually track related works at https://github.com/henghuiding/Awesome-Multimodal-Referring-Segmentation.
comment: Project Page: https://github.com/henghuiding/Awesome-Multimodal-Referring-Segmentation
♻ ☆ 3DRot: 3D Rotation Augmentation for RGB-Based 3D Tasks
RGB-based 3D tasks, e.g., 3D detection, depth estimation, 3D keypoint estimation, still suffer from scarce, expensive annotations and a thin augmentation toolbox, since most image transforms, including resize and rotation, disrupt geometric consistency. In this paper, we introduce 3DRot, a plug-and-play augmentation that rotates and mirrors images about the camera's optical center while synchronously updating RGB images, camera intrinsics, object poses, and 3D annotations to preserve projective geometry-achieving geometry-consistent rotations and reflections without relying on any scene depth. We validate 3DRot with a classical 3D task, monocular 3D detection. On SUN RGB-D dataset, 3DRot raises $IoU_{3D}$ from 43.21 to 44.51, cuts rotation error (ROT) from 22.91$^\circ$ to 20.93$^\circ$, and boosts $mAP_{0.5}$ from 35.70 to 38.11. As a comparison, Cube R-CNN adds 3 other datasets together with SUN RGB-D for monocular 3D estimation, with a similar mechanism and test dataset, increases $IoU_{3D}$ from 36.2 to 37.8, boosts $mAP_{0.5}$ from 34.7 to 35.4. Because it operates purely through camera-space transforms, 3DRot is readily transferable to other 3D tasks.
♻ ☆ BSMamba: Brightness and Semantic Modeling for Long-Range Interaction in Low-Light Image Enhancement
Current low-light image enhancement (LLIE) methods face significant limitations in simultaneously improving brightness while preserving semantic consistency, fine details, and computational efficiency. With the emergence of state-space models, particularly Mamba, image restoration has achieved remarkable performance, yet existing visual Mamba approaches flatten 2D images into 1D token sequences using fixed scanning rules, critically limiting interactions between distant tokens with causal relationships and constraining their ability to capture meaningful long-range dependencies. To address these fundamental limitations, we propose BSMamba, a novel visual Mamba architecture comprising two specially designed components: Brightness Mamba and Semantic Mamba. The Brightness Mamba revolutionizes token interaction patterns by prioritizing connections between distant tokens with similar brightness levels, effectively addressing the challenge of brightness restoration in LLIE tasks through brightness-guided selective attention. Complementing this, the Semantic Mamba establishes priority interactions between tokens sharing similar semantic meanings, allowing the model to maintain contextual consistency by connecting semantically related regions across the image, thus preserving the hierarchical nature of image semantics during enhancement. By intelligently modeling tokens based on brightness and semantic similarity rather than arbitrary scanning patterns, BSMamba transcends the constraints of conventional token sequencing while adhering to the principles of causal modeling. Extensive experiments demonstrate that BSMamba achieves state-of-the-art performance in LLIE while preserving semantic consistency. Code is available at https://github.com/bywlzts/BSMamba.
♻ ☆ WSI-LLaVA: A Multimodal Large Language Model for Whole Slide Image ICCV 2025
Recent advancements in computational pathology have produced patch-level Multi-modal Large Language Models (MLLMs), but these models are limited by their inability to analyze whole slide images (WSIs) comprehensively and their tendency to bypass crucial morphological features that pathologists rely on for diagnosis. To address these challenges, we first introduce WSI-Bench, a large-scale morphology-aware benchmark containing 180k VQA pairs from 9,850 WSIs across 30 cancer types, designed to evaluate MLLMs' understanding of morphological characteristics crucial for accurate diagnosis. Building upon this benchmark, we present WSI-LLaVA, a novel framework for gigapixel WSI understanding that employs a three-stage training approach: WSI-text alignment, feature space alignment, and task-specific instruction tuning. To better assess model performance in pathological contexts, we develop two specialized WSI metrics: WSI-Precision and WSI-Relevance. Experimental results demonstrate that WSI-LLaVA outperforms existing models across all capability dimensions, with a significant improvement in morphological analysis, establishing a clear correlation between morphological understanding and diagnostic accuracy.
comment: ICCV 2025, 38 pages, 22 figures, 35 tables
♻ ☆ Knowledge Distillation for Underwater Feature Extraction and Matching via GAN-synthesized Images
Autonomous Underwater Vehicles (AUVs) play a crucial role in underwater exploration. Vision-based methods offer cost-effective solutions for localization and mapping in the absence of conventional sensors like GPS and LiDAR. However, underwater environments present significant challenges for feature extraction and matching due to image blurring and noise caused by attenuation, scattering, and the interference of \textit{marine snow}. In this paper, we aim to improve the robustness of the feature extraction and matching in the turbid underwater environment using the cross-modal knowledge distillation method that transfers the in-air feature extraction and matching models to underwater settings using synthetic underwater images as the medium. We first propose a novel adaptive GAN-synthesis method to estimate water parameters and underwater noise distribution, to generate environment-specific synthetic underwater images. We then introduce a general knowledge distillation framework compatible with different teacher models. The evaluation of GAN-based synthesis highlights the significance of the new components, i.e. GAN-synthesized noise and forward scattering, in the proposed model. Additionally, VSLAM, as a representative downstream application of feature extraction and matching, is employed on real underwater sequences to validate the effectiveness of the transferred model. Project page: https://github.com/Jinghe-mel/UFEN-GAN.
♻ ☆ Entropy-Lens: The Information Signature of Transformer Computations
Transformer models map input token sequences to output token distributions, layer by layer. While most interpretability work focuses on internal latent representations, we study the evolution of these token-level distributions directly in vocabulary space. However, such distributions are high-dimensional and defined on an unordered support, making common descriptors like moments or cumulants ill-suited. We address this by computing the Shannon entropy of each intermediate predicted distribution, yielding one interpretable scalar per layer. The resulting sequence, the entropy profile, serves as a compact, information-theoretic signature of the model's computation. We introduce Entropy-Lens, a model-agnostic framework that extracts entropy profiles from frozen, off-the-shelf transformers. We show that these profiles (i) reveal family-specific computation patterns invariant under depth rescaling, (ii) are predictive of prompt type and task format, and (iii) correlate with output correctness. We further show that R\'enyi entropies yield similar results within a broad range of $\alpha$ values, justifying the use of Shannon entropy as a stable and principled summary. Our results hold across different transformers, without requiring gradients, fine-tuning, or access to model internals.
♻ ☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems ACM MM 2025
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit/blob/main/examples/ADSEdit.md.
comment: ACM MM 2025
♻ ☆ Decouple and Track: Benchmarking and Improving Video Diffusion Transformers for Motion Transfer ICCV 2025
The motion transfer task aims to transfer motion from a source video to newly generated videos, requiring the model to decouple motion from appearance. Previous diffusion-based methods primarily rely on separate spatial and temporal attention mechanisms within the 3D U-Net. In contrast, state-of-the-art video Diffusion Transformers (DiT) models use 3D full attention, which does not explicitly separate temporal and spatial information. Thus, the interaction between spatial and temporal dimensions makes decoupling motion and appearance more challenging for DiT models. In this paper, we propose DeT, a method that adapts DiT models to improve motion transfer ability. Our approach introduces a simple yet effective temporal kernel to smooth DiT features along the temporal dimension, facilitating the decoupling of foreground motion from background appearance. Meanwhile, the temporal kernel effectively captures temporal variations in DiT features, which are closely related to motion. Moreover, we introduce explicit supervision along dense trajectories in the latent feature space to further enhance motion consistency. Additionally, we present MTBench, a general and challenging benchmark for motion transfer. We also introduce a hybrid motion fidelity metric that considers both the global and local motion similarity. Therefore, our work provides a more comprehensive evaluation than previous works. Extensive experiments on MTBench demonstrate that DeT achieves the best trade-off between motion fidelity and edit fidelity.
comment: ICCV 2025
♻ ☆ Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.
♻ ☆ Causally Steered Diffusion for Automated Video Counterfactual Generation
Adapting text-to-image (T2I) latent diffusion models (LDMs) to video editing has shown strong visual fidelity and controllability, but challenges remain in maintaining causal relationships inherent to the video data generating process. Edits affecting causally dependent attributes often generate unrealistic or misleading outcomes if these relationships are ignored. In this work, we introduce a causally faithful framework for counterfactual video generation, formulated as an Out-of-Distribution (OOD) prediction problem. We embed prior causal knowledge by encoding the relationships specified in a causal graph into text prompts and guide the generation process by optimizing these prompts using a vision-language model (VLM)-based textual loss. This loss encourages the latent space of the LDMs to capture OOD variations in the form of counterfactuals, effectively steering generation toward causally meaningful alternatives. The proposed framework, dubbed CSVC, is agnostic to the underlying video editing system and does not require access to its internal mechanisms or fine-tuning. We evaluate our approach using standard video quality metrics and counterfactual-specific criteria, such as causal effectiveness and minimality. Experimental results show that CSVC generates causally faithful video counterfactuals within the LDM distribution via prompt-based causal steering, achieving state-of-the-art causal effectiveness without compromising temporal consistency or visual quality on real-world facial videos. Due to its compatibility with any black-box video editing system, our framework has significant potential to generate realistic 'what if' hypothetical video scenarios in diverse areas such as digital media and healthcare.
♻ ☆ Unveiling the Potential of iMarkers: Invisible Fiducial Markers for Advanced Robotics
Fiducial markers are widely used in various robotics tasks, facilitating enhanced navigation, object recognition, and scene understanding. Despite their advantages for robots and Augmented Reality (AR) applications, they often disrupt the visual aesthetics of environments because they are visible to humans, making them unsuitable for non-intrusive use cases. To address this gap, this paper presents "iMarkers"-innovative, unobtrusive fiducial markers detectable exclusively by robots equipped with specialized sensors. These markers offer high flexibility in production, allowing customization of their visibility range and encoding algorithms to suit various demands. The paper also introduces the hardware designs and software algorithms developed for detecting iMarkers, highlighting their adaptability and robustness in the detection and recognition stages. Various evaluations have demonstrated the effectiveness of iMarkers compared to conventional (printed) and blended fiducial markers and confirmed their applicability in diverse robotics scenarios.
comment: 18 pages, 10 figures, 3 tables
♻ ☆ PhenoBench: A Comprehensive Benchmark for Cell Phenotyping MICCAI 2025
Digital pathology has seen the advent of a wealth of foundational models (FM), yet to date their performance on cell phenotyping has not been benchmarked in a unified manner. We therefore propose PhenoBench: A comprehensive benchmark for cell phenotyping on Hematoxylin and Eosin (H&E) stained histopathology images. We provide both PhenoCell, a new H&E dataset featuring 14 granular cell types identified by using multiplexed imaging, and ready-to-use fine-tuning and benchmarking code that allows the systematic evaluation of multiple prominent pathology FMs in terms of dense cell phenotype predictions in different generalization scenarios. We perform extensive benchmarking of existing FMs, providing insights into their generalization behavior under technical vs. medical domain shifts. Furthermore, while FMs achieve macro F1 scores > 0.70 on previously established benchmarks such as Lizard and PanNuke, on PhenoCell, we observe scores as low as 0.20. This indicates a much more challenging task not captured by previous benchmarks, establishing PhenoCell as a prime asset for future benchmarking of FMs and supervised models alike. Code and data are available on GitHub.
comment: accepted for presentation at MICCAI 2025
♻ ☆ Personalize Your Gaussian: Consistent 3D Scene Personalization from a Single Image
Personalizing 3D scenes from a single reference image enables intuitive user-guided editing, which requires achieving both multi-view consistency across perspectives and referential consistency with the input image. However, these goals are particularly challenging due to the viewpoint bias caused by the limited perspective provided in a single image. Lacking the mechanisms to effectively expand reference information beyond the original view, existing methods of image-conditioned 3DGS personalization often suffer from this viewpoint bias and struggle to produce consistent results. Therefore, in this paper, we present Consistent Personalization for 3D Gaussian Splatting (CP-GS), a framework that progressively propagates the single-view reference appearance to novel perspectives. In particular, CP-GS integrates pre-trained image-to-3D generation and iterative LoRA fine-tuning to extract and extend the reference appearance, and finally produces faithful multi-view guidance images and the personalized 3DGS outputs through a view-consistent generation process guided by geometric cues. Extensive experiments on real-world scenes show that our CP-GS effectively mitigates the viewpoint bias, achieving high-quality personalization that significantly outperforms existing methods. The code will be released at https://github.com/Yuxuan-W/CP-GS.
comment: 18 pages
♻ ☆ Learning Interpretable Queries for Explainable Image Classification with Information Pursuit ICCV 2025
Information Pursuit (IP) is an explainable prediction algorithm that greedily selects a sequence of interpretable queries about the data in order of information gain, updating its posterior at each step based on observed query-answer pairs. The standard paradigm uses hand-crafted dictionaries of potential data queries curated by a domain expert or a large language model after a human prompt. However, in practice, hand-crafted dictionaries are limited by the expertise of the curator and the heuristics of prompt engineering. This paper introduces a novel approach: learning a dictionary of interpretable queries directly from the dataset. Our query dictionary learning problem is formulated as an optimization problem by augmenting IP's variational formulation with learnable dictionary parameters. To formulate learnable and interpretable queries, we leverage the latent space of large vision and language models like CLIP. To solve the optimization problem, we propose a new query dictionary learning algorithm inspired by classical sparse dictionary learning. Our experiments demonstrate that learned dictionaries significantly outperform hand-crafted dictionaries generated with large language models.
comment: Published at ICCV 2025
♻ ☆ LMME3DHF: Benchmarking and Evaluating Multimodal 3D Human Face Generation with LMMs
The rapid advancement in generative artificial intelligence have enabled the creation of 3D human faces (HFs) for applications including media production, virtual reality, security, healthcare, and game development, etc. However, assessing the quality and realism of these AI-generated 3D human faces remains a significant challenge due to the subjective nature of human perception and innate perceptual sensitivity to facial features. To this end, we conduct a comprehensive study on the quality assessment of AI-generated 3D human faces. We first introduce Gen3DHF, a large-scale benchmark comprising 2,000 videos of AI-Generated 3D Human Faces along with 4,000 Mean Opinion Scores (MOS) collected across two dimensions, i.e., quality and authenticity, 2,000 distortion-aware saliency maps and distortion descriptions. Based on Gen3DHF, we propose LMME3DHF, a Large Multimodal Model (LMM)-based metric for Evaluating 3DHF capable of quality and authenticity score prediction, distortion-aware visual question answering, and distortion-aware saliency prediction. Experimental results show that LMME3DHF achieves state-of-the-art performance, surpassing existing methods in both accurately predicting quality scores for AI-generated 3D human faces and effectively identifying distortion-aware salient regions and distortion types, while maintaining strong alignment with human perceptual judgments. Both the Gen3DHF database and the LMME3DHF will be released upon the publication.
♻ ☆ Identifying actionable driver mutations in lung cancer using an efficient Asymmetric Transformer Decoder MICCAI 2025
Identifying actionable driver mutations in non-small cell lung cancer (NSCLC) can impact treatment decisions and significantly improve patient outcomes. Despite guideline recommendations, broader adoption of genetic testing remains challenging due to limited availability and lengthy turnaround times. Machine Learning (ML) methods for Computational Pathology (CPath) offer a potential solution; however, research often focuses on only one or two common mutations, limiting the clinical value of these tools and the pool of patients who can benefit from them. This study evaluates various Multiple Instance Learning (MIL) techniques to detect six key actionable NSCLC driver mutations: ALK, BRAF, EGFR, ERBB2, KRAS, and MET ex14. Additionally, we introduce an Asymmetric Transformer Decoder model that employs queries and key-values of varying dimensions to maintain a low query dimensionality. This approach efficiently extracts information from patch embeddings and minimizes overfitting risks, proving highly adaptable to the MIL setting. Moreover, we present a method to directly utilize tissue type in the model, addressing a typical MIL limitation where either all regions or only some specific regions are analyzed, neglecting biological relevance. Our method outperforms top MIL models by an average of 3%, and over 4% when predicting rare mutations such as ERBB2 and BRAF, moving ML-based tests closer to being practical alternatives to standard genetic testing.
comment: Accepted at MICCAI 2025 Workshop COMPAYL
♻ ☆ GOBench: Benchmarking Geometric Optics Generation and Understanding of MLLMs
The rapid evolution of Multi-modality Large Language Models (MLLMs) is driving significant advancements in visual understanding and generation. Nevertheless, a comprehensive assessment of their capabilities, concerning the fine-grained physical principles especially in geometric optics, remains underexplored. To address this gap, we introduce GOBench, the first benchmark to systematically evaluate MLLMs' ability across two tasks: 1) Generating Optically Authentic Imagery and 2) Understanding Underlying Optical Phenomena. We curates high-quality prompts of geometric optical scenarios and use MLLMs to construct GOBench-Gen-1k dataset.We then organize subjective experiments to assess the generated imagery based on Optical Authenticity, Aesthetic Quality, and Instruction Fidelity, revealing MLLMs' generation flaws that violate optical principles. For the understanding task, we apply crafted evaluation instructions to test optical understanding ability of eleven prominent MLLMs. The experimental results demonstrate that current models face significant challenges in both optical generation and understanding. The top-performing generative model, GPT-4o-Image, cannot perfectly complete all generation tasks, and the best-performing MLLM model, Gemini-2.5Pro, attains a mere 37.35\% accuracy in optical understanding. Database and codes are publicly available at https://github.com/aiben-ch/GOBench.
comment: 8 pages, 5 figures
♻ ☆ UniCUE: Unified Recognition and Generation Framework for Chinese Cued Speech Video-to-Speech Generation
Cued Speech (CS) enhances lipreading via hand coding, offering visual phonemic cues that support precise speech perception for the hearing-impaired. The task of CS Video-to-Speech generation (CSV2S) aims to convert CS videos into intelligible speech signals. Most existing research focuses on CS Recognition (CSR), which transcribes video content into text. Consequently, a common solution for CSV2S is to integrate CSR with a text-to-speech (TTS) system. However, this pipeline relies on text as an intermediate medium, which may lead to error propagation and temporal misalignment between speech and CS video dynamics. In contrast, directly generating audio speech from CS video (direct CSV2S) often suffers from the inherent multimodal complexity and the limited availability of CS data. To address these challenges, we propose UniCUE, the first unified framework for CSV2S that directly generates speech from CS videos without relying on intermediate text. The core innovation of UniCUE lies in integrating an understanding task (CSR) that provides fine-grained CS visual-semantic cues to guide speech generation. Specifically, UniCUE incorporates a pose-aware visual processor, a semantic alignment pool that enables precise visual-semantic mapping, and a VisioPhonetic adapter to bridge the understanding and generation tasks within a unified architecture. To support this framework, we construct UniCUE-HI, a large-scale Mandarin CS dataset containing 11282 videos from 14 cuers, including both hearing-impaired and normal-hearing individuals. Extensive experiments on this dataset demonstrate that UniCUE achieves state-of-the-art performance across multiple evaluation metrics.
comment: 8 pages, 5 figures
♻ ☆ Information Bottleneck-Guided Heterogeneous Graph Learning for Interpretable Neurodevelopmental Disorder Diagnosis
Developing interpretable models for neurodevelopmental disorders (NDDs) diagnosis presents significant challenges in effectively encoding, decoding, and integrating multimodal neuroimaging data. While many existing machine learning approaches have shown promise in brain network analysis, they typically suffer from limited interpretability, particularly in extracting meaningful biomarkers from functional magnetic resonance imaging (fMRI) data and establishing clear relationships between imaging features and demographic characteristics. Besides, current graph neural network methodologies face limitations in capturing both local and global functional connectivity patterns while simultaneously achieving theoretically principled multimodal data fusion. To address these challenges, we propose the Interpretable Information Bottleneck Heterogeneous Graph Neural Network (I2B-HGNN), a unified framework that applies information bottleneck principles to guide both brain connectivity modeling and cross-modal feature integration. This framework comprises two complementary components. The first is the Information Bottleneck Graph Transformer (IBGraphFormer), which combines transformer-based global attention mechanisms with graph neural networks through information bottleneck-guided pooling to identify sufficient biomarkers. The second is the Information Bottleneck Heterogeneous Graph Attention Network (IB-HGAN), which employs meta-path-based heterogeneous graph learning with structural consistency constraints to achieve interpretable fusion of neuroimaging and demographic data. The experimental results demonstrate that I2B-HGNN achieves superior performance in diagnosing NDDs, exhibiting both high classification accuracy and the ability to provide interpretable biomarker identification while effectively analyzing non-imaging data.
♻ ☆ MM-Gesture: Towards Precise Micro-Gesture Recognition through Multimodal Fusion IJCAI 2025
In this paper, we present MM-Gesture, the solution developed by our team HFUT-VUT, which ranked 1st in the micro-gesture classification track of the 3rd MiGA Challenge at IJCAI 2025, achieving superior performance compared to previous state-of-the-art methods. MM-Gesture is a multimodal fusion framework designed specifically for recognizing subtle and short-duration micro-gestures (MGs), integrating complementary cues from joint, limb, RGB video, Taylor-series video, optical-flow video, and depth video modalities. Utilizing PoseConv3D and Video Swin Transformer architectures with a novel modality-weighted ensemble strategy, our method further enhances RGB modality performance through transfer learning pre-trained on the larger MA-52 dataset. Extensive experiments on the iMiGUE benchmark, including ablation studies across different modalities, validate the effectiveness of our proposed approach, achieving a top-1 accuracy of 73.213%. Code is available at: https://github.com/momiji-bit/MM-Gesture.
comment: 1st Place in Micro-gesture Classification sub-challenge in 3rd MiGA at IJCAI 2025
♻ ☆ Beyond Images: Adaptive Fusion of Visual and Textual Data for Food Classification
This study introduces a novel multimodal food recognition framework that effectively combines visual and textual modalities to enhance classification accuracy and robustness. The proposed approach employs a dynamic multimodal fusion strategy that adaptively integrates features from unimodal visual inputs and complementary textual metadata. This fusion mechanism is designed to maximize the use of informative content, while mitigating the adverse impact of missing or inconsistent modality data. The framework was rigorously evaluated on the UPMC Food-101 dataset and achieved unimodal classification accuracies of 73.60% for images and 88.84% for text. When both modalities were fused, the model achieved an accuracy of 97.84%, outperforming several state-of-the-art methods. Extensive experimental analysis demonstrated the robustness, adaptability, and computational efficiency of the proposed settings, highlighting its practical applicability to real-world multimodal food-recognition scenarios.
♻ ☆ NAMI: Efficient Image Generation via Bridged Progressive Rectified Flow Transformers
Flow-based Transformer models have achieved state-of-the-art image generation performance, but often suffer from high inference latency and computational cost due to their large parameter sizes. To improve inference efficiency without compromising quality, we propose Bridged Progressive Rectified Flow Transformers (NAMI), which decompose the generation process across temporal, spatial, and architectural demensions. We divide the rectified flow into different stages according to resolution, and use a BridgeFlow module to connect them. Fewer Transformer layers are used at low-resolution stages to generate image layouts and concept contours, and more layers are progressively added as the resolution increases. Experiments demonstrate that our approach achieves fast convergence and reduces inference time while ensuring generation quality. The main contributions of this paper are summarized as follows: (1) We introduce Bridged Progressive Rectified Flow Transformers that enable multi-resolution training, accelerating model convergence; (2) NAMI leverages piecewise flow and spatial cascading of Diffusion Transformer (DiT) to rapidly generate images, reducing inference time by 64% for generating 1024 resolution images; (3) We propose a BridgeFlow module to align flows between different stages; (4) We propose the NAMI-1K benchmark to evaluate human preference performance, aiming to mitigate distributional bias and comprehensively assess model effectiveness. The results show that our model is competitive with state-of-the-art models.
♻ ☆ Motion Matters: Motion-guided Modulation Network for Skeleton-based Micro-Action Recognition ACM MM 2025
Micro-Actions (MAs) are an important form of non-verbal communication in social interactions, with potential applications in human emotional analysis. However, existing methods in Micro-Action Recognition often overlook the inherent subtle changes in MAs, which limits the accuracy of distinguishing MAs with subtle changes. To address this issue, we present a novel Motion-guided Modulation Network (MMN) that implicitly captures and modulates subtle motion cues to enhance spatial-temporal representation learning. Specifically, we introduce a Motion-guided Skeletal Modulation module (MSM) to inject motion cues at the skeletal level, acting as a control signal to guide spatial representation modeling. In parallel, we design a Motion-guided Temporal Modulation module (MTM) to incorporate motion information at the frame level, facilitating the modeling of holistic motion patterns in micro-actions. Finally, we propose a motion consistency learning strategy to aggregate the motion cues from multi-scale features for micro-action classification. Experimental results on the Micro-Action 52 and iMiGUE datasets demonstrate that MMN achieves state-of-the-art performance in skeleton-based micro-action recognition, underscoring the importance of explicitly modeling subtle motion cues. The code will be available at https://github.com/momiji-bit/MMN.
comment: Accepted by ACM MM 2025
♻ ☆ SemiSegECG: A Multi-Dataset Benchmark for Semi-Supervised Semantic Segmentation in ECG Delineation CIKM 2025
Electrocardiogram (ECG) delineation, the segmentation of meaningful waveform features, is critical for clinical diagnosis. Despite recent advances using deep learning, progress has been limited by the scarcity of publicly available annotated datasets. Semi-supervised learning presents a promising solution by leveraging abundant unlabeled ECG data. In this study, we present SemiSegECG, the first systematic benchmark for semi-supervised semantic segmentation (SemiSeg) in ECG delineation. We curated and unified multiple public datasets, including previously underused sources, to support robust and diverse evaluation. We adopted five representative SemiSeg algorithms from computer vision, implemented them on two different architectures: the convolutional network and the transformer, and evaluated them in two different settings: in-domain and cross-domain. Additionally, we propose ECG-specific training configurations and augmentation strategies and introduce a standardized evaluation framework. Our results show that the transformer outperforms the convolutional network in semi-supervised ECG delineation. We anticipate that SemiSegECG will serve as a foundation for advancing semi-supervised ECG delineation methods and will facilitate further research in this domain.
comment: Accepted by CIKM 2025. The code is available at https://github.com/bakqui/semi-seg-ecg
♻ ☆ JointDiT: Enhancing RGB-Depth Joint Modeling with Diffusion Transformers ICCV
We present JointDiT, a diffusion transformer that models the joint distribution of RGB and depth. By leveraging the architectural benefit and outstanding image prior of the state-of-the-art diffusion transformer, JointDiT not only generates high-fidelity images but also produces geometrically plausible and accurate depth maps. This solid joint distribution modeling is achieved through two simple yet effective techniques that we propose, namely, adaptive scheduling weights, which depend on the noise levels of each modality, and the unbalanced timestep sampling strategy. With these techniques, we train our model across all noise levels for each modality, enabling JointDiT to naturally handle various combinatorial generation tasks, including joint generation, depth estimation, and depth-conditioned image generation by simply controlling the timesteps of each branch. JointDiT demonstrates outstanding joint generation performance. Furthermore, it achieves comparable results in depth estimation and depth-conditioned image generation, suggesting that joint distribution modeling can serve as a viable alternative to conditional generation. The project page is available at https://byungki-k.github.io/JointDiT/.
comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV) 2025. Project page: https://byungki-k.github.io/JointDiT/ Code: https://github.com/kaist-ami/JointDiT
Information Retrieval 33
☆ Personalized Recommendation of Dish and Restaurant Collections on iFood KDD
Food delivery platforms face the challenge of helping users navigate vast catalogs of restaurants and dishes to find meals they truly enjoy. This paper presents RED, an automated recommendation system designed for iFood, Latin America's largest on-demand food delivery platform, to personalize the selection of curated food collections displayed to millions of users. Our approach employs a LightGBM classifier that scores collections based on three feature groups: collection characteristics, user-collection similarity, and contextual information. To address the cold-start problem of recommending newly created collections, we develop content-based representations using item embeddings and implement monotonicity constraints to improve generalization. We tackle data scarcity by bootstrapping from category carousel interactions and address visibility bias through unbiased sampling of impressions and purchases in production. The system demonstrates significant real-world impact through extensive A/B testing with 5-10% of iFood's user base. Online results of our A/B tests add up to 97% improvement in Card Conversion Rate and 1.4% increase in overall App Conversion Rate compared to popularity-based baselines. Notably, our offline accuracy metrics strongly correlate with online performance, enabling reliable impact prediction before deployment. To our knowledge, this is the first work to detail large-scale recommendation of curated food collections in a dynamic commercial environment.
comment: Workshop on Two-sided Marketplace Optimization: Search, Discovery, Matching, Pricing & Growth in conjunction with KDD Conference (KDD 2025) in Toronto, Canada
☆ Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
comment: In submission. Project website: https://double-bench.github.io/
☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations at eBay
Sellers at eBay are recommended keyphrases to bid on to enhance the performance of their advertising campaigns. The relevance of these keyphrases is crucial in avoiding the overcrowding of search systems with irrelevant items and maintaining a positive seller perception. It is essential that keyphrase recommendations align with both seller and Search judgments regarding auctions. Due to the difficulty in procuring negative human judgment at scale, employing LLM-as-a-judge to mimic seller judgment has been established as the norm in several studies. This study introduces a novel two-step LLM distillation process from a LLM-judge used to debias our Embedding Based Retrieval (EBR) model from the various biases that exist in click-data. We distill from an LLM teacher via a cross-encoder assistant into a bi-encoder student using a multi-task training approach, ultimately employing the student bi-encoder to retrieve relevant advertiser keyphrases. We show that integrating a knowledge distillation process from LLMs in a multi-task training setup enhances bi-encoder performance in retrieving relevant advertiser keyphrases at eBay.
☆ Demystifying Sequential Recommendations: Counterfactual Explanations via Genetic Algorithms
Sequential Recommender Systems (SRSs) have demonstrated remarkable effectiveness in capturing users' evolving preferences. However, their inherent complexity as "black box" models poses significant challenges for explainability. This work presents the first counterfactual explanation technique specifically developed for SRSs, introducing a novel approach in this space, addressing the key question: What minimal changes in a user's interaction history would lead to different recommendations? To achieve this, we introduce a specialized genetic algorithm tailored for discrete sequences and show that generating counterfactual explanations for sequential data is an NP-Complete problem. We evaluate these approaches across four experimental settings, varying between targeted-untargeted and categorized-uncategorized scenarios, to comprehensively assess their capability in generating meaningful explanations. Using three different datasets and three models, we are able to demonstrate that our methods successfully generate interpretable counterfactual explanation while maintaining model fidelity close to one. Our findings contribute to the growing field of Explainable AI by providing a framework for understanding sequential recommendation decisions through the lens of "what-if" scenarios, ultimately enhancing user trust and system transparency.
☆ OpenLifelogQA: An Open-Ended Multi-Modal Lifelog Question-Answering Dataset
Lifelogging refers to the process of passively collecting, storing, and analysing personal daily life data using wearable devices. This data can support applications in memory preservation and enhancement. For example, using an ask-and-answer strategy, question-answering (QA) on lifelog data opens an interactive and interesting way to explore memorable events and insights into daily life. However, research resources for QA on lifelog data are limited to small-sized or synthetic QA datasets. In this paper, we present a novel lifelog QA dataset called OpenLifelogQA, building upon an 18-month lifelog dataset. Our dataset focuses on an open-ended and practical QA with real-world application in daily lifelog usage. We construct 14,187 pairs of Q&A with diverse types and difficulty levels. A baseline experiment is reported for this dataset with competitive average performance of 89.7% BERT Score, 25.87% ROUGE-L and 3.9665 LLM Score from LLaVA-NeXT-Interleave 7B model. We release this Q&A dataset to the research community to support new research into lifelog technologies, such as enabling personal chat-based assistants for lifelog data to become a reality.
☆ PyLate: Flexible Training and Retrieval for Late Interaction Models
Neural ranking has become a cornerstone of modern information retrieval. While single vector search remains the dominant paradigm, it suffers from the shortcoming of compressing all the information into a single vector. This compression leads to notable performance degradation in out-of-domain, long-context, and reasoning-intensive retrieval tasks. Multi-vector approaches pioneered by ColBERT aim to address these limitations by preserving individual token embeddings and computing similarity via the MaxSim operator. This architecture has demonstrated superior empirical advantages, including enhanced out-of-domain generalization, long-context handling, and performance in complex retrieval scenarios. Despite these compelling empirical results and clear theoretical advantages, the practical adoption and public availability of late interaction models remain low compared to their single-vector counterparts, primarily due to a lack of accessible and modular tools for training and experimenting with such models. To bridge this gap, we introduce PyLate, a streamlined library built on top of Sentence Transformers to support multi-vector architectures natively, inheriting its efficient training, advanced logging, and automated model card generation while requiring minimal code changes to code templates users are already familiar with. By offering multi-vector-specific features such as efficient indexes, PyLate aims to accelerate research and real-world application of late interaction models, thereby unlocking their full potential in modern IR systems. Finally, PyLate has already enabled the development of state-of-the-art models, including GTE-ModernColBERT and Reason-ModernColBERT, demonstrating its practical utility for both research and production environments.
comment: 5 pages
☆ MultiRAG: A Knowledge-guided Framework for Mitigating Hallucination in Multi-source Retrieval Augmented Generation ICDE 2025
Retrieval Augmented Generation (RAG) has emerged as a promising solution to address hallucination issues in Large Language Models (LLMs). However, the integration of multiple retrieval sources, while potentially more informative, introduces new challenges that can paradoxically exacerbate hallucination problems. These challenges manifest primarily in two aspects: the sparse distribution of multi-source data that hinders the capture of logical relationships and the inherent inconsistencies among different sources that lead to information conflicts. To address these challenges, we propose MultiRAG, a novel framework designed to mitigate hallucination in multi-source retrieval-augmented generation through knowledge-guided approaches. Our framework introduces two key innovations: (1) a knowledge construction module that employs multi-source line graphs to efficiently aggregate logical relationships across different knowledge sources, effectively addressing the sparse data distribution issue; and (2) a sophisticated retrieval module that implements a multi-level confidence calculation mechanism, performing both graph-level and node-level assessments to identify and eliminate unreliable information nodes, thereby reducing hallucinations caused by inter-source inconsistencies. Extensive experiments on four multi-domain query datasets and two multi-hop QA datasets demonstrate that MultiRAG significantly enhances the reliability and efficiency of knowledge retrieval in complex multi-source scenarios. \textcolor{blue}{Our code is available in https://github.com/wuwenlong123/MultiRAG.
comment: Accepted by ICDE 2025 Research Paper
☆ Parameter-Efficient Single Collaborative Branch for Recommendation
Recommender Systems (RS) often rely on representations of users and items in a joint embedding space and on a similarity metric to compute relevance scores. In modern RS, the modules to obtain user and item representations consist of two distinct and separate neural networks (NN). In multimodal representation learning, weight sharing has been proven effective in reducing the distance between multiple modalities of a same item. Inspired by these approaches, we propose a novel RS that leverages weight sharing between the user and item NN modules used to obtain the latent representations in the shared embedding space. The proposed framework consists of a single Collaborative Branch for Recommendation (CoBraR). We evaluate CoBraR by means of quantitative experiments on e-commerce and movie recommendation. Our experiments show that by reducing the number of parameters and improving beyond-accuracy aspects without compromising accuracy, CoBraR has the potential to be applied and extended for real-world scenarios.
comment: 5 pages
☆ fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval SemEval-2025
SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks.
comment: 7 pages, 6 tables. Code available at https://github.com/pranshurastogi29/SemEval-2025-ACL-Multi-and-Crosslingual-Retrieval-using-Bi-encoders
☆ Taggus: An Automated Pipeline for the Extraction of Characters' Social Networks from Portuguese Fiction Literature
Automatically identifying characters and their interactions from fiction books is, arguably, a complex task that requires pipelines that leverage multiple Natural Language Processing (NLP) methods, such as Named Entity Recognition (NER) and Part-of-speech (POS) tagging. However, these methods are not optimized for the task that leads to the construction of Social Networks of Characters. Indeed, the currently available methods tend to underperform, especially in less-represented languages, due to a lack of manually annotated data for training. Here, we propose a pipeline, which we call Taggus, to extract social networks from literary fiction works in Portuguese. Our results show that compared to readily available State-of-the-Art tools -- off-the-shelf NER tools and Large Language Models (ChatGPT) -- the resulting pipeline, which uses POS tagging and a combination of heuristics, achieves satisfying results with an average F1-Score of $94.1\%$ in the task of identifying characters and solving for co-reference and $75.9\%$ in interaction detection. These represent, respectively, an increase of $50.7\%$ and $22.3\%$ on results achieved by the readily available State-of-the-Art tools. Further steps to improve results are outlined, such as solutions for detecting relationships between characters. Limitations on the size and scope of our testing samples are acknowledged. The Taggus pipeline is publicly available to encourage development in this field for the Portuguese language.2
comment: 24 pages, 5 Figures, 4 Tables
☆ Reliable Evaluation Protocol for Low-Precision Retrieval
Lowering the numerical precision of model parameters and computations is widely adopted to improve the efficiency of retrieval systems. However, when computing relevance scores between the query and documents in low-precision, we observe spurious ties due to the reduced granularity. This introduces high variability in the results based on tie resolution, making the evaluation less reliable. To address this, we propose a more robust retrieval evaluation protocol designed to reduce score variation. It consists of: (1) High-Precision Scoring (HPS), which upcasts the final scoring step to higher precision to resolve tied candidates with minimal computational cost; and (2) Tie-aware Retrieval Metrics (TRM), which report expected scores, range, and bias to quantify order uncertainty of tied candidates. Our experiments test multiple models with three scoring functions on two retrieval datasets to demonstrate that HPS dramatically reduces tie-induced instability, and TRM accurately recovers expected metric values. This combination enables a more consistent and reliable evaluation system for lower-precision retrievals.
comment: 11 pages, 5 figures, submitted to ARR
☆ Investigating the Cognitive Response of Brake Lights in Initiating Braking Action Using EEG
Half of all road accidents result from either lack of driver attention or from maintaining insufficient separation between vehicles. Collision from the rear, in particular, has been identified as the most common class of accident in the UK, and its influencing factors have been widely studied for many years. Rear-mounted stop lamps, illuminated when braking, are the primary mechanism to alert following drivers to the need to reduce speed or brake. This paper develops a novel brain response approach to measuring subject reaction to different brake light designs. A variety of off-the-shelf brake light assemblies are tested in a physical simulated driving environment to assess the cognitive reaction times of 22 subjects. Eight pairs of LED-based and two pairs of incandescent bulb-based brake light assemblies are used and electroencephalogram (EEG) data recorded. Channel Pz is utilised to extract the P3 component evoked during the decision making process that occurs in the brain when a participant decides to lift their foot from the accelerator and depress the brake. EEG analysis shows that both incandescent bulb-based lights are statistically slower to evoke cognitive responses than all tested LED-based lights. Between the LED designs, differences are evident, but not statistically significant, attributed to the significant amount of movement artifact in the EEG signal.
comment: arXiv admin note: text overlap with arXiv:2010.10584
☆ Dual-disentangle Framework for Diversified Sequential Recommendation
Sequential recommendation predicts user preferences over time and has achieved remarkable success. However, the growing length of user interaction sequences and the complex entanglement of evolving user interests and intentions introduce significant challenges to diversity. To address these, we propose a model-agnostic Dual-disentangle framework for Diversified Sequential Recommendation (DDSRec). The framework refines user interest and intention modeling by adopting disentangling perspectives in interaction modeling and representation learning, thereby balancing accuracy and diversity in sequential recommendations. Extensive experiments on multiple public datasets demonstrate the effectiveness and superiority of DDSRec in terms of accuracy and diversity for sequential recommendations.
☆ ADSeeker: A Knowledge-Infused Framework for Anomaly Detection and Reasoning
Automatic vision inspection holds significant importance in industry inspection. While multimodal large language models (MLLMs) exhibit strong language understanding capabilities and hold promise for this task, their performance remains significantly inferior to that of human experts. In this context, we identify two key challenges: (i) insufficient integration of anomaly detection (AD) knowledge during pre-training, and (ii) the lack of technically precise and conte-aware language generation for anomaly reasoning. To address these issues, we propose ADSeeker, an anomaly task assistant designed to enhance inspection performance through knowledge-grounded reasoning. ADSeeker leverages a curated visual document knowledge base, SEEK-MVTec&VisA (SEEK-M&V), which we construct to address the limitations of existing resources that rely solely on unstructured text. SEEK-M&V includes semantic-rich descriptions and image-document pairs, enabling more comprehensive anomaly understanding. To effectively retrieve and utilize this knowledge, we introduce the Query Image-Knowledge Retrieval-Augmented Generation (Q2K RAG) framework. To further enhance the performance in zero-shot anomaly detection (ZSAD), ADSeeker leverages the Hierarchical Sparse Prompt mechanism and type-level features to efficiently extract anomaly patterns. Furthermore, to tackle the challenge of limited in industry anomaly detection (IAD) data, we introduce the largest-scale AD dataset, Multi-type Anomaly (MulA), encompassing 72 multi-scale defect types across 26 Categories. Extensive experiments show that our plug-and-play framework, ADSeeker, achieves state-of-the-art zero-shot performance on several benchmark datasets.
☆ KBest: Efficient Vector Search on Kunpeng CPU
Vector search, which returns the vectors most similar to a given query vector from a large vector dataset, underlies many important applications such as search, recommendation, and LLMs. To be economic, vector search needs to be efficient to reduce the resources required by a given query workload. However, existing vector search libraries (e.g., Faiss and DiskANN) are optimized for x86 CPU architectures (i.e., Intel and AMD CPUs) while Huawei Kunpeng CPUs are based on the ARM architecture and competitive in compute power. In this paper, we present KBest as a vector search library tailored for the latest Kunpeng 920 CPUs. To be efficient, KBest incorporates extensive hardware-aware and algorithmic optimizations, which include single-instruction-multiple-data (SIMD) accelerated distance computation, data prefetch, index refinement, early termination, and vector quantization. Experiment results show that KBest outperforms SOTA vector search libraries running on x86 CPUs, and our optimizations can improve the query throughput by over 2x. Currently, KBest serves applications from both our internal business and external enterprise clients with tens of millions of queries on a daily basis.
☆ SustainableQA: A Comprehensive Question Answering Dataset for Corporate Sustainability and EU Taxonomy Reporting
The growing demand for corporate sustainability transparency, particularly under new regulations like the EU Taxonomy, necessitates precise data extraction from large, unstructured corporate reports. Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) systems, requires high-quality, domain-specific question-answering (QA) datasets to excel at particular domains. To address this, we introduce SustainableQA, a novel dataset and a scalable pipeline for generating a comprehensive QA datasets from corporate sustainability reports and annual reports. Our approach integrates semantic chunk classification, a hybrid span extraction pipeline combining fine-tuned Named Entity Recognition (NER), rule-based methods, and LLM-driven refinement, alongside a specialized table-to-paragraph transformation. With over 195,000 diverse factoid and non-factoid QA pairs, SustainableQA is an effective resource for developing and benchmarking advanced knowledge assistants capable of navigating complex sustainability compliance
☆ RAVID: Retrieval-Augmented Visual Detection: A Knowledge-Driven Approach for AI-Generated Image Identification
In this paper, we introduce RAVID, the first framework for AI-generated image detection that leverages visual retrieval-augmented generation (RAG). While RAG methods have shown promise in mitigating factual inaccuracies in foundation models, they have primarily focused on text, leaving visual knowledge underexplored. Meanwhile, existing detection methods, which struggle with generalization and robustness, often rely on low-level artifacts and model-specific features, limiting their adaptability. To address this, RAVID dynamically retrieves relevant images to enhance detection. Our approach utilizes a fine-tuned CLIP image encoder, RAVID CLIP, enhanced with category-related prompts to improve representation learning. We further integrate a vision-language model (VLM) to fuse retrieved images with the query, enriching the input and improving accuracy. Given a query image, RAVID generates an embedding using RAVID CLIP, retrieves the most relevant images from a database, and combines these with the query image to form an enriched input for a VLM (e.g., Qwen-VL or Openflamingo). Experiments on the UniversalFakeDetect benchmark, which covers 19 generative models, show that RAVID achieves state-of-the-art performance with an average accuracy of 93.85%. RAVID also outperforms traditional methods in terms of robustness, maintaining high accuracy even under image degradations such as Gaussian blur and JPEG compression. Specifically, RAVID achieves an average accuracy of 80.27% under degradation conditions, compared to 63.44% for the state-of-the-art model C2P-CLIP, demonstrating consistent improvements in both Gaussian blur and JPEG compression scenarios. The code will be publicly available upon acceptance.
☆ Measuring the stability and plasticity of recommender systems
The typical offline protocol to evaluate recommendation algorithms is to collect a dataset of user-item interactions and then use a part of this dataset to train a model, and the remaining data to measure how closely the model recommendations match the observed user interactions. This protocol is straightforward, useful and practical, but it only captures performance of a particular model trained at some point in the past. We know, however, that online systems evolve over time. In general, it is a good idea that models reflect such changes, so models are frequently retrained with recent data. But if this is the case, to what extent can we trust previous evaluations? How will a model perform when a different pattern (re)emerges? In this paper we propose a methodology to study how recommendation models behave when they are retrained. The idea is to profile algorithms according to their ability to, on the one hand, retain past patterns -- stability -- and, on the other hand, (quickly) adapt to changes -- plasticity. We devise an offline evaluation protocol that provides detail on the long-term behavior of models, and that is agnostic to datasets, algorithms and metrics. To illustrate the potential of this framework, we present preliminary results of three different types of algorithms on the GoodReads dataset that suggest different stability and plasticity profiles depending on the algorithmic technique, and a possible trade-off between stability and plasticity.Although additional experiments will be necessary to confirm these observations, they already illustrate the usefulness of the proposed framework to gain insights on the long term dynamics of recommendation models.
☆ NAEx: A Plug-and-Play Framework for Explaining Network Alignment
Network alignment (NA) identifies corresponding nodes across multiple networks, with applications in domains like social networks, co-authorship, and biology. Despite advances in alignment models, their interpretability remains limited, making it difficult to understand alignment decisions and posing challenges in building trust, particularly in high-stakes domains. To address this, we introduce NAEx, a plug-and-play, model-agnostic framework that explains alignment models by identifying key subgraphs and features influencing predictions. NAEx addresses the key challenge of preserving the joint cross-network dependencies on alignment decisions by: (1) jointly parameterizing graph structures and feature spaces through learnable edge and feature masks, and (2) introducing an optimization objective that ensures explanations are both faithful to the original predictions and enable meaningful comparisons of structural and feature-based similarities between networks. NAEx is an inductive framework that efficiently generates NA explanations for previously unseen data. We introduce evaluation metrics tailored to alignment explainability and demonstrate NAEx's effectiveness and efficiency on benchmark datasets by integrating it with four representative NA models.
☆ Recommending With, Not For: Co-Designing Recommender Systems for Social Good
Recommender systems are usually designed by engineers, researchers, designers, and other members of development teams. These systems are then evaluated based on goals set by the aforementioned teams and other business units of the platforms operating the recommender systems. This design approach emphasizes the designers' vision for how the system can best serve the interests of users, providers, businesses, and other stakeholders. Although designers may be well-informed about user needs through user experience and market research, they are still the arbiters of the system's design and evaluation, with other stakeholders' interests less emphasized in user-centered design and evaluation. When extended to recommender systems for social good, this approach results in systems that reflect the social objectives as envisioned by the designers and evaluated as the designers understand them. Instead, social goals and operationalizations should be developed through participatory and democratic processes that are accountable to their stakeholders. We argue that recommender systems aimed at improving social good should be designed *by* and *with*, not just *for*, the people who will experience their benefits and harms. That is, they should be designed in collaboration with their users, creators, and other stakeholders as full co-designers, not only as user study participants.
comment: Accepted to ACM TORS Special Issue on Recommender Systems for Social Good
☆ Are All Genders Equal in the Eyes of Algorithms? -- Analysing Search and Retrieval Algorithms for Algorithmic Gender Fairness
Algorithmic systems such as search engines and information retrieval platforms significantly influence academic visibility and the dissemination of knowledge. Despite assumptions of neutrality, these systems can reproduce or reinforce societal biases, including those related to gender. This paper introduces and applies a bias-preserving definition of algorithmic gender fairness, which assesses whether algorithmic outputs reflect real-world gender distributions without introducing or amplifying disparities. Using a heterogeneous dataset of academic profiles from German universities and universities of applied sciences, we analyse gender differences in metadata completeness, publication retrieval in academic databases, and visibility in Google search results. While we observe no overt algorithmic discrimination, our findings reveal subtle but consistent imbalances: male professors are associated with a greater number of search results and more aligned publication records, while female professors display higher variability in digital visibility. These patterns reflect the interplay between platform algorithms, institutional curation, and individual self-presentation. Our study highlights the need for fairness evaluations that account for both technical performance and representational equality in digital systems.
☆ Domain-Specific Fine-Tuning and Prompt-Based Learning: A Comparative Study for developing Natural Language-Based BIM Information Retrieval Systems
Building Information Modeling (BIM) is essential for managing building data across the entire lifecycle, supporting tasks from design to maintenance. Natural Language Interface (NLI) systems are increasingly explored as user-friendly tools for information retrieval in Building Information Modeling (BIM) environments. Despite their potential, accurately extracting BIM-related data through natural language queries remains a persistent challenge due to the complexity use queries and specificity of domain knowledge. This study presents a comparative analysis of two prominent approaches for developing NLI-based BIM information retrieval systems: domain-specific fine-tuning and prompt-based learning using large language models (LLMs). A two-stage framework consisting of intent recognition and table-based question answering is implemented to evaluate the effectiveness of both approaches. To support this evaluation, a BIM-specific dataset of 1,740 annotated queries of varying types across 69 models is constructed. Experimental results show that domain-specific fine-tuning delivers superior performance in intent recognition tasks, while prompt-based learning, particularly with GPT-4o, shows strength in table-based question answering. Based on these findings, this study identify a hybrid configuration that combines fine-tuning for intent recognition with prompt-based learning for question answering, achieving more balanced and robust performance across tasks. This integrated approach is further tested through case studies involving BIM models of varying complexity. This study provides a systematic analysis of the strengths and limitations of each approach and discusses the applicability of the NLI to real-world BIM scenarios. The findings offer insights for researchers and practitioners in designing intelligent, language-driven BIM systems.
☆ A Robust and Efficient Pipeline for Enterprise-Level Large-Scale Entity Resolution
Entity resolution (ER) remains a significant challenge in data management, especially when dealing with large datasets. This paper introduces MERAI (Massive Entity Resolution using AI), a robust and efficient pipeline designed to address record deduplication and linkage issues in high-volume datasets at an enterprise level. The pipeline's resilience and accuracy have been validated through various large-scale record deduplication and linkage projects. To evaluate MERAI's performance, we compared it with two well-known entity resolution libraries, Dedupe and Splink. While Dedupe failed to scale beyond 2 million records due to memory constraints, MERAI successfully processed datasets of up to 15.7 million records and produced accurate results across all experiments. Experimental data demonstrates that MERAI outperforms both baseline systems in terms of matching accuracy, with consistently higher F1 scores in both deduplication and record linkage tasks. MERAI offers a scalable and reliable solution for enterprise-level large-scale entity resolution, ensuring data integrity and consistency in real-world applications.
comment: 10 pages, 5 figures
♻ ☆ MetaGen Blended RAG: Unlocking Zero-Shot Precision for Specialized Domain Question-Answering
Retrieval-Augmented Generation (RAG) struggles with domain-specific enterprise datasets, often isolated behind firewalls and rich in complex, specialized terminology unseen by LLMs during pre-training. Semantic variability across domains like medicine, networking, or law hampers RAG's context precision, while fine-tuning solutions are costly, slow, and lack generalization as new data emerges. Achieving zero-shot precision with retrievers without fine-tuning still remains a key challenge. We introduce 'MetaGen Blended RAG', a novel enterprise search approach that enhances semantic retrievers through a metadata generation pipeline and hybrid query indexes using dense and sparse vectors. By leveraging key concepts, topics, and acronyms, our method creates metadata-enriched semantic indexes and boosted hybrid queries, delivering robust, scalable performance without fine-tuning. On the biomedical PubMedQA dataset, MetaGen Blended RAG achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all prior zero-shot RAG benchmarks and even rivaling fine-tuned models on that dataset, while also excelling on datasets like SQuAD and NQ. This approach redefines enterprise search using a new approach to building semantic retrievers with unmatched generalization across specialized domains.
♻ ☆ Learning Multi-Aspect Item Palette: A Semantic Tokenization Framework for Generative Recommendation
Traditional recommendation models often rely on unique item identifiers (IDs) to distinguish between items, which can hinder their ability to effectively leverage item content information and generalize to long-tailed or cold-start items. Recently, semantic tokenization has been proposed as a promising solution that aims to tokenize each item's semantic representation into a sequence of discrete tokens. These semantic tokens have become fundamental in training generative recommendation models. However, existing methods typically rely on RQ-VAE, a residual vector quantizer, for semantic tokenization. This reliance introduces several key limitations, including challenges in embedding extraction, hierarchical coarse-to-fine quantization, and training stability. To address these issues, we introduce LAMIA, a novel approach for multi-aspect semantic tokenization. Unlike RQ-VAE, which uses a single embedding, LAMIA learns an ``item palette''--a collection of independent and semantically parallel embeddings that capture multiple aspects of items. Additionally, LAMIA enhances the semantic encoders through domain-specific tuning using text-based reconstruction tasks, resulting in more representative item palette embeddings. We have conducted extensive experiments to validate the effectiveness of the LAMIA framework across various recommendation tasks and datasets. Our results demonstrate significant improvements in recommendation accuracy over existing methods. To facilitate reproducible research, we will release the source code, data, and configurations.
♻ ☆ A Foundational Schema.org Mapping for a Legal Knowledge Graph: Representing Brazilian Legal Norms as FRBR Works
Structuring legal norms for machine readability is a critical prerequisite for building advanced AI and information retrieval systems, such as Legal Knowledge Graphs (LKGs). Grounded in the Functional Requirements for Bibliographic Records (FRBR) model, this paper proposes a foundational mapping for the abstract legal Work - which is materialized as the Norm node in our legal Graph RAG framework - to the interoperable schema.org/Legislation vocabulary. Using the Normas.leg.br portal as a practical case study, we demonstrate how to describe this Work entity via JSON-LD, considering stable URN identifiers, inter-norm relationships, and lifecycle properties. This structured, formal approach provides the essential first step toward creating a deterministic and verifiable knowledge graph, which can serve as a formalized "ground truth" for Legal AI applications, overcoming the limitations of purely probabilistic models.
comment: Substantial revision. Now grounded in the FRBR model, mapping the legal norm as an abstract Work. Scope narrowed to the Work -> sdo:Legislation mapping (LegislationObject section removed). Emphasizes creating a deterministic 'ground truth' for Legal AI and Graph RAG
♻ ☆ Heterophily-Aware Fair Recommendation using Graph Convolutional Networks
In recent years, graph neural networks (GNNs) have become a popular tool to improve the accuracy and performance of recommender systems. Modern recommender systems are not only designed to serve end users, but also to benefit other participants, such as items and item providers. These participants may have different or conflicting goals and interests, which raises the need for fairness and popularity bias considerations. GNN-based recommendation methods also face the challenges of unfairness and popularity bias, and their normalization and aggregation processes suffer from these challenges. In this paper, we propose a fair GNN-based recommender system, called HetroFair, to improve item-side fairness. HetroFair uses two separate components to generate fairness-aware embeddings: i) Fairness-aware attention, which incorporates the dot product in the normalization process of GNNs to decrease the effect of nodes' degrees. ii) Heterophily feature weighting, to assign distinct weights to different features during the aggregation process. To evaluate the effectiveness of HetroFair, we conduct extensive experiments over six real-world datasets. Our experimental results reveal that HetroFair not only alleviates unfairness and popularity bias on the item side but also achieves superior accuracy on the user side. Our implementation is publicly available at https://github.com/NematGH/HetroFair.
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: Work in progress
♻ ☆ ChineseHarm-Bench: A Chinese Harmful Content Detection Benchmark
Large language models (LLMs) have been increasingly applied to automated harmful content detection tasks, assisting moderators in identifying policy violations and improving the overall efficiency and accuracy of content review. However, existing resources for harmful content detection are predominantly focused on English, with Chinese datasets remaining scarce and often limited in scope. We present a comprehensive, professionally annotated benchmark for Chinese content harm detection, which covers six representative categories and is constructed entirely from real-world data. Our annotation process further yields a knowledge rule base that provides explicit expert knowledge to assist LLMs in Chinese harmful content detection. In addition, we propose a knowledge-augmented baseline that integrates both human-annotated knowledge rules and implicit knowledge from large language models, enabling smaller models to achieve performance comparable to state-of-the-art LLMs. Code and data are available at https://github.com/zjunlp/ChineseHarm-bench.
comment: Work in progress
♻ ☆ LightRetriever: A LLM-based Hybrid Retrieval Architecture with 1000x Faster Query Inference
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
♻ ☆ CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements KDD 2025
Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.
comment: Accepted in SIGKDD 2025
♻ ☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities to use search engines during inference is often suboptimal, as the LLM might not fully possess the capability on how to interact optimally with the search engine. This paper introduces Search-R1, an extension of reinforcement learning (RL) for reasoning frameworks where the LLM learns to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM reasoning trajectories with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines under the same setting. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 31 pages
♻ ☆ A Survey of Conversational Search
As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.
comment: 38 pages, 8 figures, corresponding Github repository: https://github.com/fengranMark/ConvSearch-Survey
Robotics 64
☆ Robot builds a robot's brain: AI generated drone command and control station hosted in the sky
Advances in artificial intelligence (AI) including large language models (LLMs) and hybrid reasoning models present an opportunity to reimagine how autonomous robots such as drones are designed, developed, and validated. Here, we demonstrate a fully AI-generated drone control system: with minimal human input, an artificial intelligence (AI) model authored all the code for a real-time, self-hosted drone command and control platform, which was deployed and demonstrated on a real drone in flight as well as a simulated virtual drone in the cloud. The system enables real-time mapping, flight telemetry, autonomous mission planning and execution, and safety protocolsall orchestrated through a web interface hosted directly on the drone itself. Not a single line of code was written by a human. We quantitatively benchmark system performance, code complexity, and development speed against prior, human-coded architectures, finding that AI-generated code can deliver functionally complete command-and-control stacks at orders-of-magnitude faster development cycles, though with identifiable current limitations related to specific model context window and reasoning depth. Our analysis uncovers the practical boundaries of AI-driven robot control code generation at current model scales, as well as emergent strengths and failure modes in AI-generated robotics code. This work sets a precedent for the autonomous creation of robot control systems and, more broadly, suggests a new paradigm for robotics engineeringone in which future robots may be largely co-designed, developed, and verified by artificial intelligence. In this initial work, a robot built a robot's brain.
☆ Optimal Trajectory Planning in a Vertically Undulating Snake Locomotion using Contact-implicit Optimization
Contact-rich problems, such as snake robot locomotion, offer unexplored yet rich opportunities for optimization-based trajectory and acyclic contact planning. So far, a substantial body of control research has focused on emulating snake locomotion and replicating its distinctive movement patterns using shape functions that either ignore the complexity of interactions or focus on complex interactions with matter (e.g., burrowing movements). However, models and control frameworks that lie in between these two paradigms and are based on simple, fundamental rigid body dynamics, which alleviate the challenging contact and control allocation problems in snake locomotion, remain absent. This work makes meaningful contributions, substantiated by simulations and experiments, in the following directions: 1) introducing a reduced-order model based on Moreau's stepping-forward approach from differential inclusion mathematics, 2) verifying model accuracy, 3) experimental validation.
☆ A novel autonomous microplastics surveying robot for beach environments
Microplastics, defined as plastic particles smaller than 5 millimeters, have become a pervasive environmental contaminant that accumulates on beaches due to wind patterns and tidal forcing. Detecting microplastics and mapping their concentration in the wild remains one of the primary challenges in addressing this environmental issue. This paper introduces a novel robotic platform that automatically detects and chemically analyzes microplastics on beach surfaces. This mobile manipulator system scans areas for microplastics using a camera mounted on the robotic arm's end effector. The system effectively segments candidate microplastic particles on sand surfaces even in the presence of organic matter such as leaves and clams. Once a candidate microplastic particle is detected, the system steers a near-infrared (NIR) spectroscopic sensor onto the particle using both NIR and visual feedback to chemically analyze it in real-time. Through experiments in lab and beach environments, the system is shown to achieve an excellent positional precision in manipulation control and high microplastic classification accuracy.
comment: 12 pages, 11 figures
☆ AeroSafe: Mobile Indoor Air Purification using Aerosol Residence Time Analysis and Robotic Cough Emulator Testbed ICRA
Indoor air quality plays an essential role in the safety and well-being of occupants, especially in the context of airborne diseases. This paper introduces AeroSafe, a novel approach aimed at enhancing the efficacy of indoor air purification systems through a robotic cough emulator testbed and a digital-twins-based aerosol residence time analysis. Current portable air filters often overlook the concentrations of respiratory aerosols generated by coughs, posing a risk, particularly in high-exposure environments like healthcare facilities and public spaces. To address this gap, we present a robotic dual-agent physical emulator comprising a maneuverable mannequin simulating cough events and a portable air purifier autonomously responding to aerosols. The generated data from this emulator trains a digital twins model, combining a physics-based compartment model with a machine learning approach, using Long Short-Term Memory (LSTM) networks and graph convolution layers. Experimental results demonstrate the model's ability to predict aerosol concentration dynamics with a mean residence time prediction error within 35 seconds. The proposed system's real-time intervention strategies outperform static air filter placement, showcasing its potential in mitigating airborne pathogen risks.
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA) 2025. Author Accepted Manuscript
☆ Model-agnostic Meta-learning for Adaptive Gait Phase and Terrain Geometry Estimation with Wearable Soft Sensors
This letter presents a model-agnostic meta-learning (MAML) based framework for simultaneous and accurate estimation of human gait phase and terrain geometry using a small set of fabric-based wearable soft sensors, with efficient adaptation to unseen subjects and strong generalization across different subjects and terrains. Compared to rigid alternatives such as inertial measurement units, fabric-based soft sensors improve comfort but introduce nonlinearities due to hysteresis, placement error, and fabric deformation. Moreover, inter-subject and inter-terrain variability, coupled with limited calibration data in real-world deployments, further complicate accurate estimation. To address these challenges, the proposed framework integrates MAML into a deep learning architecture to learn a generalizable model initialization that captures subject- and terrain-invariant structure. This initialization enables efficient adaptation (i.e., adaptation with only a small amount of calibration data and a few fine-tuning steps) to new users, while maintaining strong generalization (i.e., high estimation accuracy across subjects and terrains). Experiments on nine participants walking at various speeds over five terrain conditions demonstrate that the proposed framework outperforms baseline approaches in estimating gait phase, locomotion mode, and incline angle, with superior accuracy, adaptation efficiency, and generalization.
comment: 8 pages, 5 figures
☆ Context-aware Risk Assessment and Its Application in Autonomous Driving SC 2025
Ensuring safety in autonomous driving requires precise, real-time risk assessment and adaptive behavior. Prior work on risk estimation either outputs coarse, global scene-level metrics lacking interpretability, proposes indicators without concrete integration into autonomous systems, or focuses narrowly on specific driving scenarios. We introduce the Context-aware Risk Index (CRI), a light-weight modular framework that quantifies directional risks based on object kinematics and spatial relationships, dynamically adjusting control commands in real time. CRI employs direction-aware spatial partitioning within a dynamic safety envelope using Responsibility-Sensitive Safety (RSS) principles, a hybrid probabilistic-max fusion strategy for risk aggregation, and an adaptive control policy for real-time behavior modulation. We evaluate CRI on the Bench2Drive benchmark comprising 220 safety-critical scenarios using a state-of-the-art end-to-end model Transfuser++ on challenging routes. Our collision-rate metrics show a 19\% reduction (p = 0.003) in vehicle collisions per failed route, a 20\% reduction (p = 0.004) in collisions per kilometer, a 17\% increase (p = 0.016) in composed driving score, and a statistically significant reduction in penalty scores (p = 0.013) with very low overhead (3.6 ms per decision cycle). These results demonstrate that CRI substantially improves safety and robustness in complex, risk-intensive environments while maintaining modularity and low runtime overhead.
comment: ITSC 2025, 7 pages
☆ Following Route Instructions using Large Vision-Language Models: A Comparison between Low-level and Panoramic Action Spaces
Vision-and-Language Navigation (VLN) refers to the task of enabling autonomous robots to navigate unfamiliar environments by following natural language instructions. While recent Large Vision-Language Models (LVLMs) have shown promise in this task, most current VLM systems rely on models specifically designed and optimized for navigation, leaving the potential of off-the-shelf LVLMs underexplored. Furthermore, while older VLN approaches used low-level action spaces with egocentric views and atomic actions (such as "turn left" or "move forward"), newer models tend to favor panoramic action spaces with discrete navigable viewpoints. This paper investigates (1) whether off-the-shelf LVLMs (fine-tuned without architectural modifications or simulator-based training) can effectively support VLN tasks and (2) whether such models can support both low-level and panoramic action paradigms. To this end, we fine-tune the open-source model Qwen2.5-VL-3B-Instruct on the Room-to-Room (R2R) dataset and evaluate its empirical performance across both low-level and panoramic action spaces. The best resulting model achieves a 41% success rate on the R2R test set, demonstrating that while off-the-shelf LVLMs can learn to perform Vision-and-Language Navigation, they still lag behind models specifically designed for this task.
comment: This paper has been accepted to ICNSLP 2025
☆ Co-designing Zoomorphic Robot Concepts for Animal Welfare Education
Animal welfare education could greatly benefit from customized robots to help children learn about animals and their behavior, and thereby promote positive, safe child-animal interactions. To this end, we ran Participatory Design workshops with animal welfare educators and children to identify key requirements for zoomorphic robots from their perspectives. Our findings encompass a zoomorphic robot's appearance, behavior, and features, as well as concepts for a narrative surrounding the robot. Through comparing and contrasting the two groups, we find the importance of: negative reactions to undesirable behavior from children; using the facial features and tail to provide cues signaling an animal's internal state; and a natural, furry appearance and texture. We also contribute some novel activities for Participatory Design with children, including branching storyboards inspired by thematic apperception tests and interactive narratives, and reflect on some of the key design challenges of achieving consensus between the groups, despite much overlap in their design concepts.
☆ Tunable Leg Stiffness in a Monopedal Hopper for Energy-Efficient Vertical Hopping Across Varying Ground Profiles ICRA
We present the design and implementation of HASTA (Hopper with Adjustable Stiffness for Terrain Adaptation), a vertical hopping robot with real-time tunable leg stiffness, aimed at optimizing energy efficiency across various ground profiles (a pair of ground stiffness and damping conditions). By adjusting leg stiffness, we aim to maximize apex hopping height, a key metric for energy-efficient vertical hopping. We hypothesize that softer legs perform better on soft, damped ground by minimizing penetration and energy loss, while stiffer legs excel on hard, less damped ground by reducing limb deformation and energy dissipation. Through experimental tests and simulations, we find the best leg stiffness within our selection for each combination of ground stiffness and damping, enabling the robot to achieve maximum steady-state hopping height with a constant energy input. These results support our hypothesis that tunable stiffness improves energy-efficient locomotion in controlled experimental conditions. In addition, the simulation provides insights that could aid in the future development of controllers for selecting leg stiffness.
comment: 2025 IEEE International Conference on Robotics & Automation (ICRA)
☆ Learning User Interaction Forces using Vision for a Soft Finger Exosuit
Wearable assistive devices are increasingly becoming softer. Modelling their interface with human tissue is necessary to capture transmission of dynamic assistance. However, their nonlinear and compliant nature makes both physical modeling and embedded sensing challenging. In this paper, we develop a image-based, learning-based framework to estimate distributed contact forces for a finger-exosuit system. We used the SoRoSim toolbox to generate a diverse dataset of exosuit geometries and actuation scenarios for training. The method accurately estimated interaction forces across multiple contact locations from low-resolution grayscale images, was able to generalize to unseen shapes and actuation levels, and remained robust under visual noise and contrast variations. We integrated the model into a feedback controller, and found that the vision-based estimator functions as a surrogate force sensor for closed-loop control. This approach could be used as a non-intrusive alternative for real-time force estimation for exosuits.
comment: 13 pages, 9 figures
☆ Manip4Care: Robotic Manipulation of Human Limbs for Solving Assistive Tasks IROS 2025
Enabling robots to grasp and reposition human limbs can significantly enhance their ability to provide assistive care to individuals with severe mobility impairments, particularly in tasks such as robot-assisted bed bathing and dressing. However, existing assistive robotics solutions often assume that the human remains static or quasi-static, limiting their effectiveness. To address this issue, we present Manip4Care, a modular simulation pipeline that enables robotic manipulators to grasp and reposition human limbs effectively. Our approach features a physics simulator equipped with built-in techniques for grasping and repositioning while considering biomechanical and collision avoidance constraints. Our grasping method employs antipodal sampling with force closure to grasp limbs, and our repositioning system utilizes the Model Predictive Path Integral (MPPI) and vector-field-based control method to generate motion trajectories under collision avoidance and biomechanical constraints. We evaluate this approach across various limb manipulation tasks in both supine and sitting positions and compare outcomes for different age groups with differing shoulder joint limits. Additionally, we demonstrate our approach for limb manipulation using a real-world mannequin and further showcase its effectiveness in bed bathing tasks.
comment: Accepted to IROS 2025
☆ HyCodePolicy: Hybrid Language Controllers for Multimodal Monitoring and Decision in Embodied Agents ICCV 2025
Recent advances in multimodal large language models (MLLMs) have enabled richer perceptual grounding for code policy generation in embodied agents. However, most existing systems lack effective mechanisms to adaptively monitor policy execution and repair codes during task completion. In this work, we introduce HyCodePolicy, a hybrid language-based control framework that systematically integrates code synthesis, geometric grounding, perceptual monitoring, and iterative repair into a closed-loop programming cycle for embodied agents. Technically, given a natural language instruction, our system first decomposes it into subgoals and generates an initial executable program grounded in object-centric geometric primitives. The program is then executed in simulation, while a vision-language model (VLM) observes selected checkpoints to detect and localize execution failures and infer failure reasons. By fusing structured execution traces capturing program-level events with VLM-based perceptual feedback, HyCodePolicy infers failure causes and repairs programs. This hybrid dual feedback mechanism enables self-correcting program synthesis with minimal human supervision. Our results demonstrate that HyCodePolicy significantly improves the robustness and sample efficiency of robot manipulation policies, offering a scalable strategy for integrating multimodal reasoning into autonomous decision-making pipelines.
comment: Accepted to ICCV 2025 Workshop on Multi-Modal Reasoning for Agentic Intelligence
☆ Vision-based Navigation of Unmanned Aerial Vehicles in Orchards: An Imitation Learning Approach
Autonomous unmanned aerial vehicle (UAV) navigation in orchards presents significant challenges due to obstacles and GPS-deprived environments. In this work, we introduce a learning-based approach to achieve vision-based navigation of UAVs within orchard rows. Our method employs a variational autoencoder (VAE)-based controller, trained with an intervention-based learning framework that allows the UAV to learn a visuomotor policy from human experience. We validate our approach in real orchard environments with a custom-built quadrotor platform. Field experiments demonstrate that after only a few iterations of training, the proposed VAE-based controller can autonomously navigate the UAV based on a front-mounted camera stream. The controller exhibits strong obstacle avoidance performance, achieves longer flying distances with less human assistance, and outperforms existing algorithms. Furthermore, we show that the policy generalizes effectively to novel environments and maintains competitive performance across varying conditions and speeds. This research not only advances UAV autonomy but also holds significant potential for precision agriculture, improving efficiency in orchard monitoring and management.
☆ Periodic robust robotic rock chop via virtual model control
Robotic cutting is a challenging contact-rich manipulation task where the robot must simultaneously negotiate unknown object mechanics, large contact forces, and precise motion requirements. We introduce a new virtual-model control scheme that enables knife rocking motion for robot manipulators, without pre-planned trajectories or precise information of the environment. Motion is generated through interconnection with virtual mechanisms, given by virtual springs, dampers, and masses arranged in a suitable way. Through analysis and experiments, we demonstrate that the controlled robot behavior settles into a periodic motion. Experiments with a Franka manipulator demonstrate robust cuts with five different vegetables, and sub-millimeter slice accuracy from 1 mm to 6 mm at nearly one cut per second. The same controller survives changes in knife shape and cutting board height, and adaptation to a different humanoid manipulator, demonstrating robustness and platform independence.
☆ MonoDream: Monocular Vision-Language Navigation with Panoramic Dreaming
Vision-Language Navigation (VLN) tasks often leverage panoramic RGB and depth inputs to provide rich spatial cues for action planning, but these sensors can be costly or less accessible in real-world deployments. Recent approaches based on Vision-Language Action (VLA) models achieve strong results with monocular input, yet they still lag behind methods using panoramic RGB-D information. We present MonoDream, a lightweight VLA framework that enables monocular agents to learn a Unified Navigation Representation (UNR). This shared feature representation jointly aligns navigation-relevant visual semantics (e.g., global layout, depth, and future cues) and language-grounded action intent, enabling more reliable action prediction. MonoDream further introduces Latent Panoramic Dreaming (LPD) tasks to supervise the UNR, which train the model to predict latent features of panoramic RGB and depth observations at both current and future steps based on only monocular input. Experiments on multiple VLN benchmarks show that MonoDream consistently improves monocular navigation performance and significantly narrows the gap with panoramic-based agents.
☆ An RGB-D Camera-Based Multi-Small Flying Anchors Control for Wire-Driven Robots Connecting to the Environment IROS 2025
In order to expand the operational range and payload capacity of robots, wire-driven robots that leverage the external environment have been proposed. It can exert forces and operate in spaces far beyond those dictated by its own structural limits. However, for practical use, robots must autonomously attach multiple wires to the environment based on environmental recognition-an operation so difficult that many wire-driven robots remain restricted to specialized, pre-designed environments. Here, in this study, we propose a robot that autonomously connects multiple wires to the environment by employing a multi-small flying anchor system, as well as an RGB-D camera-based control and environmental recognition method. Each flying anchor is a drone with an anchoring mechanism at the wire tip, allowing the robot to attach wires by flying into position. Using the robot's RGB-D camera to identify suitable attachment points and a flying anchor position, the system can connect wires in environments that are not specially prepared, and can also attach multiple wires simultaneously. Through this approach, a wire-driven robot can autonomously attach its wires to the environment, thereby realizing the benefits of wire-driven operation at any location.
comment: Accepted at IROS 2025, website - https://shin0805.github.io/flying-anchor/, YouTube - https://youtu.be/BXdlXf7BNQQ
☆ Failure-Aware Multi-Robot Coordination for Resilient and Adaptive Target Tracking
Multi-robot coordination is crucial for autonomous systems, yet real-world deployments often encounter various failures. These include both temporary and permanent disruptions in sensing and communication, which can significantly degrade system robustness and performance if not explicitly modeled. Despite its practical importance, failure-aware coordination remains underexplored in the literature. To bridge the gap between idealized conditions and the complexities of real-world environments, we propose a unified failure-aware coordination framework designed to enable resilient and adaptive multi-robot target tracking under both temporary and permanent failure conditions. Our approach systematically distinguishes between two classes of failures: (1) probabilistic and temporary disruptions, where robots recover from intermittent sensing or communication losses by dynamically adapting paths and avoiding inferred danger zones, and (2) permanent failures, where robots lose sensing or communication capabilities irreversibly, requiring sustained, decentralized behavioral adaptation. To handle these scenarios, the robot team is partitioned into subgroups. Robots that remain connected form a communication group and collaboratively plan using partially centralized nonlinear optimization. Robots experiencing permanent disconnection or failure continue to operate independently through decentralized or individual optimization, allowing them to contribute to the task within their local context. We extensively evaluate our method across a range of benchmark variations and conduct a comprehensive assessment under diverse real-world failure scenarios. Results show that our framework consistently achieves robust performance in realistic environments with unknown danger zones, offering a practical and generalizable solution for the multi-robot systems community.
☆ QuaDreamer: Controllable Panoramic Video Generation for Quadruped Robots
Panoramic cameras, capturing comprehensive 360-degree environmental data, are suitable for quadruped robots in surrounding perception and interaction with complex environments. However, the scarcity of high-quality panoramic training data-caused by inherent kinematic constraints and complex sensor calibration challenges-fundamentally limits the development of robust perception systems tailored to these embodied platforms. To address this issue, we propose QuaDreamer-the first panoramic data generation engine specifically designed for quadruped robots. QuaDreamer focuses on mimicking the motion paradigm of quadruped robots to generate highly controllable, realistic panoramic videos, providing a data source for downstream tasks. Specifically, to effectively capture the unique vertical vibration characteristics exhibited during quadruped locomotion, we introduce Vertical Jitter Encoding (VJE). VJE extracts controllable vertical signals through frequency-domain feature filtering and provides high-quality prompts. To facilitate high-quality panoramic video generation under jitter signal control, we propose a Scene-Object Controller (SOC) that effectively manages object motion and boosts background jitter control through the attention mechanism. To address panoramic distortions in wide-FoV video generation, we propose the Panoramic Enhancer (PE)-a dual-stream architecture that synergizes frequency-texture refinement for local detail enhancement with spatial-structure correction for global geometric consistency. We further demonstrate that the generated video sequences can serve as training data for the quadruped robot's panoramic visual perception model, enhancing the performance of multi-object tracking in 360-degree scenes. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer.
comment: Accepted to CoRL 2025. The source code and model weights will be publicly available at https://github.com/losehu/QuaDreamer
☆ Would you let a humanoid play storytelling with your child? A usability study on LLM-powered narrative Humanoid-Robot Interaction
A key challenge in human-robot interaction research lies in developing robotic systems that can effectively perceive and interpret social cues, facilitating natural and adaptive interactions. In this work, we present a novel framework for enhancing the attention of the iCub humanoid robot by integrating advanced perceptual abilities to recognise social cues, understand surroundings through generative models, such as ChatGPT, and respond with contextually appropriate social behaviour. Specifically, we propose an interaction task implementing a narrative protocol (storytelling task) in which the human and the robot create a short imaginary story together, exchanging in turn cubes with creative images placed on them. To validate the protocol and the framework, experiments were performed to quantify the degree of usability and the quality of experience perceived by participants interacting with the system. Such a system can be beneficial in promoting effective human robot collaborations, especially in assistance, education and rehabilitation scenarios where the social awareness and the robot responsiveness play a pivotal role.
☆ Uncertainty-Aware Perception-Based Control for Autonomous Racing
Autonomous systems operating in unknown environments often rely heavily on visual sensor data, yet making safe and informed control decisions based on these measurements remains a significant challenge. To facilitate the integration of perception and control in autonomous vehicles, we propose a novel perception-based control approach that incorporates road estimation, quantification of its uncertainty, and uncertainty-aware control based on this estimate. At the core of our method is a parametric road curvature model, optimized using visual measurements of the road through a constrained nonlinear optimization problem. This process ensures adherence to constraints on both model parameters and curvature. By leveraging the Frenet frame formulation, we embed the estimated track curvature into the system dynamics, allowing the controller to explicitly account for perception uncertainty and enhancing robustness to estimation errors based on visual input. We validate our approach in a simulated environment, using a high-fidelity 3D rendering engine, and demonstrate its effectiveness in achieving reliable and uncertainty-aware control for autonomous racing.
☆ Multi-Class Human/Object Detection on Robot Manipulators using Proprioceptive Sensing
In physical human-robot collaboration (pHRC) settings, humans and robots collaborate directly in shared environments. Robots must analyze interactions with objects to ensure safety and facilitate meaningful workflows. One critical aspect is human/object detection, where the contacted object is identified. Past research introduced binary machine learning classifiers to distinguish between soft and hard objects. This study improves upon those results by evaluating three-class human/object detection models, offering more detailed contact analysis. A dataset was collected using the Franka Emika Panda robot manipulator, exploring preprocessing strategies for time-series analysis. Models including LSTM, GRU, and Transformers were trained on these datasets. The best-performing model achieved 91.11\% accuracy during real-time testing, demonstrating the feasibility of multi-class detection models. Additionally, a comparison of preprocessing strategies suggests a sliding window approach is optimal for this task.
☆ Improving Generalization of Language-Conditioned Robot Manipulation
The control of robots for manipulation tasks generally relies on visual input. Recent advances in vision-language models (VLMs) enable the use of natural language instructions to condition visual input and control robots in a wider range of environments. However, existing methods require a large amount of data to fine-tune VLMs for operating in unseen environments. In this paper, we present a framework that learns object-arrangement tasks from just a few demonstrations. We propose a two-stage framework that divides object-arrangement tasks into a target localization stage, for picking the object, and a region determination stage for placing the object. We present an instance-level semantic fusion module that aligns the instance-level image crops with the text embedding, enabling the model to identify the target objects defined by the natural language instructions. We validate our method on both simulation and real-world robotic environments. Our method, fine-tuned with a few demonstrations, improves generalization capability and demonstrates zero-shot ability in real-robot manipulation scenarios.
comment: 7 pages,18 figures,2 tables
☆ Adaptive Lattice-based Motion Planning
This paper proposes an adaptive lattice-based motion planning solution to address the problem of generating feasible trajectories for systems, represented by a linearly parameterizable non-linear model operating within a cluttered environment. The system model is considered to have uncertain model parameters. The key idea here is to utilize input/output data online to update the model set containing the uncertain system parameter, as well as a dynamic estimated parameter of the model, so that the associated model estimation error reduces over time. This in turn improves the quality of the motion primitives generated by the lattice-based motion planner using a nominal estimated model selected on the basis of suitable criteria. The motion primitives are also equipped with tubes to account for the model mismatch between the nominal estimated model and the true system model, to guarantee collision-free overall motion. The tubes are of uniform size, which is directly proportional to the size of the model set containing the uncertain system parameter. The adaptive learning module guarantees a reduction in the diameter of the model set as well as in the parameter estimation error between the dynamic estimated parameter and the true system parameter. This directly implies a reduction in the size of the implemented tubes and guarantees that the utilized motion primitives go arbitrarily close to the resolution-optimal motion primitives associated with the true model of the system, thus significantly improving the overall motion planning performance over time. The efficiency of the motion planner is demonstrated by a suitable simulation example that considers a drone model represented by Euler-Lagrange dynamics containing uncertain parameters and operating within a cluttered environment.
☆ mmWave Radar-Based Non-Line-of-Sight Pedestrian Localization at T-Junctions Utilizing Road Layout Extraction via Camera
Pedestrians Localization in Non-Line-of-Sight (NLoS) regions within urban environments poses a significant challenge for autonomous driving systems. While mmWave radar has demonstrated potential for detecting objects in such scenarios, the 2D radar point cloud (PCD) data is susceptible to distortions caused by multipath reflections, making accurate spatial inference difficult. Additionally, although camera images provide high-resolution visual information, they lack depth perception and cannot directly observe objects in NLoS regions. In this paper, we propose a novel framework that interprets radar PCD through road layout inferred from camera for localization of NLoS pedestrians. The proposed method leverages visual information from the camera to interpret 2D radar PCD, enabling spatial scene reconstruction. The effectiveness of the proposed approach is validated through experiments conducted using a radar-camera system mounted on a real vehicle. The localization performance is evaluated using a dataset collected in outdoor NLoS driving environments, demonstrating the practical applicability of the method.
☆ Correspondence-Free Fast and Robust Spherical Point Pattern Registration ICCV 2025
Existing methods for rotation estimation between two spherical ($\mathbb{S}^2$) patterns typically rely on spherical cross-correlation maximization between two spherical function. However, these approaches exhibit computational complexities greater than cubic $O(n^3)$ with respect to rotation space discretization and lack extensive evaluation under significant outlier contamination. To this end, we propose a rotation estimation algorithm between two spherical patterns with linear time complexity $O(n)$. Unlike existing spherical-function-based methods, we explicitly represent spherical patterns as discrete 3D point sets on the unit sphere, reformulating rotation estimation as a spherical point-set alignment (i.e., Wahba problem for 3D unit vectors). Given the geometric nature of our formulation, our spherical pattern alignment algorithm naturally aligns with the Wahba problem framework for 3D unit vectors. Specifically, we introduce three novel algorithms: (1) SPMC (Spherical Pattern Matching by Correlation), (2) FRS (Fast Rotation Search), and (3) a hybrid approach (SPMC+FRS) that combines the advantages of the previous two methods. Our experiments demonstrate that in the $\mathbb{S}^2$ domain and in correspondence-free settings, our algorithms are over 10x faster and over 10x more accurate than current state-of-the-art methods for the Wahba problem with outliers. We validate our approach through extensive simulations on a new dataset of spherical patterns, the ``Robust Vector Alignment Dataset. "Furthermore, we adapt our methods to two real-world tasks: (i) Point Cloud Registration (PCR) and (ii) rotation estimation for spherical images.
comment: Accepted at ICCV 2025
☆ Vision Language Model-based Testing of Industrial Autonomous Mobile Robots
Autonomous Mobile Robots (AMRs) are deployed in diverse environments (e.g., warehouses, retail spaces, and offices), where they work alongside humans. Given that human behavior can be unpredictable and that AMRs may not have been trained to handle all possible unknown and uncertain behaviors, it is important to test AMRs under a wide range of human interactions to ensure their safe behavior. Moreover, testing in real environments with actual AMRs and humans is often costly, impractical, and potentially hazardous (e.g., it could result in human injury). To this end, we propose a Vision Language Model (VLM)-based testing approach (RVSG) for industrial AMRs developed by PAL Robotics in Spain. Based on the functional and safety requirements, RVSG uses the VLM to generate diverse human behaviors that violate these requirements. We evaluated RVSG with several requirements and navigation routes in a simulator using the latest AMR from PAL Robotics. Our results show that, compared with the baseline, RVSG can effectively generate requirement-violating scenarios. Moreover, RVSG-generated scenarios increase variability in robot behavior, thereby helping reveal their uncertain behaviors.
☆ Framework for Robust Motion Planning of Tethered Multi-Robot Systems in Marine Environments
This paper introduces CoralGuide, a novel framework designed for path planning and trajectory optimization for tethered multi-robot systems. We focus on marine robotics, which commonly have tethered configurations of an Autonomous Surface Vehicle (ASV) and an Autonomous Underwater Vehicle (AUV). CoralGuide provides safe navigation in marine environments by enhancing the A* algorithm with specialized heuristics tailored for tethered ASV-AUV systems. Our method integrates catenary curve modelling for tether management and employs Bezier curve interpolation for smoother trajectory planning, ensuring efficient and synchronized operations without compromising safety. Through simulations and real-world experiments, we have validated CoralGuides effectiveness in improving path planning and trajectory optimization, demonstrating its potential to significantly enhance operational capabilities in marine research and infrastructure inspection.
comment: The research paper has been submitted and accepted for presentation at the OCEANS 2025 conference in France
☆ Tethered Multi-Robot Systems in Marine Environments ICRA 2025
This paper introduces a novel simulation framework for evaluating motion control in tethered multi-robot systems within dynamic marine environments. Specifically, it focuses on the coordinated operation of an Autonomous Underwater Vehicle (AUV) and an Autonomous Surface Vehicle(ASV). The framework leverages GazeboSim, enhanced with realistic marine environment plugins and ArduPilots SoftwareIn-The-Loop (SITL) mode, to provide a high-fidelity simulation platform. A detailed tether model, combining catenary equations and physical simulation, is integrated to accurately represent the dynamic interactions between the vehicles and the environment. This setup facilitates the development and testing of advanced control strategies under realistic conditions, demonstrating the frameworks capability to analyze complex tether interactions and their impact on system performance.
comment: The research paper has been submitted and accepted for the AQ2UASIM Workshop during ICRA 2025 in the USA
☆ An Event-based Fast Intensity Reconstruction Scheme for UAV Real-time Perception
Event cameras offer significant advantages, including a wide dynamic range, high temporal resolution, and immunity to motion blur, making them highly promising for addressing challenging visual conditions. Extracting and utilizing effective information from asynchronous event streams is essential for the onboard implementation of event cameras. In this paper, we propose a streamlined event-based intensity reconstruction scheme, event-based single integration (ESI), to address such implementation challenges. This method guarantees the portability of conventional frame-based vision methods to event-based scenarios and maintains the intrinsic advantages of event cameras. The ESI approach reconstructs intensity images by performing a single integration of the event streams combined with an enhanced decay algorithm. Such a method enables real-time intensity reconstruction at a high frame rate, typically 100 FPS. Furthermore, the relatively low computation load of ESI fits onboard implementation suitably, such as in UAV-based visual tracking scenarios. Extensive experiments have been conducted to evaluate the performance comparison of ESI and state-of-the-art algorithms. Compared to state-of-the-art algorithms, ESI demonstrates remarkable runtime efficiency improvements, superior reconstruction quality, and a high frame rate. As a result, ESI enhances UAV onboard perception significantly under visual adversary surroundings. In-flight tests, ESI demonstrates effective performance for UAV onboard visual tracking under extremely low illumination conditions(2-10lux), whereas other comparative algorithms fail due to insufficient frame rate, poor image quality, or limited real-time performance.
comment: A supplementary video is available at https://youtu.be/tLzXjXVRkVg
☆ CO-RFT: Efficient Fine-Tuning of Vision-Language-Action Models through Chunked Offline Reinforcement Learning
Vision-Language-Action (VLA) models demonstrate significant potential for developing generalized policies in real-world robotic control. This progress inspires researchers to explore fine-tuning these models with Reinforcement Learning (RL). However, fine-tuning VLA models with RL still faces challenges related to sample efficiency, compatibility with action chunking, and training stability. To address these challenges, we explore the fine-tuning of VLA models through offline reinforcement learning incorporating action chunking. In this work, we propose Chunked RL, a novel reinforcement learning framework specifically designed for VLA models. Within this framework, we extend temporal difference (TD) learning to incorporate action chunking, a prominent characteristic of VLA models. Building upon this framework, we propose CO-RFT, an algorithm aimed at fine-tuning VLA models using a limited set of demonstrations (30 to 60 samples). Specifically, we first conduct imitation learning (IL) with full parameter fine-tuning to initialize both the backbone and the policy. Subsequently, we implement offline RL with action chunking to optimize the pretrained policy. Our empirical results in real-world environments demonstrate that CO-RFT outperforms previous supervised methods, achieving a 57% improvement in success rate and a 22.3% reduction in cycle time. Moreover, our method exhibits robust positional generalization capabilities, attaining a success rate of 44.3% in previously unseen positions.
☆ TacMan-Turbo: Proactive Tactile Control for Robust and Efficient Articulated Object Manipulation
Adept manipulation of articulated objects is essential for robots to operate successfully in human environments. Such manipulation requires both effectiveness -- reliable operation despite uncertain object structures -- and efficiency -- swift execution with minimal redundant steps and smooth actions. Existing approaches struggle to achieve both objectives simultaneously: methods relying on predefined kinematic models lack effectiveness when encountering structural variations, while tactile-informed approaches achieve robust manipulation without kinematic priors but compromise efficiency through reactive, step-by-step exploration-compensation cycles. This paper introduces TacMan-Turbo, a novel proactive tactile control framework for articulated object manipulation that resolves this fundamental trade-off. Unlike previous approaches that treat tactile contact deviations merely as error signals requiring compensation, our method interprets these deviations as rich sources of local kinematic information. This new perspective enables our controller to predict optimal future interactions and make proactive adjustments, significantly enhancing manipulation efficiency. In comprehensive evaluations across 200 diverse simulated articulated objects and real-world experiments, our approach maintains a 100% success rate while significantly outperforming the previous tactile-informed method in time efficiency, action efficiency, and trajectory smoothness (all p-values < 0.0001). These results demonstrate that the long-standing trade-off between effectiveness and efficiency in articulated object manipulation can be successfully resolved without relying on prior kinematic knowledge.
☆ Constrained Reinforcement Learning for Unstable Point-Feet Bipedal Locomotion Applied to the Bolt Robot
Bipedal locomotion is a key challenge in robotics, particularly for robots like Bolt, which have a point-foot design. This study explores the control of such underactuated robots using constrained reinforcement learning, addressing their inherent instability, lack of arms, and limited foot actuation. We present a methodology that leverages Constraints-as-Terminations and domain randomization techniques to enable sim-to-real transfer. Through a series of qualitative and quantitative experiments, we evaluate our approach in terms of balance maintenance, velocity control, and responses to slip and push disturbances. Additionally, we analyze autonomy through metrics like the cost of transport and ground reaction force. Our method advances robust control strategies for point-foot bipedal robots, offering insights into broader locomotion.
☆ FedVLA: Federated Vision-Language-Action Learning with Dual Gating Mixture-of-Experts for Robotic Manipulation ICCV 2025
Vision-language-action (VLA) models have significantly advanced robotic manipulation by enabling robots to interpret language instructions for task execution. However, training these models often relies on large-scale user-specific data, raising concerns about privacy and security, which in turn limits their broader adoption. To address this, we propose FedVLA, the first federated VLA learning framework, enabling distributed model training that preserves data privacy without compromising performance. Our framework integrates task-aware representation learning, adaptive expert selection, and expert-driven federated aggregation, enabling efficient and privacy-preserving training of VLA models. Specifically, we introduce an Instruction Oriented Scene-Parsing mechanism, which decomposes and enhances object-level features based on task instructions, improving contextual understanding. To effectively learn diverse task patterns, we design a Dual Gating Mixture-of-Experts (DGMoE) mechanism, where not only input tokens but also self-aware experts adaptively decide their activation. Finally, we propose an Expert-Driven Aggregation strategy at the federated server, where model aggregation is guided by activated experts, ensuring effective cross-client knowledge transfer.Extensive simulations and real-world robotic experiments demonstrate the effectiveness of our proposals. Notably, DGMoE significantly improves computational efficiency compared to its vanilla counterpart, while FedVLA achieves task success rates comparable to centralized training, effectively preserving data privacy.
comment: Accepted by ICCV 2025
☆ A Moment Matching-Based Method for Sparse and Noisy Point Cloud Registration
Point cloud registration is a key step in robotic perception tasks, such as Simultaneous Localization and Mapping (SLAM). It is especially challenging in conditions with sparse points and heavy noise. Traditional registration methods, such as Iterative Closest Point (ICP) and Normal Distributions Transform (NDT), often have difficulties in achieving a robust and accurate alignment under these conditions. In this paper, we propose a registration framework based on moment matching. In particular, the point clouds are regarded as i.i.d. samples drawn from the same distribution observed in the source and target frames. We then match the generalized Gaussian Radial Basis moments calculated from the point clouds to estimate the rigid transformation between two frames. Moreover, such method does not require explicit point-to-point correspondences among the point clouds. We further show the consistency of the proposed method. Experiments on synthetic and real-world datasets show that our approach achieves higher accuracy and robustness than existing methods. In addition, we integrate our framework into a 4D Radar SLAM system. The proposed method significantly improves the localization performance and achieves results comparable to LiDAR-based systems. These findings demonstrate the potential of moment matching technique for robust point cloud registration in sparse and noisy scenarios.
☆ Towards High Precision: An Adaptive Self-Supervised Learning Framework for Force-Based Verification
The automation of robotic tasks requires high precision and adaptability, particularly in force-based operations such as insertions. Traditional learning-based approaches either rely on static datasets, which limit their ability to generalize, or require frequent manual intervention to maintain good performances. As a result, ensuring long-term reliability without human supervision remains a significant challenge. To address this, we propose an adaptive self-supervised learning framework for insertion classification that continuously improves its precision over time. The framework operates in real-time, incrementally refining its classification decisions by integrating newly acquired force data. Unlike conventional methods, it does not rely on pre-collected datasets but instead evolves dynamically with each task execution. Through real-world experiments, we demonstrate how the system progressively reduces execution time while maintaining near-perfect precision as more samples are processed. This adaptability ensures long-term reliability in force-based robotic tasks while minimizing the need for manual intervention.
comment: 7 pages, 7 figures, 3 tables
☆ ScrewSplat: An End-to-End Method for Articulated Object Recognition
Articulated object recognition -- the task of identifying both the geometry and kinematic joints of objects with movable parts -- is essential for enabling robots to interact with everyday objects such as doors and laptops. However, existing approaches often rely on strong assumptions, such as a known number of articulated parts; require additional inputs, such as depth images; or involve complex intermediate steps that can introduce potential errors -- limiting their practicality in real-world settings. In this paper, we introduce ScrewSplat, a simple end-to-end method that operates solely on RGB observations. Our approach begins by randomly initializing screw axes, which are then iteratively optimized to recover the object's underlying kinematic structure. By integrating with Gaussian Splatting, we simultaneously reconstruct the 3D geometry and segment the object into rigid, movable parts. We demonstrate that our method achieves state-of-the-art recognition accuracy across a diverse set of articulated objects, and further enables zero-shot, text-guided manipulation using the recovered kinematic model.
comment: 26 pages, 12 figures, Conference on Robot Learning (CoRL) 2025
☆ Towards Immersive Human-X Interaction: A Real-Time Framework for Physically Plausible Motion Synthesis ICCV 2025
Real-time synthesis of physically plausible human interactions remains a critical challenge for immersive VR/AR systems and humanoid robotics. While existing methods demonstrate progress in kinematic motion generation, they often fail to address the fundamental tension between real-time responsiveness, physical feasibility, and safety requirements in dynamic human-machine interactions. We introduce Human-X, a novel framework designed to enable immersive and physically plausible human interactions across diverse entities, including human-avatar, human-humanoid, and human-robot systems. Unlike existing approaches that focus on post-hoc alignment or simplified physics, our method jointly predicts actions and reactions in real-time using an auto-regressive reaction diffusion planner, ensuring seamless synchronization and context-aware responses. To enhance physical realism and safety, we integrate an actor-aware motion tracking policy trained with reinforcement learning, which dynamically adapts to interaction partners' movements while avoiding artifacts like foot sliding and penetration. Extensive experiments on the Inter-X and InterHuman datasets demonstrate significant improvements in motion quality, interaction continuity, and physical plausibility over state-of-the-art methods. Our framework is validated in real-world applications, including virtual reality interface for human-robot interaction, showcasing its potential for advancing human-robot collaboration.
comment: Accepted by ICCV 2025
☆ "Set It Up": Functional Object Arrangement with Compositional Generative Models
Functional object arrangement (FORM) is the task of arranging objects to fulfill a function, e.g., "set up a dining table for two". One key challenge here is that the instructions for FORM are often under-specified and do not explicitly specify the desired object goal poses. This paper presents SetItUp, a neuro-symbolic framework that learns to specify the goal poses of objects from a few training examples and a structured natural-language task specification. SetItUp uses a grounding graph, which is composed of abstract spatial relations among objects (e.g., left-of), as its intermediate representation. This decomposes the FORM problem into two stages: (i) predicting this graph among objects and (ii) predicting object poses given the grounding graph. For (i), SetItUp leverages large language models (LLMs) to induce Python programs from a task specification and a few training examples. This program can be executed to generate grounding graphs in novel scenarios. For (ii), SetItUp pre-trains a collection of diffusion models to capture primitive spatial relations and online composes these models to predict object poses based on the grounding graph. We evaluated SetItUp on a dataset spanning three distinct task families: arranging tableware on a dining table, organizing items on a bookshelf, and laying out furniture in a bedroom. Experiments show that SetItUp outperforms existing models in generating functional, physically feasible, and aesthetically pleasing object arrangements. This article extends our conference paper published at Robotics: Science and Systems (RSS) 2024.
comment: This is the journal version accepted to the International Journal of Robotics Research (IJRR). It extends our prior work presented at Robotics: Science and Systems (RSS) 2024, with a new compositional program induction pipeline from natural language, and expanded evaluations on personalized bookshelf and bedroom furniture layout tasks
☆ RICL: Adding In-Context Adaptability to Pre-Trained Vision-Language-Action Models
Multi-task ``vision-language-action'' (VLA) models have recently demonstrated increasing promise as generalist foundation models for robotics, achieving non-trivial performance out of the box on new tasks in new environments. However, for such models to be truly useful, an end user must have easy means to teach them to improve. For language and vision models, the emergent ability to perform in-context learning (ICL) has proven to be a versatile and highly useful interface to easily teach new tasks with no parameter finetuning. Unfortunately, VLAs pre-trained with imitation learning objectives do not naturally acquire ICL abilities. In this paper, we demonstrate that, with the right finetuning recipe and a small robot demonstration dataset, it is possible to inject in-context adaptability post hoc into such a VLA. After retraining for in-context learning (RICL), our system permits an end user to provide a small number (10-20) of demonstrations for a new task. RICL then fetches the most relevant portions of those demonstrations into the VLA context to exploit ICL, performing the new task and boosting task performance. We apply RICL to inject ICL into the $\pi_{0}$-FAST VLA, and show that it permits large in-context improvements for a variety of new manipulation tasks with only 20 demonstrations per task, without any parameter updates. When parameter updates on the target task demonstrations is possible, RICL finetuning further boosts performance. We release code and model weights for RICL-$\pi_{0}$-FAST alongside the paper to enable, for the first time, a simple in-context learning interface for new manipulation tasks. Website: https://ricl-vla.github.io.
comment: Conference on Robot Learning 2025 (CoRL 2025), 17 pages
☆ NaviMaster: Learning a Unified Policy for GUI and Embodied Navigation Tasks
Recent advances in Graphical User Interface (GUI) and embodied navigation have driven significant progress, yet these domains have largely evolved in isolation, with disparate datasets and training paradigms. In this paper, we observe that both tasks can be formulated as Markov Decision Processes (MDP), suggesting a foundational principle for their unification. Hence, we present NaviMaster, the first unified agent capable of seamlessly integrating GUI navigation and embodied navigation within a single framework. Specifically, NaviMaster (i) proposes a visual-target trajectory collection pipeline that generates trajectories for both GUI and embodied tasks in one formulation. (ii) employs a unified reinforcement learning framework on the mix data for better generalization. (iii) designs a novel distance-aware reward to ensure efficient learning from the trajectories. Through extensive experiments on out-of-domain benchmarks, NaviMaster is shown to outperform state-of-the-art agents in GUI navigation, spatial affordance prediction, and embodied navigation. Ablation studies further confirm the efficacy of our unified training strategy, data mixing strategy, and reward design.
comment: Homepage: https://iron-boyy.github.io/navimaster/
☆ Design and Control of an Actively Morphing Quadrotor with Vertically Foldable Arms
In this work, we propose a novel quadrotor design capable of folding its arms vertically to grasp objects and navigate through narrow spaces. The transformation is controlled actively by a central servomotor, gears, and racks. The arms connect the motor bases to the central frame, forming a parallelogram structure that ensures the propellers maintain a constant orientation during morphing. In its stretched state, the quadrotor resembles a conventional design, and when contracted, it functions as a gripper with grasping components emerging from the motor bases. To mitigate disturbances during transforming and grasping payloads, we employ an adaptive sliding mode controller with a disturbance observer. After fully folded, the quadrotor frame shrinks to 67% of its original size. The control performance and versatility of the morphing quadrotor are validated through real-world experiments.
☆ From Photons to Physics: Autonomous Indoor Drones and the Future of Objective Property Assessment
The convergence of autonomous indoor drones with physics-aware sensing technologies promises to transform property assessment from subjective visual inspection to objective, quantitative measurement. This comprehensive review examines the technical foundations enabling this paradigm shift across four critical domains: (1) platform architectures optimized for indoor navigation, where weight constraints drive innovations in heterogeneous computing, collision-tolerant design, and hierarchical control systems; (2) advanced sensing modalities that extend perception beyond human vision, including hyperspectral imaging for material identification, polarimetric sensing for surface characterization, and computational imaging with metaphotonics enabling radical miniaturization; (3) intelligent autonomy through active reconstruction algorithms, where drones equipped with 3D Gaussian Splatting make strategic decisions about viewpoint selection to maximize information gain within battery constraints; and (4) integration pathways with existing property workflows, including Building Information Modeling (BIM) systems and industry standards like Uniform Appraisal Dataset (UAD) 3.6.
comment: 63 pages, 5 figures
♻ ☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model IROS 2025
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Accepted at IROS 2025. Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
♻ ☆ OWLed: Outlier-weighed Layerwise Pruning for Efficient Autonomous Driving Framework IJCNN2025
The integration of Large Language Models (LLMs) into autonomous driving systems offers promising enhancements in environmental understanding and decision-making. However, the substantial computational demands of deploying LLMs locally on vehicles render this approach unfeasible for real-world automotive applications. To address this challenge, we introduce OWLed, the Outlier-Weighed Layerwise Pruning for Efficient Autonomous Driving Framework that leverages outlier-weighted layerwise sparsity for model compression. Our method assigns non-uniform sparsity ratios to different layers based on the distribution of outlier features, significantly reducing the model size without the need for fine-tuning. To ensure the compressed model adapts well to autonomous driving tasks, we incorporate driving environment data into both the calibration and pruning processes. Our empirical studies reveal that the encoder component is more sensitive to pruning than the LLM, highlighting its critical role in the system. Experimental results demonstrate that OWLed outperforms existing methods in perception, action prediction, and language understanding while substantially lowering computational requirements. These findings underscore the potential of combining advanced pruning techniques with LLMs to develop efficient and robust autonomous driving systems capable of handling complex scenarios. Code will be made publicly available.
comment: IJCNN2025
♻ ☆ MonoForce: Self-supervised Learning of Physics-informed Model for Predicting Robot-terrain Interaction IROS 2024
While autonomous navigation of mobile robots on rigid terrain is a well-explored problem, navigating on deformable terrain such as tall grass or bushes remains a challenge. To address it, we introduce an explainable, physics-aware and end-to-end differentiable model which predicts the outcome of robot-terrain interaction from camera images, both on rigid and non-rigid terrain. The proposed MonoForce model consists of a black-box module which predicts robot-terrain interaction forces from onboard cameras, followed by a white-box module, which transforms these forces and a control signals into predicted trajectories, using only the laws of classical mechanics. The differentiable white-box module allows backpropagating the predicted trajectory errors into the black-box module, serving as a self-supervised loss that measures consistency between the predicted forces and ground-truth trajectories of the robot. Experimental evaluation on a public dataset and our data has shown that while the prediction capabilities are comparable to state-of-the-art algorithms on rigid terrain, MonoForce shows superior accuracy on non-rigid terrain such as tall grass or bushes. To facilitate the reproducibility of our results, we release both the code and datasets.
comment: Accepted for IEEE IROS 2024. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ 16 Ways to Gallop: Energetics and Body Dynamics of High-Speed Quadrupedal Gaits IROS 2025
Galloping is a common high-speed gait in both animals and quadrupedal robots, yet its energetic characteristics remain insufficiently explored. This study systematically analyzes a large number of possible galloping gaits by categorizing them based on the number of flight phases per stride and the phase relationships between the front and rear legs, following Hildebrand's framework for asymmetrical gaits. Using the A1 quadrupedal robot from Unitree, we model galloping dynamics as a hybrid dynamical system and employ trajectory optimization (TO) to minimize the cost of transport (CoT) across a range of speeds. Our results reveal that rotary and transverse gallop footfall sequences exhibit no fundamental energetic difference, despite variations in body yaw and roll motion. However, the number of flight phases significantly impacts energy efficiency: galloping with no flight phases is optimal at lower speeds, whereas galloping with two flight phases minimizes energy consumption at higher speeds. We validate these findings using a quadratic programming (QP)-based controller, developed in our previous work, in Gazebo simulations. These insights advance the understanding of quadrupedal locomotion energetics and may inform future legged robot designs for adaptive, energy-efficient gait transitions.
comment: 7 pages, 6 figures, Accepted for IROS 2025
♻ ☆ Refined Policy Distillation: From VLA Generalists to RL Experts IROS 2026
Vision-Language-Action Models (VLAs) have demonstrated remarkable generalization capabilities in real-world experiments. However, their success rates are often not on par with expert policies, and they require fine-tuning when the setup changes. In this work, we introduce Refined Policy Distillation (RPD), a novel Reinforcement Learning (RL)-based policy refinement method that bridges this performance gap through a combination of on-policy RL with behavioral cloning. The core idea of RPD is to distill and refine VLAs into compact, high-performing expert policies by guiding the student policy during RL exploration using the actions of a teacher VLA, resulting in increased sample efficiency and faster convergence. We complement our method by fine-tuned versions of Octo and OpenVLA for ManiSkill3 to evaluate RPD in simulation. While this is a key requirement for applying RL, it also yields new insights beyond existing studies on VLA performance in real-world settings. Our experimental results across various manipulation tasks show that RPD enables the RL student to learn expert policies that outperform the VLA teacher in both dense and sparse reward settings, while also achieving faster convergence than the RL baseline. Our approach is even robust to changes in camera perspective and can generalize to task variations that the underlying VLA cannot solve. Our code, dataset, VLA checkpoints, and videos are available at https://refined-policy-distillation.github.io
comment: accepted for publication at IROS 2026
♻ ☆ Eyes Will Shut: A Vision-Based Next GPS Location Prediction Model by Reinforcement Learning from Visual Map Feed Back
Next Location Prediction is a fundamental task in the study of human mobility, with wide-ranging applications in transportation planning, urban governance, and epidemic forecasting. In practice, when humans attempt to predict the next location in a trajectory, they often visualize the trajectory on a map and reason based on road connectivity and movement trends. However, the vast majority of existing next-location prediction models do not reason over maps \textbf{in the way that humans do}. Fortunately, the recent development of Vision-Language Models (VLMs) has demonstrated strong capabilities in visual perception and even visual reasoning. This opens up a new possibility: by rendering both the road network and trajectory onto an image and leveraging the reasoning abilities of VLMs, we can enable models to perform trajectory inference in a human-like manner. To explore this idea, we first propose a method called Vision-Guided Location Search (VGLS), which evaluates whether a general-purpose VLM is capable of trajectory-based reasoning without modifying any of its internal parameters. Based on insights from the VGLS results, we further propose our main approach: VLMLocPredictor, which is composed of two stages: In the first stage, we design two Supervised Fine-Tuning (SFT) tasks that help the VLM understand road network and trajectory structures and acquire basic reasoning ability on such visual inputs. In the second stage, we introduce Reinforcement Learning from Visual Map Feedback, enabling the model to self-improve its next-location prediction ability through interaction with the environment. Experiments conducted on datasets from four different cities show that our method achieves state-of-the-art (SOTA) performance and exhibits superior cross-city generalization compared to other LLM-based approaches.
♻ ☆ Globally Optimal Data-Association-Free Landmark-Based Localization Using Semidefinite Relaxations
This paper proposes a semidefinite relaxation for landmark-based localization with unknown data associations in planar environments. The proposed method simultaneously solves for the optimal robot states and data associations in a globally optimal fashion. Relative position measurements to known landmarks are used, but the data association is unknown in tha tthe robot does not know which landmark each measurement is generated from. The relaxation is shown to be tight in a majority of cases for moderate noise levels. The proposed algorithm is compared to local Gauss-Newton baselines initialized at the dead-reckoned trajectory, and is shown to significantly improve convergence to the problem's global optimum in simulation and experiment. Accompanying software and supplementary material may be found at https://github.com/decargroup/certifiable_uda_loc .
comment: 13 pages, 6 figures. Accepted to IEEE Robotics and Automation Letters
♻ ☆ Faster Motion Planning via Restarts
Randomized methods such as PRM and RRT are widely used in motion planning. However, in some cases, their running-time suffers from inherent instability, leading to ``catastrophic'' performance even for relatively simple instances. We apply stochastic restart techniques, some of them new, for speeding up Las Vegas algorithms, that provide dramatic speedups in practice (a factor of $3$ [or larger] in many cases). Our experiments demonstrate that the new algorithms have faster runtimes, shorter paths, and greater gains from multi-threading (when compared with straightforward parallel implementation). We prove the optimality of the new variants. Our implementation is open source, available on github, and is easy to deploy and use.
comment: arXiv admin note: text overlap with arXiv:2503.04633
♻ ☆ Transformable Modular Robots: A CPG-Based Approach to Independent and Collective Locomotion
Modular robotics enables the development of versatile and adaptive robotic systems with autonomous reconfiguration. This paper presents a modular robotic system in which each module has independent actuation, battery power, and control, allowing both individual mobility and coordinated locomotion. A hierarchical Central Pattern Generator (CPG) framework governs motion, with a low-level CPG controlling individual modules and a high-level CPG synchronizing inter-module coordination, enabling smooth transitions between independent and collective behaviors. To validate the system, we conduct simulations in MuJoCo and hardware experiments, evaluating locomotion across different configurations. We first analyze single-module motion, followed by two-module cooperative locomotion. Results demonstrate the effectiveness of the CPG-based control framework in achieving robust, flexible, and scalable locomotion. The proposed modular architecture has potential applications in search and rescue, environmental monitoring, and autonomous exploration, where adaptability and reconfigurability are essential.
♻ ☆ MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network IROS
Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Autonomous Dissection in Robotic Cholecystectomy IROS
Robotic surgery offers enhanced precision and adaptability, paving the way for automation in surgical interventions. Cholecystectomy, the gallbladder removal, is particularly well-suited for automation due to its standardized procedural steps and distinct anatomical boundaries. A key challenge in automating this procedure is dissecting with accuracy and adaptability. This paper presents a vision-based autonomous robotic dissection architecture that integrates real-time segmentation, keypoint detection, grasping and stretching the gallbladder with the left arm, and dissecting with the other arm. We introduce an improved segmentation dataset based on videos of robotic cholecystectomy performed by various surgeons, incorporating a new ``liver bed'' class to enhance boundary tracking after multiple rounds of dissection. Our system employs state-of-the-art segmentation models and an adaptive boundary extraction method that maintains accuracy despite tissue deformations and visual variations. Moreover, we implemented an automated grasping and pulling strategy to optimize tissue tension before dissection upon our previous work. Ex vivo evaluations on porcine livers demonstrate that our framework significantly improves dissection precision and consistency, marking a step toward fully autonomous robotic cholecystectomy.
comment: Accepted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Reward-Augmented Reinforcement Learning for Continuous Control in Precision Autonomous Parking via Policy Optimization Methods
Autonomous parking (AP) represents a critical yet complex subset of intelligent vehicle automation, characterized by tight spatial constraints, frequent close-range obstacle interactions, and stringent safety margins. However, conventional rule-based and model-predictive methods often lack the adaptability and generalization needed to handle the nonlinear and environment-dependent complexities of AP. To address these limitations, we propose a reward-augmented learning framework for AP (RARLAP), that mitigates the inherent complexities of continuous-domain control by leveraging structured reward design to induce smooth and adaptable policy behavior, trained entirely within a high-fidelity Unity-based custom 3D simulation environment. We systematically design and assess three structured reward strategies: goal-only reward (GOR), dense proximity reward (DPR), and milestone-augmented reward (MAR), each integrated with both on-policy and off-policy optimization paradigms. Empirical evaluations demonstrate that the on-policy MAR achieves a 91\% success rate, yielding smoother trajectories and more robust behavior, while GOR and DPR fail to guide effective learning. Convergence and trajectory analyses demonstrate that the proposed framework enhances policy adaptability, accelerates training, and improves safety in continuous control. Overall, RARLAP establishes that reward augmentation effectively addresses complex autonomous parking challenges, enabling scalable and efficient policy optimization with both on- and off-policy methods. To support reproducibility, the code accompanying this paper is publicly available.
♻ ☆ Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
♻ ☆ KeyMPs: One-Shot Vision-Language Guided Motion Generation by Sequencing DMPs for Occlusion-Rich Tasks
Dynamic Movement Primitives (DMPs) provide a flexible framework wherein smooth robotic motions are encoded into modular parameters. However, they face challenges in integrating multimodal inputs commonly used in robotics like vision and language into their framework. To fully maximize DMPs' potential, enabling them to handle multimodal inputs is essential. In addition, we also aim to extend DMPs' capability to handle object-focused tasks requiring one-shot complex motion generation, as observation occlusion could easily happen mid-execution in such tasks (e.g., knife occlusion in cake icing, hand occlusion in dough kneading, etc.). A promising approach is to leverage Vision-Language Models (VLMs), which process multimodal data and can grasp high-level concepts. However, they typically lack enough knowledge and capabilities to directly infer low-level motion details and instead only serve as a bridge between high-level instructions and low-level control. To address this limitation, we propose Keyword Labeled Primitive Selection and Keypoint Pairs Generation Guided Movement Primitives (KeyMPs), a framework that combines VLMs with sequencing of DMPs. KeyMPs use VLMs' high-level reasoning capability to select a reference primitive through \emph{keyword labeled primitive selection} and VLMs' spatial awareness to generate spatial scaling parameters used for sequencing DMPs by generalizing the overall motion through \emph{keypoint pairs generation}, which together enable one-shot vision-language guided motion generation that aligns with the intent expressed in the multimodal input. We validate our approach through experiments on two occlusion-rich tasks: object cutting, conducted in both simulated and real-world environments, and cake icing, performed in simulation. These evaluations demonstrate superior performance over other DMP-based methods that integrate VLM support.
comment: Published in IEEE Access, Jul 14 2025
♻ ☆ Sampling-Based Model Predictive Control for Dexterous Manipulation on a Biomimetic Tendon-Driven Hand
Biomimetic and compliant robotic hands offer the potential for human-like dexterity, but controlling them is challenging due to high dimensionality, complex contact interactions, and uncertainties in state estimation. Sampling-based model predictive control (MPC), using a physics simulator as the dynamics model, is a promising approach for generating contact-rich behavior. However, sampling-based MPC has yet to be evaluated on physical (non-simulated) robotic hands, particularly on compliant hands with state uncertainties. We present the first successful demonstration of in-hand manipulation on a physical biomimetic tendon-driven robot hand using sampling-based MPC. While sampling-based MPC does not require lengthy training cycles like reinforcement learning approaches, it still necessitates adapting the task-specific objective function to ensure robust behavior execution on physical hardware. To adapt the objective function, we integrate a visual language model (VLM) with a real-time optimizer (MuJoCo MPC). We provide the VLM with a high-level human language description of the task and a video of the hand's current behavior. The VLM gradually adapts the objective function, allowing for efficient behavior generation, with each iteration taking less than two minutes. We show the feasibility of ball rolling, flipping, and catching using both simulated and physical robot hands. Our results demonstrate that sampling-based MPC is a promising approach for generating dexterous manipulation skills on biomimetic hands without extensive training cycles.
comment: For a video, see https://youtu.be/u4d6v3ohsOI
♻ ☆ Dynamic-Dark SLAM: RGB-Thermal Cooperative Robot Vision Strategy for Multi-Person Tracking in Both Well-Lit and Low-Light Scenes
In robot vision, thermal cameras hold great potential for recognizing humans even in complete darkness. However, their application to multi-person tracking (MPT) has been limited due to data scarcity and the inherent difficulty of distinguishing individuals. In this study, we propose a cooperative MPT system that utilizes co-located RGB and thermal cameras, where pseudo-annotations (bounding boxes and person IDs) are used to train both RGB and thermal trackers. Evaluation experiments demonstrate that the thermal tracker performs robustly in both bright and dark environments. Moreover, the results suggest that a tracker-switching strategy -- guided by a binary brightness classifier -- is more effective for information integration than a tracker-fusion approach. As an application example, we present an image change pattern recognition (ICPR) method, the ``human-as-landmark,'' which combines two key properties: the thermal recognizability of humans in dark environments and the rich landmark characteristics -- appearance, geometry, and semantics -- of static objects (occluders). Whereas conventional SLAM focuses on mapping static landmarks in well-lit environments, the present study takes a first step toward a new Human-Only SLAM paradigm, ``Dynamic-Dark SLAM,'' which aims to map even dynamic landmarks in complete darkness. Additionally, this study demonstrates that knowledge transfer between thermal and depth modalities enables reliable person tracking using low-resolution 3D LiDAR data without RGB input, contributing an important advance toward cross-robot SLAM systems.
comment: 11 pages, 11 figures, technical report
♻ ☆ Traffic Scene Generation from Natural Language Description for Autonomous Vehicles with Large Language Model
Generating realistic and controllable traffic scenes from natural language can greatly enhance the development and evaluation of autonomous driving systems. However, this task poses unique challenges: (1) grounding free-form text into spatially valid and semantically coherent layouts, (2) composing scenarios without predefined locations, and (3) planning multi-agent behaviors and selecting roads that respect agents' configurations. To address these, we propose a modular framework, TTSG, comprising prompt analysis, road retrieval, agent planning, and a novel plan-aware road ranking algorithm to solve these challenges. While large language models (LLMs) are used as general planners, our design integrates them into a tightly controlled pipeline that enforces structure, feasibility, and scene diversity. Notably, our ranking strategy ensures consistency between agent actions and road geometry, enabling scene generation without predefined routes or spawn points. The framework supports both routine and safety-critical scenarios, as well as multi-stage event composition. Experiments on SafeBench demonstrate that our method achieves the lowest average collision rate (3.5\%) across three critical scenarios. Moreover, driving captioning models trained on our generated scenes improve action reasoning by over 30 CIDEr points. These results underscore our proposed framework for flexible, interpretable, and safety-oriented simulation.
♻ ☆ Investigating Robotaxi Crash Severity with Geographical Random Forest and the Urban Environment
This paper quantitatively investigates the crash severity of Autonomous Vehicles (AVs) with spatially localized machine learning and macroscopic measures of the urban built environment. Extending beyond the microscopic effects of individual infrastructure elements, we focus on the city-scale land use and behavioral patterns, while addressing spatial heterogeneity and spatial autocorrelation. We implemented a spatially localized machine learning technique called Geographical Random Forest (GRF) on the California AV collision dataset. Analyzing multiple urban measures, including points of interest, building footprint, and land use, we built a GRF model and visualized it as a crash severity risk map of San Francisco. This paper presents three findings. First, spatially localized machine learning outperformed regular machine learning in predicting AV crash severity. The bias-variance tradeoff was evident as we adjusted the localization weight hyperparameter. Second, land use was the most important predictor, compared to intersections, building footprints, public transit stops, and Points Of Interest (POIs). Third, AV crashes were more likely to result in low-severity incidents in city center areas with greater diversity and commercial activities, than in residential neighborhoods. Residential land use is likely associated with higher severity due to human behavior and less restrictive environments. Counterintuitively, residential areas were associated with higher crash severity, compared to more complex areas such as commercial and mixed-use areas. When robotaxi operators train their AV systems, it is recommended to: (1) consider where their fleet operates and make localized algorithms for their perception system, and (2) design safety measures specific to residential neighborhoods, such as slower driving speeds and more alert sensors.
♻ ☆ AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
comment: Project website: https://agibot-world.com/. Github repo: https://github.com/OpenDriveLab/AgiBot-World. The author list is ordered alphabetically by surname, with detailed contributions provided in the appendix
♻ ☆ 3D-CDRGP: Towards Cross-Device Robotic Grasping Policy in 3D Open World
Given the diversity of devices and the product upgrades, cross-device research has become an urgent issue that needs to be tackled. To this end, we pioneer in probing the cross-device (cameras & robotics) grasping policy in the 3D open world. Specifically, we construct two real-world grasping setups, employing robotic arms and cameras from completely different manufacturers. To minimize domain differences in point clouds from diverse cameras, we adopt clustering methods to generate 3D object proposals. However, existing clustering methods are limited to closed-set scenarios, which confines the robotic graspable object categories and ossifies the deployment scenarios. To extend these methods to open-world settings, we introduce the SSGC-Seg module that enables category-agnostic 3D object detection. The proposed module transforms the original multi-class semantic information into binary semantic cues-foreground and background by analyzing the SoftMax value of each point, and then clusters the foreground points based on geometric information to form initial object proposals. Furthermore, ScoreNet{\ddag} is designed to score each detection result, and the robotic arm prioritizes grasping the object with the highest confidence score. Experiments on two different types of setups highlight the effectiveness and robustness of our policy for cross-device robotics grasping research. Our code is provided in the supplementary and will be released upon acceptance.
♻ ☆ P2 Explore: Efficient Exploration in Unknown Cluttered Environment with Floor Plan Prediction IROS 2025
Robot exploration aims at the reconstruction of unknown environments, and it is important to achieve it with shorter paths. Traditional methods focus on optimizing the visiting order of frontiers based on current observations, which may lead to local-minimal results. Recently, by predicting the structure of the unseen environment, the exploration efficiency can be further improved. However, in a cluttered environment, due to the randomness of obstacles, the ability to predict is weak. Moreover, this inaccuracy will lead to limited improvement in exploration. Therefore, we propose FPUNet which can be efficient in predicting the layout of noisy indoor environments. Then, we extract the segmentation of rooms and construct their topological connectivity based on the predicted map. The visiting order of these predicted rooms is optimized which can provide high-level guidance for exploration. The FPUNet is compared with other network architectures which demonstrates it is the SOTA method for this task. Extensive experiments in simulations show that our method can shorten the path length by 2.18% to 34.60% compared to the baselines.
comment: 7 pages, Accepted by IROS 2025, Open-sourced at https://github.com/KunSong-L/P2Explore
♻ ☆ Friction-Aware Safety Locomotion for Wheeled-legged Robots using Vision Language Models and Reinforcement Learning
Controlling Wheeled-legged robots is challenging especially on slippery surfaces due to their dependence on continuous ground contact. Unlike quadrupeds or bipeds, which can leverage multiple fixed contact points for recovery, wheeled-legged robots are highly susceptible to slip, where even momentary loss of traction can result in irrecoverable instability. Anticipating ground physical properties such as friction before contact would allow proactive control adjustments, reducing slip risk. In this paper, we propose a friction-aware safety locomotion framework that integrates Vision-Language Models (VLMs) with a Reinforcement Learning (RL) policy. Our method employs a Retrieval-Augmented Generation (RAG) approach to estimate the Coefficient of Friction (CoF), which is then explicitly incorporated into the RL policy. This enables the robot to adapt its speed based on predicted friction conditions before contact. The framework is validated through experiments in both simulation and on a physical customized Wheeled Inverted Pendulum (WIP). Experimental results show that our approach successfully completes trajectory tracking tasks on slippery surfaces, whereas baseline methods relying solely on proprioceptive feedback fail. These findings highlight the importance and effectiveness of explicitly predicting and utilizing ground friction information for safe locomotion. They also point to a promising research direction in exploring the use of VLMs for estimating ground conditions, which remains a significant challenge for purely vision-based methods.
comment: Accepted to Humanoids 2025
Information Retrieval 30
☆ LLM-based IR-system for Bank Supervisors
Bank supervisors face the complex task of ensuring that new measures are consistently aligned with historical precedents. To address this challenge, we introduce a novel Information Retrieval (IR) System tailored to assist supervisors in drafting both consistent and effective measures. This system ingests findings from on-site investigations. It then retrieves the most relevant historical findings and their associated measures from a comprehensive database, providing a solid basis for supervisors to write well-informed measures for new findings. Utilizing a blend of lexical, semantic, and Capital Requirements Regulation (CRR) fuzzy set matching techniques, the IR system ensures the retrieval of findings that closely align with current cases. The performance of this system, particularly in scenarios with partially labeled data, is validated through a Monte Carlo methodology, showcasing its robustness and accuracy. Enhanced by a Transformer-based Denoising AutoEncoder for fine-tuning, the final model achieves a Mean Average Precision (MAP@100) of 0.83 and a Mean Reciprocal Rank (MRR@100) of 0.92. These scores surpass those of both standalone lexical models such as BM25 and semantic BERT-like models.
☆ Realizing Scaling Laws in Recommender Systems: A Foundation-Expert Paradigm for Hyperscale Model Deployment
While scaling laws promise significant performance gains for recommender systems, efficiently deploying hyperscale models remains a major unsolved challenge. In contrast to fields where FMs are already widely adopted such as natural language processing and computer vision, progress in recommender systems is hindered by unique challenges including the need to learn from online streaming data under shifting data distributions, the need to adapt to different recommendation surfaces with a wide diversity in their downstream tasks and their input distributions, and stringent latency and computational constraints. To bridge this gap, we propose to leverage the Foundation-Expert Paradigm: a framework designed for the development and deployment of hyperscale recommendation FMs. In our approach, a central FM is trained on lifelong, cross-surface, multi-modal user data to learn generalizable knowledge. This knowledge is then efficiently transferred to various lightweight, surface-specific ``expert" models via target-aware embeddings, allowing them to adapt to local data distributions and optimization goals with minimal overhead. To meet our training, inference and development needs, we built HyperCast, a production-grade infrastructure system that re-engineers training, serving, logging and iteration to power this decoupled paradigm. Our approach is now deployed at Meta serving tens of billions of user requests daily, demonstrating online metric improvements over our previous one-stage production system while improving developer velocity and maintaining infrastructure efficiency. To the best of our knowledge, this work represents the first successful deployment of a Foundation-Expert paradigm at this scale, offering a proven, compute-efficient, and developer-friendly blueprint to realize the promise of scaling laws in recommender systems.
☆ A Multi-Agent System for Complex Reasoning in Radiology Visual Question Answering
Radiology visual question answering (RVQA) provides precise answers to questions about chest X-ray images, alleviating radiologists' workload. While recent methods based on multimodal large language models (MLLMs) and retrieval-augmented generation (RAG) have shown promising progress in RVQA, they still face challenges in factual accuracy, hallucinations, and cross-modal misalignment. We introduce a multi-agent system (MAS) designed to support complex reasoning in RVQA, with specialized agents for context understanding, multimodal reasoning, and answer validation. We evaluate our system on a challenging RVQA set curated via model disagreement filtering, comprising consistently hard cases across multiple MLLMs. Extensive experiments demonstrate the superiority and effectiveness of our system over strong MLLM baselines, with a case study illustrating its reliability and interpretability. This work highlights the potential of multi-agent approaches to support explainable and trustworthy clinical AI applications that require complex reasoning.
☆ Defending Against Knowledge Poisoning Attacks During Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach to boost the capabilities of large language models (LLMs) by incorporating external, up-to-date knowledge sources. However, this introduces a potential vulnerability to knowledge poisoning attacks, where attackers can compromise the knowledge source to mislead the generation model. One such attack is the PoisonedRAG in which the injected adversarial texts steer the model to generate an attacker-chosen response to a target question. In this work, we propose novel defense methods, FilterRAG and ML-FilterRAG, to mitigate the PoisonedRAG attack. First, we propose a new property to uncover distinct properties to differentiate between adversarial and clean texts in the knowledge data source. Next, we employ this property to filter out adversarial texts from clean ones in the design of our proposed approaches. Evaluation of these methods using benchmark datasets demonstrate their effectiveness, with performances close to those of the original RAG systems.
comment: Preprint for Submission
☆ Hubness Reduction with Dual Bank Sinkhorn Normalization for Cross-Modal Retrieval
The past decade has witnessed rapid advancements in cross-modal retrieval, with significant progress made in accurately measuring the similarity between cross-modal pairs. However, the persistent hubness problem, a phenomenon where a small number of targets frequently appear as nearest neighbors to numerous queries, continues to hinder the precision of similarity measurements. Despite several proposed methods to reduce hubness, their underlying mechanisms remain poorly understood. To bridge this gap, we analyze the widely-adopted Inverted Softmax approach and demonstrate its effectiveness in balancing target probabilities during retrieval. Building on these insights, we propose a probability-balancing framework for more effective hubness reduction. We contend that balancing target probabilities alone is inadequate and, therefore, extend the framework to balance both query and target probabilities by introducing Sinkhorn Normalization (SN). Notably, we extend SN to scenarios where the true query distribution is unknown, showing that current methods, which rely solely on a query bank to estimate target hubness, produce suboptimal results due to a significant distributional gap between the query bank and targets. To mitigate this issue, we introduce Dual Bank Sinkhorn Normalization (DBSN), incorporating a corresponding target bank alongside the query bank to narrow this distributional gap. Our comprehensive evaluation across various cross-modal retrieval tasks, including image-text retrieval, video-text retrieval, and audio-text retrieval, demonstrates consistent performance improvements, validating the effectiveness of both SN and DBSN. All codes are publicly available at https://github.com/ppanzx/DBSN.
comment: ACMMM 2025
☆ Decomposed Reasoning with Reinforcement Learning for Relevance Assessment in UGC Platforms
Retrieval-augmented generation (RAG) plays a critical role in user-generated content (UGC) platforms, but its effectiveness depends heavily on accurate relevance assessment of query-document pairs. Despite recent advances in applying large language models (LLMs) to relevance modeling, UGC platforms present unique challenges: 1) ambiguous user intent due to sparse user feedback in RAG scenarios, and 2) substantial noise introduced by informal and unstructured language. To address these issues, we propose the Reinforced Reasoning Model for Relevance Assessment (R3A), which introduces a decomposed reasoning framework over queries and candidate documents before scoring. R3A first leverages auxiliary high-ranked documents within the platform to infer latent query intent. It then performs verbatim fragment extraction to justify relevance decisions, thereby reducing errors caused by noisy UGC. Based on a reinforcement learning framework, R3A is optimized to mitigate distortions arising from ambiguous queries and unstructured content. Experimental results show that R3A significantly outperforms existing baseline methods in terms of relevance accuracy, across both offline benchmarks and online experiments.
☆ TreeRanker: Fast and Model-agnostic Ranking System for Code Suggestions in IDEs
Token-level code completion is one of the most critical features in modern Integrated Development Environments (IDEs). It assists developers by suggesting relevant identifiers and APIs during coding. While completions are typically derived from static analysis, their usefulness depends heavily on how they are ranked, as correct predictions buried deep in the list are rarely seen by users. Most current systems rely on hand-crafted heuristics or lightweight machine learning models trained on user logs, which can be further improved to capture context information and generalize across projects and coding styles. In this work, we propose a new scoring approach to ranking static completions using language models in a lightweight and model-agnostic way. Our method organizes all valid completions into a prefix tree and performs a single greedy decoding pass to collect token-level scores across the tree. This enables a precise token-aware ranking without needing beam search, prompt engineering, or model adaptations. The approach is fast, architecture-agnostic, and compatible with already deployed models for code completion. These findings highlight a practical and effective pathway for integrating language models into already existing tools within IDEs, and ultimately providing smarter and more responsive developer assistance.
☆ Dynamic Forgetting and Spatio-Temporal Periodic Interest Modeling for Local-Life Service Recommendation
In the context of the booming digital economy, recommendation systems, as a key link connecting users and numerous services, face challenges in modeling user behavior sequences on local-life service platforms, including the sparsity of long sequences and strong spatio-temporal dependence. Such challenges can be addressed by drawing an analogy to the forgetting process in human memory. This is because users' responses to recommended content follow the recency effect and the cyclicality of memory. By exploring this, this paper introduces the forgetting curve and proposes Spatio-Temporal periodic Interest Modeling (STIM) with long sequences for local-life service recommendation. STIM integrates three key components: a dynamic masking module based on the forgetting curve, which is used to extract both recent spatiotemporal features and periodic spatiotemporal features; a query-based mixture of experts (MoE) approach that can adaptively activate expert networks under different dynamic masks, enabling the collaborative modeling of time, location, and items; and a hierarchical multi-interest network unit, which captures multi-interest representations by modeling the hierarchical interactions between the shallow and deep semantics of users' recent behaviors. By introducing the STIM method, we conducted online A/B tests and achieved a 1.54\% improvement in gross transaction volume (GTV). In addition, extended offline experiments also showed improvements. STIM has been deployed in a large-scale local-life service recommendation system, serving hundreds of millions of daily active users in core application scenarios.
☆ Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking
Retrieval-augmented generation (RAG) is critical for reducing hallucinations and incorporating external knowledge into Large Language Models (LLMs). However, advanced RAG systems face a trade-off between performance and efficiency. Multi-round RAG approaches achieve strong reasoning but incur excessive LLM calls and token costs, while Graph RAG methods suffer from computationally expensive, error-prone graph construction and retrieval redundancy. To address these challenges, we propose T$^2$RAG, a novel framework that operates on a simple, graph-free knowledge base of atomic triplets. T$^2$RAG leverages an LLM to decompose questions into searchable triplets with placeholders, which it then iteratively resolves by retrieving evidence from the triplet database. Empirical results show that T$^2$RAG significantly outperforms state-of-the-art multi-round and Graph RAG methods, achieving an average performance gain of up to 11\% across six datasets while reducing retrieval costs by up to 45\%. Our code is available at https://github.com/rockcor/T2RAG
comment: 19 pages
☆ Graph Embedding in the Graph Fractional Fourier Transform Domain
Spectral graph embedding plays a critical role in graph representation learning by generating low-dimensional vector representations from graph spectral information. However, the embedding space of traditional spectral embedding methods often exhibit limited expressiveness, failing to exhaustively capture latent structural features across alternative transform domains. To address this issue, we use the graph fractional Fourier transform to extend the existing state-of-the-art generalized frequency filtering embedding (GEFFE) into fractional domains, giving birth to the generalized fractional filtering embedding (GEFRFE), which enhances embedding informativeness via the graph fractional domain. The GEFRFE leverages graph fractional domain filtering and a nonlinear composition of eigenvector components derived from a fractionalized graph Laplacian. To dynamically determine the fractional order, two parallel strategies are introduced: search-based optimization and a ResNet18-based adaptive learning. Extensive experiments on six benchmark datasets demonstrate that the GEFRFE captures richer structural features and significantly enhance classification performance. Notably, the proposed method retains computational complexity comparable to GEFFE approaches.
☆ Uni-Layout: Integrating Human Feedback in Unified Layout Generation and Evaluation ACM MM 2025
Layout generation plays a crucial role in enhancing both user experience and design efficiency. However, current approaches suffer from task-specific generation capabilities and perceptually misaligned evaluation metrics, leading to limited applicability and ineffective measurement. In this paper, we propose \textit{Uni-Layout}, a novel framework that achieves unified generation, human-mimicking evaluation and alignment between the two. For universal generation, we incorporate various layout tasks into a single taxonomy and develop a unified generator that handles background or element contents constrained tasks via natural language prompts. To introduce human feedback for the effective evaluation of layouts, we build \textit{Layout-HF100k}, the first large-scale human feedback dataset with 100,000 expertly annotated layouts. Based on \textit{Layout-HF100k}, we introduce a human-mimicking evaluator that integrates visual and geometric information, employing a Chain-of-Thought mechanism to conduct qualitative assessments alongside a confidence estimation module to yield quantitative measurements. For better alignment between the generator and the evaluator, we integrate them into a cohesive system by adopting Dynamic-Margin Preference Optimization (DMPO), which dynamically adjusts margins based on preference strength to better align with human judgments. Extensive experiments show that \textit{Uni-Layout} significantly outperforms both task-specific and general-purpose methods. Our code is publicly available at https://github.com/JD-GenX/Uni-Layout.
comment: Accepted to ACM MM 2025
☆ Agentic Personalized Fashion Recommendation in the Age of Generative AI: Challenges, Opportunities, and Evaluation
Fashion recommender systems (FaRS) face distinct challenges due to rapid trend shifts, nuanced user preferences, intricate item-item compatibility, and the complex interplay among consumers, brands, and influencers. Traditional recommendation approaches, largely static and retrieval-focused, struggle to effectively capture these dynamic elements, leading to decreased user satisfaction and elevated return rates. This paper synthesizes both academic and industrial viewpoints to map the distinctive output space and stakeholder ecosystem of modern FaRS, identifying the complex interplay among users, brands, platforms, and influencers, and highlighting the unique data and modeling challenges that arise. We outline a research agenda for industrial FaRS, centered on five representative scenarios spanning static queries, outfit composition, and multi-turn dialogue, and argue that mixed-modality refinement-the ability to combine image-based references (anchors) with nuanced textual constraints-is a particularly critical task for real-world deployment. To this end, we propose an Agentic Mixed-Modality Refinement (AMMR) pipeline, which fuses multimodal encoders with agentic LLM planners and dynamic retrieval, bridging the gap between expressive user intent and fast-changing fashion inventories. Our work shows that moving beyond static retrieval toward adaptive, generative, and stakeholder-aware systems is essential to satisfy the evolving expectations of fashion consumers and brands.
☆ Learning Partially-Decorrelated Common Spaces for Ad-hoc Video Search
Ad-hoc Video Search (AVS) involves using a textual query to search for multiple relevant videos in a large collection of unlabeled short videos. The main challenge of AVS is the visual diversity of relevant videos. A simple query such as "Find shots of a man and a woman dancing together indoors" can span a multitude of environments, from brightly lit halls and shadowy bars to dance scenes in black-and-white animations. It is therefore essential to retrieve relevant videos as comprehensively as possible. Current solutions for the AVS task primarily fuse multiple features into one or more common spaces, yet overlook the need for diverse spaces. To fully exploit the expressive capability of individual features, we propose LPD, short for Learning Partially Decorrelated common spaces. LPD incorporates two key innovations: feature-specific common space construction and the de-correlation loss. Specifically, LPD learns a separate common space for each video and text feature, and employs de-correlation loss to diversify the ordering of negative samples across different spaces. To enhance the consistency of multi-space convergence, we designed an entropy-based fair multi-space triplet ranking loss. Extensive experiments on the TRECVID AVS benchmarks (2016-2023) justify the effectiveness of LPD. Moreover, diversity visualizations of LPD's spaces highlight its ability to enhance result diversity.
comment: Accepted by ACMMM2025
☆ Understanding User Preferences for Interaction Styles in Conversational Recommender Systems: The Predictive Role of System Qualities, User Experience, and Traits
Conversational Recommender Systems (CRSs) deliver personalised recommendations through multi-turn natural language dialogue and increasingly support both task-oriented and exploratory interactions. Yet, the factors shaping user interaction preferences remain underexplored. In this within-subjects study (\(N = 139\)), participants experienced two scripted CRS dialogues, rated their experiences, and indicated the importance of eight system qualities. Logistic regression revealed that preference for the exploratory interaction was predicted by enjoyment, usefulness, novelty, and conversational quality. Unexpectedly, perceived effectiveness was also associated with exploratory preference. Clustering uncovered five latent user profiles with distinct dialogue style preferences. Moderation analyses indicated that age, gender, and control preference significantly influenced these choices. These findings integrate affective, cognitive, and trait-level predictors into CRS user modelling and inform autonomy-sensitive, value-adaptive dialogue design. The proposed predictive and adaptive framework applies broadly to conversational AI systems seeking to align dynamically with evolving user needs.
comment: Accepted at OZCHI 2025. 21 pages, 9 figures, 8 tables
☆ Research Knowledge Graphs in NFDI4DataScience: Key Activities, Achievements, and Future Directions
As research in Artificial Intelligence and Data Science continues to grow in volume and complexity, it becomes increasingly difficult to ensure transparency, reproducibility, and discoverability. To address these challenges, as research artifacts should be understandable and usable by machines, the NFDI4DataScience consortium is developing and providing Research Knowledge Graphs (RKGs). Building upon earlier works, this paper presents recent progress in creating semantically rich RKGs using standardized ontologies, shared vocabularies, and automated Information Extraction techniques. Key achievements include the development of the NFDI4DS ontology, metadata standards, tools, and services designed to support the FAIR principles, as well as community-led projects and various implementations of RKGs. Together, these efforts aim to capture and connect the complex relationships between datasets, models, software, and scientific publications.
☆ Simple Methods Defend RAG Systems Well Against Real-World Attacks
Ensuring safety and in-domain responses for Retrieval-Augmented Generation (RAG) systems is paramount in safety-critical applications, yet remains a significant challenge. To address this, we evaluate four methodologies for Out-Of-Domain (OOD) query detection: GPT-4o, regression-based, Principal Component Analysis (PCA)-based, and Neural Collapse (NC), to ensure the RAG system only responds to queries confined to the system's knowledge base. Specifically, our evaluation explores two novel dimensionality reduction and feature separation strategies: \textit{PCA}, where top components are selected using explained variance or OOD separability, and an adaptation of \textit{Neural Collapse Feature Separation}. We validate our approach on standard datasets (StackExchange and MSMARCO) and real-world applications (Substance Use and COVID-19), including tests against LLM-simulated and actual attacks on a COVID-19 vaccine chatbot. Through human and LLM-based evaluations of response correctness and relevance, we confirm that an external OOD detector is crucial for maintaining response relevance.
☆ Voronoi Diagram Encoded Hashing
The goal of learning to hash (L2H) is to derive data-dependent hash functions from a given data distribution in order to map data from the input space to a binary coding space. Despite the success of L2H, two observations have cast doubt on the source of the power of L2H, i.e., learning. First, a recent study shows that even using a version of locality sensitive hashing functions without learning achieves binary representations that have comparable accuracy as those of L2H, but with less time cost. Second, existing L2H methods are constrained to three types of hash functions: thresholding, hyperspheres, and hyperplanes only. In this paper, we unveil the potential of Voronoi diagrams in hashing. Voronoi diagram is a suitable candidate because of its three properties. This discovery has led us to propose a simple and efficient no-learning binary hashing method, called Voronoi Diagram Encoded Hashing (VDeH), which constructs a set of hash functions through a data-dependent similarity measure and produces independent binary bits through encoded hashing. We demonstrate through experiments on several benchmark datasets that VDeH achieves superior performance and lower computational cost compared to existing state-of-the-art methods under the same bit length.
☆ I2CR: Intra- and Inter-modal Collaborative Reflections for Multimodal Entity Linking
Multimodal entity linking plays a crucial role in a wide range of applications. Recent advances in large language model-based methods have become the dominant paradigm for this task, effectively leveraging both textual and visual modalities to enhance performance. Despite their success, these methods still face two challenges, including unnecessary incorporation of image data in certain scenarios and the reliance only on a one-time extraction of visual features, which can undermine their effectiveness and accuracy. To address these challenges, we propose a novel LLM-based framework for the multimodal entity linking task, called Intra- and Inter-modal Collaborative Reflections. This framework prioritizes leveraging text information to address the task. When text alone is insufficient to link the correct entity through intra- and inter-modality evaluations, it employs a multi-round iterative strategy that integrates key visual clues from various aspects of the image to support reasoning and enhance matching accuracy. Extensive experiments on three widely used public datasets demonstrate that our framework consistently outperforms current state-of-the-art methods in the task, achieving improvements of 3.2%, 5.1%, and 1.6%, respectively. Our code is available at https://github.com/ziyan-xiaoyu/I2CR/.
comment: 10 pages, 6 figures, accepted by ACMMM 2025
☆ From Generation to Consumption: Personalized List Value Estimation for Re-ranking
Re-ranking is critical in recommender systems for optimizing the order of recommendation lists, thus improving user satisfaction and platform revenue. Most existing methods follow a generator-evaluator paradigm, where the evaluator estimates the overall value of each candidate list. However, they often ignore the fact that users may exit before consuming the full list, leading to a mismatch between estimated generation value and actual consumption value. To bridge this gap, we propose CAVE, a personalized Consumption-Aware list Value Estimation framework. CAVE formulates the list value as the expectation over sub-list values, weighted by user-specific exit probabilities at each position. The exit probability is decomposed into an interest-driven component and a stochastic component, the latter modeled via a Weibull distribution to capture random external factors such as fatigue. By jointly modeling sub-list values and user exit behavior, CAVE yields a more faithful estimate of actual list consumption value. We further contribute three large-scale real-world list-wise benchmarks from the Kuaishou platform, varying in size and user activity patterns. Extensive experiments on these benchmarks, two Amazon datasets, and online A/B testing on Kuaishou show that CAVE consistently outperforms strong baselines, highlighting the benefit of explicitly modeling user exits in re-ranking.
☆ FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
☆ Evaluating User Experience in Conversational Recommender Systems: A Systematic Review Across Classical and LLM-Powered Approaches
Conversational Recommender Systems (CRSs) are receiving growing research attention across domains, yet their user experience (UX) evaluation remains limited. Existing reviews largely overlook empirical UX studies, particularly in adaptive and large language model (LLM)-based CRSs. To address this gap, we conducted a systematic review following PRISMA guidelines, synthesising 23 empirical studies published between 2017 and 2025. We analysed how UX has been conceptualised, measured, and shaped by domain, adaptivity, and LLM. Our findings reveal persistent limitations: post hoc surveys dominate, turn-level affective UX constructs are rarely assessed, and adaptive behaviours are seldom linked to UX outcomes. LLM-based CRSs introduce further challenges, including epistemic opacity and verbosity, yet evaluations infrequently address these issues. We contribute a structured synthesis of UX metrics, a comparative analysis of adaptive and nonadaptive systems, and a forward-looking agenda for LLM-aware UX evaluation. These findings support the development of more transparent, engaging, and user-centred CRS evaluation practices.
comment: Accepted at OZCHI 2025. 23 pages, 1 figure, 5 tables
☆ Why Generate When You Can Transform? Unleashing Generative Attention for Dynamic Recommendation
Sequential Recommendation (SR) focuses on personalizing user experiences by predicting future preferences based on historical interactions. Transformer models, with their attention mechanisms, have become the dominant architecture in SR tasks due to their ability to capture dependencies in user behavior sequences. However, traditional attention mechanisms, where attention weights are computed through query-key transformations, are inherently linear and deterministic. This fixed approach limits their ability to account for the dynamic and non-linear nature of user preferences, leading to challenges in capturing evolving interests and subtle behavioral patterns. Given that generative models excel at capturing non-linearity and probabilistic variability, we argue that generating attention distributions offers a more flexible and expressive alternative compared to traditional attention mechanisms. To support this claim, we present a theoretical proof demonstrating that generative attention mechanisms offer greater expressiveness and stochasticity than traditional deterministic approaches. Building upon this theoretical foundation, we introduce two generative attention models for SR, each grounded in the principles of Variational Autoencoders (VAE) and Diffusion Models (DMs), respectively. These models are designed specifically to generate adaptive attention distributions that better align with variable user preferences. Extensive experiments on real-world datasets show our models significantly outperform state-of-the-art in both accuracy and diversity.
comment: Accepted at ACMMM 2025
☆ Evaluating Position Bias in Large Language Model Recommendations
Large Language Models (LLMs) are being increasingly explored as general-purpose tools for recommendation tasks, enabling zero-shot and instruction-following capabilities without the need for task-specific training. While the research community is enthusiastically embracing LLMs, there are important caveats to directly adapting them for recommendation tasks. In this paper, we show that LLM-based recommendation models suffer from position bias, where the order of candidate items in a prompt can disproportionately influence the recommendations produced by LLMs. First, we analyse the position bias of LLM-based recommendations on real-world datasets, where results uncover systemic biases of LLMs with high sensitivity to input orders. Furthermore, we introduce a new prompting strategy to mitigate the position bias of LLM recommendation models called Ranking via Iterative SElection (RISE). We compare our proposed method against various baselines on key benchmark datasets. Experiment results show that our method reduces sensitivity to input ordering and improves stability without requiring model fine-tuning or post-processing.
☆ Controllable and Stealthy Shilling Attacks via Dispersive Latent Diffusion
Recommender systems (RSs) are now fundamental to various online platforms, but their dependence on user-contributed data leaves them vulnerable to shilling attacks that can manipulate item rankings by injecting fake users. Although widely studied, most existing attack models fail to meet two critical objectives simultaneously: achieving strong adversarial promotion of target items while maintaining realistic behavior to evade detection. As a result, the true severity of shilling threats that manage to reconcile the two objectives remains underappreciated. To expose this overlooked vulnerability, we present DLDA, a diffusion-based attack framework that can generate highly effective yet indistinguishable fake users by enabling fine-grained control over target promotion. Specifically, DLDA operates in a pre-aligned collaborative embedding space, where it employs a conditional latent diffusion process to iteratively synthesize fake user profiles with precise target item control. To evade detection, DLDA introduces a dispersive regularization mechanism that promotes variability and realism in generated behavioral patterns. Extensive experiments on three real-world datasets and five popular RS models demonstrate that, compared to prior attacks, DLDA consistently achieves stronger item promotion while remaining harder to detect. These results highlight that modern RSs are more vulnerable than previously recognized, underscoring the urgent need for more robust defenses.
☆ Breaking the Top-$K$ Barrier: Advancing Top-$K$ Ranking Metrics Optimization in Recommender Systems KDD 2025
In the realm of recommender systems (RS), Top-$K$ ranking metrics such as NDCG@$K$ are the gold standard for evaluating recommendation performance. However, during the training of recommendation models, optimizing NDCG@$K$ poses significant challenges due to its inherent discontinuous nature and the intricate Top-$K$ truncation. Recent efforts to optimize NDCG@$K$ have either overlooked the Top-$K$ truncation or suffered from high computational costs and training instability. To overcome these limitations, we propose SoftmaxLoss@$K$ (SL@$K$), a novel recommendation loss tailored for NDCG@$K$ optimization. Specifically, we integrate the quantile technique to handle Top-$K$ truncation and derive a smooth upper bound for optimizing NDCG@$K$ to address discontinuity. The resulting SL@$K$ loss has several desirable properties, including theoretical guarantees, ease of implementation, computational efficiency, gradient stability, and noise robustness. Extensive experiments on four real-world datasets and three recommendation backbones demonstrate that SL@$K$ outperforms existing losses with a notable average improvement of 6.03%. The code is available at https://github.com/Tiny-Snow/IR-Benchmark.
comment: Accepted by KDD 2025
☆ LMAR: Language Model Augmented Retriever for Domain-specific Knowledge Indexing
Retrieval Augmented Generation (RAG) systems often struggle with domain-specific knowledge due to performance deterioration of pre-trained embeddings and prohibitive computational costs of large language model (LLM)-based retrievers. While fine-tuning data augmentation embedding models offers a promising direction, its effectiveness is limited by the need for high-quality training data and reliable chunking strategies that preserve contextual integrity. We propose LMAR (Language Model Augmented Retriever), a model-agnostic framework that addresses these challenges by combining LLM-guided data synthesis with contrastive embedding adaptation and efficient text clustering. LMAR consists of a two-stage pipeline: (1) Triplet sampling and synthetic data augmentation, where LLMs act as both labeler and validator to ensure high-fidelity supervision throughout the pipeline. Experimental results across multiple domain-specific benchmark datasets demonstrate that LMAR outperforms multiple baseline models, while maintaining moderate hardware requirements and low latency. Its model-agnostic nature further enables seamless integration with emerging RAG architectures and text embedding models, ensuring continual improvements without redesigning the pipeline. These results highlight LMAR as a practical and cost-effective solution for scalable domain-specific adaptation.
☆ Fine-Tuning Vision-Language Models for Markdown Conversion of Financial Tables in Malaysian Audited Financial Reports
Accurately extracting and representing the structure of tabular data from financial documents remains a critical challenge in document understanding, particularly for regulatory and analytical use cases. This study addresses the complexity of converting financial tables from Malaysian audited financial reports into Markdown format, a task complicated by rotated layouts, multi-level headers, and implicit structural cues. We propose a fine-tuned vision-language model (VLM), based on Qwen2.5-VL-7B, optimized for high-fidelity Markdown generation from document images. Our approach includes a curated dataset of 2,152 image-text pairs with augmentations and a supervised fine-tuning strategy using LoRA. To assess performance, we evaluated our model on 100 out-of-sample tables using a dual framework: a criteria-based LLM-as-a-judge for fine-grained accuracy and our novel Markdown Tree-Edit-Distance-based Similarity (TEDS) metric for holistic structural fidelity. Our model achieves a 92.20% overall accuracy on the criteria-based assessment and a 96.53% Markdown TEDS score. This performance significantly surpasses its Qwen2.5-VL-7B base model, larger-scale VLMs, and specialized reasoning-enabled models. Compared to these self-hosted alternatives, it also significantly reduces inference time. Furthermore, its accuracy exceeds that of widely used proprietary models such as OpenAI's GPT-4o and Gemini 2.5 Flash. These results demonstrate that domain-specific fine-tuning provides an effective and efficient method to bridge the gap between unstructured financial documents and downstream automation, rivalling much larger and more general models without their computational overhead.
comment: 28 pages, 14 figures, 5 tables. Evaluation code (LLM-as-a-judge and Markdown TEDS) is available at https://github.com/jinkhye/MyFinMarkdown. The development dataset and evaluation benchmark are available on Hugging Face at https://huggingface.co/datasets/jinkhye/MyFinMarkdown-sample and https://huggingface.co/datasets/jinkhye/MyFinMarkdown-bench respectively
♻ ☆ DRC: Enhancing Personalized Image Generation via Disentangled Representation Composition ACM MM'25
Personalized image generation has emerged as a promising direction in multimodal content creation. It aims to synthesize images tailored to individual style preferences (e.g., color schemes, character appearances, layout) and semantic intentions (e.g., emotion, action, scene contexts) by leveraging user-interacted history images and multimodal instructions. Despite notable progress, existing methods -- whether based on diffusion models, large language models, or Large Multimodal Models (LMMs) -- struggle to accurately capture and fuse user style preferences and semantic intentions. In particular, the state-of-the-art LMM-based method suffers from the entanglement of visual features, leading to Guidance Collapse, where the generated images fail to preserve user-preferred styles or reflect the specified semantics. To address these limitations, we introduce DRC, a novel personalized image generation framework that enhances LMMs through Disentangled Representation Composition. DRC explicitly extracts user style preferences and semantic intentions from history images and the reference image, respectively, to form user-specific latent instructions that guide image generation within LMMs. Specifically, it involves two critical learning stages: 1) Disentanglement learning, which employs a dual-tower disentangler to explicitly separate style and semantic features, optimized via a reconstruction-driven paradigm with difficulty-aware importance sampling; and 2) Personalized modeling, which applies semantic-preserving augmentations to effectively adapt the disentangled representations for robust personalized generation. Extensive experiments on two benchmarks demonstrate that DRC shows competitive performance while effectively mitigating the guidance collapse issue, underscoring the importance of disentangled representation learning for controllable and effective personalized image generation.
comment: Accepted for publication in ACM MM'25
♻ ☆ It's High Time: A Survey of Temporal Question Answering
Time plays a critical role in how information is generated, retrieved, and interpreted. In this survey, we provide a comprehensive overview of Temporal Question Answering (TQA), a research area that focuses on answering questions involving temporal constraints or context. As the amount of time-stamped content from sources like news articles, web archives, and knowledge bases increases, systems must address challenges such as detecting temporal intent, normalizing time expressions, ordering events, and reasoning over evolving or ambiguous facts. We focus on recent advances in TQA enabled by neural architectures, especially transformer-based models and Large Language Models (LLMs), highlighting progress in temporal language modeling, retrieval-augmented generation (RAG), and temporal reasoning. We also discuss benchmark datasets and evaluation strategies designed to test temporal robustness, recency awareness, and generalization.
♻ ☆ "Beyond the past": Leveraging Audio and Human Memory for Sequential Music Recommendation
On music streaming services, listening sessions are often composed of a balance of familiar and new tracks. Recently, sequential recommender systems have adopted cognitive-informed approaches, such as Adaptive Control of Thought-Rational (ACT-R), to successfully improve the prediction of the most relevant tracks for the next user session. However, one limitation of using a model inspired by human memory (or the past), is that it struggles to recommend new tracks that users have not previously listened to. To bridge this gap, here we propose a model that leverages audio information to predict in advance the ACT-R-like activation of new tracks and incorporates them into the recommendation scoring process. We demonstrate the empirical effectiveness of the proposed model using proprietary data, which we publicly release along with the model's source code to foster future research in this field.
Robotics 32
☆ ROVER: Recursive Reasoning Over Videos with Vision-Language Models for Embodied Tasks
Vision-language models (VLMs) have exhibited impressive capabilities across diverse image understanding tasks, but still struggle in settings that require reasoning over extended sequences of camera frames from a video. This limits their utility in embodied settings, which require reasoning over long frame sequences from a continuous stream of visual input at each moment of a task attempt. To address this limitation, we propose ROVER (Reasoning Over VidEo Recursively), a framework that enables the model to recursively decompose long-horizon video trajectories into segments corresponding to shorter subtasks within the trajectory. In doing so, ROVER facilitates more focused and accurate reasoning over temporally localized frame sequences without losing global context. We evaluate ROVER, implemented using an in-context learning approach, on diverse OpenX Embodiment videos and on a new dataset derived from RoboCasa that consists of 543 videos showing both expert and perturbed non-expert trajectories across 27 robotic manipulation tasks. ROVER outperforms strong baselines across three video reasoning tasks: task progress estimation, frame-level natural language reasoning, and video question answering. We observe that, by reducing the number of frames the model reasons over at each timestep, ROVER mitigates hallucinations, especially during unexpected or non-optimal moments of a trajectory. In addition, by enabling the implementation of a subtask-specific sliding context window, ROVER's time complexity scales linearly with video length, an asymptotic improvement over baselines. Demos, code, and data available at: https://rover-vlm.github.io
☆ CVD-SfM: A Cross-View Deep Front-end Structure-from-Motion System for Sparse Localization in Multi-Altitude Scenes
We present a novel multi-altitude camera pose estimation system, addressing the challenges of robust and accurate localization across varied altitudes when only considering sparse image input. The system effectively handles diverse environmental conditions and viewpoint variations by integrating the cross-view transformer, deep features, and structure-from-motion into a unified framework. To benchmark our method and foster further research, we introduce two newly collected datasets specifically tailored for multi-altitude camera pose estimation; datasets of this nature remain rare in the current literature. The proposed framework has been validated through extensive comparative analyses on these datasets, demonstrating that our system achieves superior performance in both accuracy and robustness for multi-altitude sparse pose estimation tasks compared to existing solutions, making it well suited for real-world robotic applications such as aerial navigation, search and rescue, and automated inspection.
☆ Beyond Simulation: Benchmarking World Models for Planning and Causality in Autonomous Driving ICRA 2025
World models have become increasingly popular in acting as learned traffic simulators. Recent work has explored replacing traditional traffic simulators with world models for policy training. In this work, we explore the robustness of existing metrics to evaluate world models as traffic simulators to see if the same metrics are suitable for evaluating a world model as a pseudo-environment for policy training. Specifically, we analyze the metametric employed by the Waymo Open Sim-Agents Challenge (WOSAC) and compare world model predictions on standard scenarios where the agents are fully or partially controlled by the world model (partial replay). Furthermore, since we are interested in evaluating the ego action-conditioned world model, we extend the standard WOSAC evaluation domain to include agents that are causal to the ego vehicle. Our evaluations reveal a significant number of scenarios where top-ranking models perform well under no perturbation but fail when the ego agent is forced to replay the original trajectory. To address these cases, we propose new metrics to highlight the sensitivity of world models to uncontrollable objects and evaluate the performance of world models as pseudo-environments for policy training and analyze some state-of-the-art world models under these new metrics.
comment: Accepted ICRA 2025
☆ L3M+P: Lifelong Planning with Large Language Models
By combining classical planning methods with large language models (LLMs), recent research such as LLM+P has enabled agents to plan for general tasks given in natural language. However, scaling these methods to general-purpose service robots remains challenging: (1) classical planning algorithms generally require a detailed and consistent specification of the environment, which is not always readily available; and (2) existing frameworks mainly focus on isolated planning tasks, whereas robots are often meant to serve in long-term continuous deployments, and therefore must maintain a dynamic memory of the environment which can be updated with multi-modal inputs and extracted as planning knowledge for future tasks. To address these two issues, this paper introduces L3M+P (Lifelong LLM+P), a framework that uses an external knowledge graph as a representation of the world state. The graph can be updated from multiple sources of information, including sensory input and natural language interactions with humans. L3M+P enforces rules for the expected format of the absolute world state graph to maintain consistency between graph updates. At planning time, given a natural language description of a task, L3M+P retrieves context from the knowledge graph and generates a problem definition for classical planners. Evaluated on household robot simulators and on a real-world service robot, L3M+P achieves significant improvement over baseline methods both on accurately registering natural language state changes and on correctly generating plans, thanks to the knowledge graph retrieval and verification.
☆ MUTE-DSS: A Digital-Twin-Based Decision Support System for Minimizing Underwater Radiated Noise in Ship Voyage Planning
We present a novel MUTE-DSS, a digital-twin-based decision support system for minimizing underwater radiated noise (URN) during ship voyage planning. It is a ROS2-centric framework that integrates state-of-the-art acoustic models combining a semi-empirical reference spectrum for near-field modeling with 3D ray tracing for propagation losses for far-field modeling, offering real-time computation of the ship noise signature, alongside a data-driven Southern resident killer whale distribution model. The proposed DSS performs a two-stage optimization pipeline: Batch Informed Trees for collision-free ship routing and a genetic algorithm for adaptive ship speed profiling under voyage constraints that minimizes cumulative URN exposure to marine mammals. The effectiveness of MUTE-DSS is demonstrated through case studies of ships operating between the Strait of Georgia and the Strait of Juan de Fuca, comparing optimized voyages against baseline trajectories derived from automatic identification system data. Results show substantial reductions in noise exposure level, up to 7.14 dB, corresponding to approximately an 80.68% reduction in a simplified scenario, and an average 4.90 dB reduction, corresponding to approximately a 67.6% reduction in a more realistic dynamic setting. These results illustrate the adaptability and practical utility of the proposed decision support system.
☆ A Simple Algebraic Solution for Estimating the Pose of a Camera from Planar Point Features IROS 2025
This paper presents a simple algebraic method to estimate the pose of a camera relative to a planar target from $n \geq 4$ reference points with known coordinates in the target frame and their corresponding bearing measurements in the camera frame. The proposed approach follows a hierarchical structure; first, the unit vector normal to the target plane is determined, followed by the camera's position vector, its distance to the target plane, and finally, the full orientation. To improve the method's robustness to measurement noise, an averaging methodology is introduced to refine the estimation of the target's normal direction. The accuracy and robustness of the approach are validated through extensive experiments.
comment: 10 pages, 6 figures. To appear in IEEE/RSJ IROS 2025
☆ Frequency Point Game Environment for UAVs via Expert Knowledge and Large Language Model
Unmanned Aerial Vehicles (UAVs) have made significant advancements in communication stability and security through techniques such as frequency hopping, signal spreading, and adaptive interference suppression. However, challenges remain in modeling spectrum competition, integrating expert knowledge, and predicting opponent behavior. To address these issues, we propose UAV-FPG (Unmanned Aerial Vehicle - Frequency Point Game), a game-theoretic environment model that simulates the dynamic interaction between interference and anti-interference strategies of opponent and ally UAVs in communication frequency bands. The model incorporates a prior expert knowledge base to optimize frequency selection and employs large language models for path planning, simulating a "strong adversary". Experimental results highlight the effectiveness of integrating the expert knowledge base and the large language model, with the latter significantly improving path planning in dynamic scenarios through iterative interactions, outperforming fixed-path strategies. UAV-FPG provides a robust platform for advancing anti-jamming strategies and intelligent decision-making in UAV communication systems.
☆ Exploring environment exploitation for self-reconfiguration in modular robotics
Modular robotics research has long been preoccupied with perfecting the modules themselves -- their actuation methods, connectors, controls, communication, and fabrication. This inward focus results, in part, from the complexity of the task and largely confines modular robots to sterile laboratory settings. The latest generation of truss modular robots, such as the Variable Topology Truss and the Truss Link, have begun to focus outward and reveal a key insight: the environment is not just a backdrop; it is a tool. In this work, we shift the paradigm from building better robots to building better robot environment interactions for modular truss robots. We study how modular robots can effectively exploit their surroundings to achieve faster locomotion, adaptive self-reconfiguration, and complex three-dimensional assembly from simple two-dimensional robot assemblies. By using environment features -- ledges, gaps, and slopes -- we show how the environment can extend the robots' capabilities. Nature has long mastered this principle: organisms not only adapt, but exploit their environments to their advantage. Robots must learn to do the same. This study is a step towards modular robotic systems that transcend their limitations by exploiting environmental features.
☆ Unraveling the Connection: How Cognitive Workload Shapes Intent Recognition in Robot-Assisted Surgery
Robot-assisted surgery has revolutionized the healthcare industry by providing surgeons with greater precision, reducing invasiveness, and improving patient outcomes. However, the success of these surgeries depends heavily on the robotic system ability to accurately interpret the intentions of the surgical trainee or even surgeons. One critical factor impacting intent recognition is the cognitive workload experienced during the procedure. In our recent research project, we are building an intelligent adaptive system to monitor cognitive workload and improve learning outcomes in robot-assisted surgery. The project will focus on achieving a semantic understanding of surgeon intents and monitoring their mental state through an intelligent multi-modal assistive framework. This system will utilize brain activity, heart rate, muscle activity, and eye tracking to enhance intent recognition, even in mentally demanding situations. By improving the robotic system ability to interpret the surgeons intentions, we can further enhance the benefits of robot-assisted surgery and improve surgery outcomes.
☆ Exploring Stiffness Gradient Effects in Magnetically Induced Metamorphic Materials via Continuum Simulation and Validation IROS 2025
Magnetic soft continuum robots are capable of bending with remote control in confined space environments, and they have been applied in various bioengineering contexts. As one type of ferromagnetic soft continuums, the Magnetically Induced Metamorphic Materials (MIMMs)-based continuum (MC) exhibits similar bending behaviors. Based on the characteristics of its base material, MC is flexible in modifying unit stiffness and convenient in molding fabrication. However, recent studies on magnetic continuum robots have primarily focused on one or two design parameters, limiting the development of a comprehensive magnetic continuum bending model. In this work, we constructed graded-stiffness MCs (GMCs) and developed a numerical model for GMCs' bending performance, incorporating four key parameters that determine their performance. The simulated bending results were validated with real bending experiments in four different categories: varying magnetic field, cross-section, unit stiffness, and unit length. The graded-stiffness design strategy applied to GMCs prevents sharp bending at the fixed end and results in a more circular curvature. We also trained an expansion model for GMCs' bending performance that is highly efficient and accurate compared to the simulation process. An extensive library of bending prediction for GMCs was built using the trained model.
comment: Accepted to IROS 2025
☆ Learning to Perform Low-Contact Autonomous Nasotracheal Intubation by Recurrent Action-Confidence Chunking with Transformer IROS 2025
Nasotracheal intubation (NTI) is critical for establishing artificial airways in clinical anesthesia and critical care. Current manual methods face significant challenges, including cross-infection, especially during respiratory infection care, and insufficient control of endoluminal contact forces, increasing the risk of mucosal injuries. While existing studies have focused on automated endoscopic insertion, the automation of NTI remains unexplored despite its unique challenges: Nasotracheal tubes exhibit greater diameter and rigidity than standard endoscopes, substantially increasing insertion complexity and patient risks. We propose a novel autonomous NTI system with two key components to address these challenges. First, an autonomous NTI system is developed, incorporating a prosthesis embedded with force sensors, allowing for safety assessment and data filtering. Then, the Recurrent Action-Confidence Chunking with Transformer (RACCT) model is developed to handle complex tube-tissue interactions and partial visual observations. Experimental results demonstrate that the RACCT model outperforms the ACT model in all aspects and achieves a 66% reduction in average peak insertion force compared to manual operations while maintaining equivalent success rates. This validates the system's potential for reducing infection risks and improving procedural safety.
comment: Accepted to IROS 2025
☆ DiffSemanticFusion: Semantic Raster BEV Fusion for Autonomous Driving via Online HD Map Diffusion
Autonomous driving requires accurate scene understanding, including road geometry, traffic agents, and their semantic relationships. In online HD map generation scenarios, raster-based representations are well-suited to vision models but lack geometric precision, while graph-based representations retain structural detail but become unstable without precise maps. To harness the complementary strengths of both, we propose DiffSemanticFusion -- a fusion framework for multimodal trajectory prediction and planning. Our approach reasons over a semantic raster-fused BEV space, enhanced by a map diffusion module that improves both the stability and expressiveness of online HD map representations. We validate our framework on two downstream tasks: trajectory prediction and planning-oriented end-to-end autonomous driving. Experiments on real-world autonomous driving benchmarks, nuScenes and NAVSIM, demonstrate improved performance over several state-of-the-art methods. For the prediction task on nuScenes, we integrate DiffSemanticFusion with the online HD map informed QCNet, achieving a 5.1\% performance improvement. For end-to-end autonomous driving in NAVSIM, DiffSemanticFusion achieves state-of-the-art results, with a 15\% performance gain in NavHard scenarios. In addition, extensive ablation and sensitivity studies show that our map diffusion module can be seamlessly integrated into other vector-based approaches to enhance performance. All artifacts are available at https://github.com/SunZhigang7/DiffSemanticFusion.
☆ Set the Stage: Enabling Storytelling with Multiple Robots through Roleplaying Metaphors
Gestures are an expressive input modality for controlling multiple robots, but their use is often limited by rigid mappings and recognition constraints. To move beyond these limitations, we propose roleplaying metaphors as a scaffold for designing richer interactions. By introducing three roles: Director, Puppeteer, and Wizard, we demonstrate how narrative framing can guide the creation of diverse gesture sets and interaction styles. These roles enable a variety of scenarios, showing how roleplay can unlock new possibilities for multi-robot systems. Our approach emphasizes creativity, expressiveness, and intuitiveness as key elements for future human-robot interaction design.
comment: 3 pages, 2 figures, UIST Poster, adjunct proceedings
☆ OpenMap: Instruction Grounding via Open-Vocabulary Visual-Language Mapping ACM MM '25
Grounding natural language instructions to visual observations is fundamental for embodied agents operating in open-world environments. Recent advances in visual-language mapping have enabled generalizable semantic representations by leveraging vision-language models (VLMs). However, these methods often fall short in aligning free-form language commands with specific scene instances, due to limitations in both instance-level semantic consistency and instruction interpretation. We present OpenMap, a zero-shot open-vocabulary visual-language map designed for accurate instruction grounding in navigation tasks. To address semantic inconsistencies across views, we introduce a Structural-Semantic Consensus constraint that jointly considers global geometric structure and vision-language similarity to guide robust 3D instance-level aggregation. To improve instruction interpretation, we propose an LLM-assisted Instruction-to-Instance Grounding module that enables fine-grained instance selection by incorporating spatial context and expressive target descriptions. We evaluate OpenMap on ScanNet200 and Matterport3D, covering both semantic mapping and instruction-to-target retrieval tasks. Experimental results show that OpenMap outperforms state-of-the-art baselines in zero-shot settings, demonstrating the effectiveness of our method in bridging free-form language and 3D perception for embodied navigation.
comment: ACM MM '25
☆ Towards Zero-Shot Terrain Traversability Estimation: Challenges and Opportunities
Terrain traversability estimation is crucial for autonomous robots, especially in unstructured environments where visual cues and reasoning play a key role. While vision-language models (VLMs) offer potential for zero-shot estimation, the problem remains inherently ill-posed. To explore this, we introduce a small dataset of human-annotated water traversability ratings, revealing that while estimations are subjective, human raters still show some consensus. Additionally, we propose a simple pipeline that integrates VLMs for zero-shot traversability estimation. Our experiments reveal mixed results, suggesting that current foundation models are not yet suitable for practical deployment but provide valuable insights for further research.
comment: Accepted and presented at the 1st German Robotics Conference (GRC); March 13-15, 2025, Nuremberg, Germany https://ras.papercept.net/conferences/conferences/GRC25/program/GRC25_ContentListWeb_3.html#sada_48
☆ Dynamic Robot-Assisted Surgery with Hierarchical Class-Incremental Semantic Segmentation
Robot-assisted surgeries rely on accurate and real-time scene understanding to safely guide surgical instruments. However, segmentation models trained on static datasets face key limitations when deployed in these dynamic and evolving surgical environments. Class-incremental semantic segmentation (CISS) allows models to continually adapt to new classes while avoiding catastrophic forgetting of prior knowledge, without training on previous data. In this work, we build upon the recently introduced Taxonomy-Oriented Poincar\'e-regularized Incremental Class Segmentation (TOPICS) approach and propose an enhanced variant, termed TOPICS+, specifically tailored for robust segmentation of surgical scenes. Concretely, we incorporate the Dice loss into the hierarchical loss formulation to handle strong class imbalances, introduce hierarchical pseudo-labeling, and design tailored label taxonomies for robotic surgery environments. We also propose six novel CISS benchmarks designed for robotic surgery environments including multiple incremental steps and several semantic categories to emulate realistic class-incremental settings in surgical environments. In addition, we introduce a refined set of labels with more than 144 classes on the Syn-Mediverse synthetic dataset, hosted online as an evaluation benchmark. We make the code and trained models publicly available at http://topics.cs.uni-freiburg.de.
☆ DexReMoE:In-hand Reorientation of General Object via Mixtures of Experts
In hand object reorientation provides capability for dexterous manipulation, requiring robust control policies to manage diverse object geometries, maintain stable grasps, and execute precise complex orientation trajectories. However, prior works focus on single objects or simple geometries and struggle to generalize to complex shapes. In this work, we introduce DexReMoE (Dexterous Reorientation Mixture-of-Experts), in which multiple expert policies are trained for different complex shapes and integrated within a Mixture-of-Experts (MoE) framework, making the approach capable of generalizing across a wide range of objects. Additionally, we incorporate object category information as privileged inputs to enhance shape representation. Our framework is trained in simulation using reinforcement learning (RL) and evaluated on novel out-of-distribution objects in the most challenging scenario of reorienting objects held in the air by a downward-facing hand. In terms of the average consecutive success count, DexReMoE achieves a score of 19.5 across a diverse set of 150 objects. In comparison to the baselines, it also enhances the worst-case performance, increasing it from 0.69 to 6.05. These results underscore the scalability and adaptability of the DexReMoE framework for general-purpose in-hand reorientation.
comment: 10 pages, 8 figures
☆ Energy-Predictive Planning for Optimizing Drone Service Delivery
We propose a novel Energy-Predictive Drone Service (EPDS) framework for efficient package delivery within a skyway network. The EPDS framework incorporates a formal modeling of an EPDS and an adaptive bidirectional Long Short-Term Memory (Bi-LSTM) machine learning model. This model predicts the energy status and stochastic arrival times of other drones operating in the same skyway network. Leveraging these predictions, we develop a heuristic optimization approach for composite drone services. This approach identifies the most time-efficient and energy-efficient skyway path and recharging schedule for each drone in the network. We conduct extensive experiments using a real-world drone flight dataset to evaluate the performance of the proposed framework.
comment: 37 pages, 16 figures. This is an accepted paper, and it is going to appear in the Expert Systems with Applications journal
☆ VFP: Variational Flow-Matching Policy for Multi-Modal Robot Manipulation
Flow-matching-based policies have recently emerged as a promising approach for learning-based robot manipulation, offering significant acceleration in action sampling compared to diffusion-based policies. However, conventional flow-matching methods struggle with multi-modality, often collapsing to averaged or ambiguous behaviors in complex manipulation tasks. To address this, we propose the Variational Flow-Matching Policy (VFP), which introduces a variational latent prior for mode-aware action generation and effectively captures both task-level and trajectory-level multi-modality. VFP further incorporates Kantorovich Optimal Transport (K-OT) for distribution-level alignment and utilizes a Mixture-of-Experts (MoE) decoder for mode specialization and efficient inference. We comprehensively evaluate VFP on 41 tasks across four benchmark environments, demonstrating its effectiveness and sampling efficiency in both task and path multi-modality settings. Results show that VFP achieves a $49\%$ relative improvement in task success rate over standard flow-based baselines, while maintaining fast inference and compact model size. More details are available on our project page: https://sites.google.com/view/varfp/
☆ CLASS: Contrastive Learning via Action Sequence Supervision for Robot Manipulation
Recent advances in Behavior Cloning (BC) have led to strong performance in robotic manipulation, driven by expressive models, sequence modeling of actions, and large-scale demonstration data. However, BC faces significant challenges when applied to heterogeneous datasets, such as visual shift with different camera poses or object appearances, where performance degrades despite the benefits of learning at scale. This stems from BC's tendency to overfit individual demonstrations rather than capture shared structure, limiting generalization. To address this, we introduce Contrastive Learning via Action Sequence Supervision (CLASS), a method for learning behavioral representations from demonstrations using supervised contrastive learning. CLASS leverages weak supervision from similar action sequences identified via Dynamic Time Warping (DTW) and optimizes a soft InfoNCE loss with similarity-weighted positive pairs. We evaluate CLASS on 5 simulation benchmarks and 3 real-world tasks to achieve competitive results using retrieval-based control with representations only. Most notably, for downstream policy learning under significant visual shifts, Diffusion Policy with CLASS pre-training achieves an average success rate of 75%, while all other baseline methods fail to perform competitively. Project webpage: https://class-robot.github.io.
comment: To appear in Proceedings of the Conference on Robot Learning (CoRL) 2025
☆ Adverse Weather-Independent Framework Towards Autonomous Driving Perception through Temporal Correlation and Unfolded Regularization
Various adverse weather conditions such as fog and rain pose a significant challenge to autonomous driving (AD) perception tasks like semantic segmentation, object detection, etc. The common domain adaption strategy is to minimize the disparity between images captured in clear and adverse weather conditions. However, domain adaption faces two challenges: (I) it typically relies on utilizing clear image as a reference, which is challenging to obtain in practice; (II) it generally targets single adverse weather condition and performs poorly when confronting the mixture of multiple adverse weather conditions. To address these issues, we introduce a reference-free and Adverse weather condition-independent (Advent) framework (rather than a specific model architecture) that can be implemented by various backbones and heads. This is achieved by leveraging the homogeneity over short durations, getting rid of clear reference and being generalizable to arbitrary weather condition. Specifically, Advent includes three integral components: (I) Locally Sequential Mechanism (LSM) leverages temporal correlations between adjacent frames to achieve the weather-condition-agnostic effect thanks to the homogeneity behind arbitrary weather condition; (II) Globally Shuffled Mechanism (GSM) is proposed to shuffle segments processed by LSM from different positions of input sequence to prevent the overfitting to LSM-induced temporal patterns; (III) Unfolded Regularizers (URs) are the deep unfolding implementation of two proposed regularizers to penalize the model complexity to enhance across-weather generalization. We take the semantic segmentation task as an example to assess the proposed Advent framework. Extensive experiments demonstrate that the proposed Advent outperforms existing state-of-the-art baselines with large margins.
comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:2409.14737
♻ ☆ Learning Physical Interaction Skills from Human Demonstrations
Learning physical interaction skills, such as dancing, handshaking, or sparring, remains a fundamental challenge for agents operating in human environments, particularly when the agent's morphology differs significantly from that of the demonstrator. Existing approaches often rely on handcrafted objectives or morphological similarity, limiting their capacity for generalization. Here, we introduce a framework that enables agents with diverse embodiments to learn wholebbody interaction behaviors directly from human demonstrations. The framework extracts a compact, transferable representation of interaction dynamics, called the Embedded Interaction Graph (EIG), which captures key spatiotemporal relationships between the interacting agents. This graph is then used as an imitation objective to train control policies in physics-based simulations, allowing the agent to generate motions that are both semantically meaningful and physically feasible. We demonstrate BuddyImitation on multiple agents, such as humans, quadrupedal robots with manipulators, or mobile manipulators and various interaction scenarios, including sparring, handshaking, rock-paper-scissors, or dancing. Our results demonstrate a promising path toward coordinated behaviors across morphologically distinct characters via cross embodiment interaction learning.
♻ ☆ Unified Locomotion Transformer with Simultaneous Sim-to-Real Transfer for Quadrupeds IROS 2025
Quadrupeds have gained rapid advancement in their capability of traversing across complex terrains. The adoption of deep Reinforcement Learning (RL), transformers and various knowledge transfer techniques can greatly reduce the sim-to-real gap. However, the classical teacher-student framework commonly used in existing locomotion policies requires a pre-trained teacher and leverages the privilege information to guide the student policy. With the implementation of large-scale models in robotics controllers, especially transformers-based ones, this knowledge distillation technique starts to show its weakness in efficiency, due to the requirement of multiple supervised stages. In this paper, we propose Unified Locomotion Transformer (ULT), a new transformer-based framework to unify the processes of knowledge transfer and policy optimization in a single network while still taking advantage of privilege information. The policies are optimized with reinforcement learning, next state-action prediction, and action imitation, all in just one training stage, to achieve zero-shot deployment. Evaluation results demonstrate that with ULT, optimal teacher and student policies can be obtained at the same time, greatly easing the difficulty in knowledge transfer, even with complex transformer-based models.
comment: Accepted for IROS 2025. Project website for video: https://johnliudk.github.io/ult/
♻ ☆ LanternNet: A Hub-and-Spoke System to Seek and Suppress Spotted Lanternfly Populations
The invasive spotted lanternfly (SLF) poses a significant threat to agriculture and ecosystems, causing widespread damage. Current control methods, such as egg scraping, pesticides, and quarantines, prove labor-intensive, environmentally hazardous, and inadequate for long-term SLF suppression. This research introduces LanternNet, a novel autonomous robotic Hub-and-Spoke system designed for scalable detection and suppression of SLF populations. A central, tree-mimicking hub utilizes a YOLOv8 computer vision model for precise SLF identification. Three specialized robotic spokes perform targeted tasks: pest neutralization, environmental monitoring, and navigation/mapping. Field deployment across multiple infested sites over 5 weeks demonstrated LanternNet's efficacy. Quantitative analysis revealed significant reductions (p < 0.01, paired t-tests) in SLF populations and corresponding improvements in tree health indicators across the majority of test sites. Compared to conventional methods, LanternNet offers substantial cost advantages and improved scalability. Furthermore, the system's adaptability for enhanced autonomy and targeting of other invasive species presents significant potential for broader ecological impact. LanternNet demonstrates the transformative potential of integrating robotics and AI for advanced invasive species management and improved environmental outcomes.
♻ ☆ Exploring 3D Reasoning-Driven Planning: From Implicit Human Intentions to Route-Aware Activity Planning
3D task planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advances in multimodal learning. However, most existing studies are facing two common challenges: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. We address the above challenges by proposing 3D Reasoning-Driven Planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
♻ ☆ Boosting Robotic Manipulation Generalization with Minimal Costly Data
The growing adoption of Vision-Language-Action (VLA) models in embodied AI intensifies the demand for diverse manipulation demonstrations. However, high costs associated with data collection often result in insufficient data coverage across all scenarios, which limits the performance of the models. It is observed that the spatial reasoning phase (SRP) in large workspace dominates the failure cases. Fortunately, this data can be collected with low cost, underscoring the potential of leveraging inexpensive data to improve model performance. In this paper, we introduce the RoboTron-Craft, a stage-divided and cost-effective pipeline for realistic manipulation generation. Base on this, the RoboTron-Platter method is introduced, a framework that decouples training trajectories into distinct task stages and leverages abundant easily collectible SRP data to enhance VLA model's generalization. Through analysis we demonstrate that sub-task-specific training with additional SRP data with proper proportion can act as a performance catalyst for robot manipulation, maximizing the utilization of costly physical interaction phase (PIP) data. Experiments show that through introducing large proportion of cost-effective SRP trajectories into a limited set of PIP data, we can achieve a maximum improvement of 41\% on success rate in zero-shot scenes, while with the ability to transfer manipulation skill to novel targets. Project available at https://github.com/ notFoundThisPerson/RoboTron-Craft.
♻ ☆ Task Reconstruction and Extrapolation for $π_0$ using Text Latent
Vision-language-action models (VLAs) often achieve high performance on demonstrated tasks but struggle significantly when required to extrapolate, combining skills learned from different tasks in novel ways. For instance, VLAs might successfully put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still fail to put the cream cheese on top of the cabinet. In this work, we demonstrate that behaviors from distinct tasks can be effectively recombined by manipulating the VLA's internal representations at inference time. Concretely, we identify the text latent by averaging the text tokens' hidden states across all demonstrated trajectories for a specific base task. For executing an extrapolated task, we can temporally interpolate the text latent of the two base tasks and add it back to the text hidden states, so sub-behaviors from the two tasks will be activated sequentially. We evaluate this approach using the newly created libero-ood benchmark, featuring 20 tasks extrapolated from standard LIBERO suites. The results on libero-ood show that all SOTA VLAs achieve < 15% success rate, while $\pi0$ with text latent interpolation reaches an 83% success rate. Further qualitative analysis reveals a tendency for VLAs to exhibit spatial overfitting, mapping object names to demonstrated locations rather than achieving genuine object and goal understanding. Additionally, we find that decoding the text latent yields human-unreadable prompts that can nevertheless instruct the VLA to achieve a 70% success rate on standard LIBERO suites, enabling private instruction or backdoor attacks.
♻ ☆ StyleDrive: Towards Driving-Style Aware Benchmarking of End-To-End Autonomous Driving
Personalization, while extensively studied in conventional autonomous driving pipelines, has been largely overlooked in the context of end-to-end autonomous driving (E2EAD), despite its critical role in fostering user trust, safety perception, and real-world adoption. A primary bottleneck is the absence of large-scale real-world datasets that systematically capture driving preferences, severely limiting the development and evaluation of personalized E2EAD models. In this work, we introduce the first large-scale real-world dataset explicitly curated for personalized E2EAD, integrating comprehensive scene topology with rich dynamic context derived from agent dynamics and semantics inferred via a fine-tuned vision-language model (VLM). We propose a hybrid annotation pipeline that combines behavioral analysis, rule-and-distribution-based heuristics, and subjective semantic modeling guided by VLM reasoning, with final refinement through human-in-the-loop verification. Building upon this dataset, we introduce the first standardized benchmark for systematically evaluating personalized E2EAD models. Empirical evaluations on state-of-the-art architectures demonstrate that incorporating personalized driving preferences significantly improves behavioral alignment with human demonstrations.
comment: 25 pages, 7 figures, 5 tables
♻ ☆ RoboGSim: A Real2Sim2Real Robotic Gaussian Splatting Simulator
Efficient acquisition of real-world embodied data has been increasingly critical. However, large-scale demonstrations captured by remote operation tend to take extremely high costs and fail to scale up the data size in an efficient manner. Sampling the episodes under a simulated environment is a promising way for large-scale collection while existing simulators fail to high-fidelity modeling on texture and physics. To address these limitations, we introduce the RoboGSim, a real2sim2real robotic simulator, powered by 3D Gaussian Splatting and the physics engine. RoboGSim mainly includes four parts: Gaussian Reconstructor, Digital Twins Builder, Scene Composer, and Interactive Engine. It can synthesize the simulated data with novel views, objects, trajectories, and scenes. RoboGSim also provides an online, reproducible, and safe evaluation for different manipulation policies. The real2sim and sim2real transfer experiments show a high consistency in the texture and physics. We compared the test results of RoboGSim data and real robot data on both RoboGSim and real robot platforms. The experimental results show that the RoboGSim data model can achieve zero-shot performance on the real robot, with results comparable to real robot data. Additionally, in experiments with novel perspectives and novel scenes, the RoboGSim data model performed even better on the real robot than the real robot data model. This not only helps reduce the sim2real gap but also addresses the limitations of real robot data collection, such as its single-source and high cost. We hope RoboGSim serves as a closed-loop simulator for fair comparison on policy learning. More information can be found on our project page https://robogsim.github.io/.
♻ ☆ Humanoid Robots and Humanoid AI: Review, Perspectives and Directions
In the approximately century-long journey of robotics, humanoid robots made their debut around six decades ago. While current humanoids bear human-like appearances, none have embodied true humaneness, remaining distant from achieving human-like to human-level intelligence. The rapid recent advancements in generative AI and (multimodal) large language models have further reignited and escalated interest in humanoids towards real-time, interactive, and multimodal designs and applications, such as fostering humanoid workers, advisers, educators, medical professionals, caregivers, and receptionists. These unveil boundless opportunities of transforming 1) AI robotics into a research era of humanoid AI, and 2) AI robots into new-generation humanoid AI robots (AI humanoids). Our unique and comprehensive review of about 30 reported humanoids discloses a systematic terminology and a paradigmatic landscape of human-looking to human-like and human-level humanoids. It inspires comprehensive new perspectives and directions of humanoid AI as an area: transitioning from human-looking to humane humanoids, humanizing humanoids with functional and nonfunctional specifications, and cultivating technical and actionable advances of AI humanoids. Humanoid AI and AI humanoids nurture symbiotic advancements and future opportunities of synthesizing and transforming humanity modeling and conventional, generative to human-level AI into humanoid robotics.
comment: 52 pages, 4 figures, 4 tables
♻ ☆ Human-Machine Shared Control Approach for the Takeover of Cooperative Adaptive Cruise Control
Cooperative Adaptive Cruise Control (CACC) often requires human takeover for tasks such as exiting a freeway. Direct human takeover can pose significant risks, especially given the close-following strategy employed by CACC, which might cause drivers to feel unsafe and execute hard braking, potentially leading to collisions. This research aims to develop a CACC takeover controller that ensures a smooth transition from automated to human control. The proposed CACC takeover maneuver employs an indirect human-machine shared control approach, modeled as a Stackelberg competition where the machine acts as the leader and the human as the follower. The machine guides the human to respond in a manner that aligns with the machine's expectations, aiding in maintaining following stability. Additionally, the human reaction function is integrated into the machine's predictive control system, moving beyond a simple "prediction-planning" pipeline to enhance planning optimality. The controller has been verified to i) enable a smooth takeover maneuver of CACC; ii) ensure string stability in the condition that the platoon has less than 6 CAVs and human control authority is less than 40%; iii) enhance both perceived and actual safety through machine interventions; and iv) reduce the impact on upstream traffic by up to 60%.
comment: This article has been published on IEEE Transactions on Intelligent Transportation Systems (2025)
♻ ☆ iMacHSR: Intermediate Multi-Access Heterogeneous Supervision and Regularization Scheme Toward Architecture-Agnostic Training
While deep supervision is a powerful training strategy by supervising intermediate layers with auxiliary losses, it faces three underexplored problems: (I) Existing deep supervision techniques are generally bond with specific model architectures strictly, lacking generality. (II) The identical loss function for intermediate and output layers causes intermediate layers to prioritize output-specific features prematurely, limiting generalizable representations. (III) Lacking regularization on hidden activations risks overconfident predictions, reducing generalization to unseen scenarios. To tackle these challenges, we propose an architecture-agnostic, intermediate Multi-access Heterogeneous Supervision and Regularization (iMacHSR) scheme. Specifically, the proposed iMacHSR introduces below integral strategies: (I) we select multiple intermediate layers based on predefined architecture-agnostic standards; (II) loss functions (different from output-layer loss) are applied to those selected intermediate layers, which can guide intermediate layers to learn diverse and hierarchical representations; and (III) negative entropy regularization on selected layers' hidden features discourages overconfident predictions and mitigates overfitting. These intermediate terms are combined into the output-layer training loss to form a unified optimization objective, enabling comprehensive optimization across the network hierarchy. We then take the semantic understanding task as an example to assess iMacHSR and apply iMacHSR to several model architectures. Extensive experiments on multiple datasets demonstrate that iMacHSR outperforms conventional output-layer single-point supervision method up to 9.19% in mIoU.
comment: 9 pages
Information Retrieval 5
☆ Counterfactual Reciprocal Recommender Systems for User-to-User Matching KDD
Reciprocal recommender systems (RRS) in dating, gaming, and talent platforms require mutual acceptance for a match. Logged data, however, over-represents popular profiles due to past exposure policies, creating feedback loops that skew learning and fairness. We introduce Counterfactual Reciprocal Recommender Systems (CFRR), a causal framework to mitigate this bias. CFRR uses inverse propensity scored, self-normalized objectives. Experiments show CFRR improves NDCG@10 by up to 3.5% (e.g., from 0.459 to 0.475 on DBLP, from 0.299 to 0.307 on Synthetic), increases long-tail user coverage by up to 51% (from 0.504 to 0.763 on Synthetic), and reduces Gini exposure inequality by up to 24% (from 0.708 to 0.535 on Synthetic). CFRR offers a promising approach for more accurate and fair user-to-user matching.
comment: 9 pages, 2 figures. Accepted for publication at the Workshop on Two-sided Marketplace Optimization (TSMO '25), held in conjunction with the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2025), Toronto, Canada
☆ ChEmbed: Enhancing Chemical Literature Search Through Domain-Specific Text Embeddings
Retrieval-Augmented Generation (RAG) systems in chemistry heavily depend on accurate and relevant retrieval of chemical literature. However, general-purpose text embedding models frequently fail to adequately represent complex chemical terminologies, resulting in suboptimal retrieval quality. Specialized embedding models tailored to chemical literature retrieval have not yet been developed, leaving a substantial performance gap. To address this challenge, we introduce ChEmbed, a domain-adapted family of text embedding models fine-tuned on a dataset comprising chemistry-specific text from the PubChem, Semantic Scholar, and ChemRxiv corpora. To create effective training data, we employ large language models to synthetically generate queries, resulting in approximately 1.7 million high-quality query-passage pairs. Additionally, we augment the tokenizer by adding 900 chemically specialized tokens to previously unused slots, which significantly reduces the fragmentation of chemical entities, such as IUPAC names. ChEmbed also maintains a 8192-token context length, enabling the efficient retrieval of longer passages compared to many other open-source embedding models, which typically have a context length of 512 or 2048 tokens. Evaluated on our newly introduced ChemRxiv Retrieval benchmark, ChEmbed outperforms state-of-the-art general embedding models, raising nDCG@10 from 0.82 to 0.91 (+9 pp). ChEmbed represents a practical, lightweight, and reproducible embedding solution that effectively improves retrieval for chemical literature search.
☆ A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges
The advent of Large Language Models (LLMs) has significantly revolutionized web search. The emergence of LLM-based Search Agents marks a pivotal shift towards deeper, dynamic, autonomous information seeking. These agents can comprehend user intentions and environmental context and execute multi-turn retrieval with dynamic planning, extending search capabilities far beyond the web. Leading examples like OpenAI's Deep Research highlight their potential for deep information mining and real-world applications. This survey provides the first systematic analysis of search agents. We comprehensively analyze and categorize existing works from the perspectives of architecture, optimization, application, and evaluation, ultimately identifying critical open challenges and outlining promising future research directions in this rapidly evolving field. Our repository is available on https://github.com/YunjiaXi/Awesome-Search-Agent-Papers.
♻ ☆ Fine-grained Alignment of Large Language Models for General Medication Recommendation without Overprescription
Large language models (LLMs) holds significant promise in achieving general medication recommendation systems owing to their comprehensive interpretation of clinical notes and flexibility to medication encoding. We evaluated both general-purpose and medical-specific LLMs for medication recommendations, showing their unsatisfactory precision and severe overprescription. To address this, we introduce Language-Assisted Medication Recommendation, which tailors LLMs for medication recommendation in a medication-aware manner, improving the usage of clinical notes. Fine-tuning LLMs with this framework can outperform existing methods by more than 10% in internal validation and generalize across temporal and external validations. Furthermore, the model maintains high accuracy when encountering out-of-distribution medication.
♻ ☆ Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval
Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.